• Explorar
      • Comunidades & Colecciones
      • Fecha de Publicación
      • Autores
      • Títulos
      • Tema
    • Acerca del repositorio
      • Contactenos
    • Servicios
    • Login
    View Item 
    •   DSpace Home
    • Montecillo
    • Socioeconomía, Estadística e Informática
    • Estadística
    • Tesis MC, MT, MP y DC
    • View Item
    •   DSpace Home
    • Montecillo
    • Socioeconomía, Estadística e Informática
    • Estadística
    • Tesis MC, MT, MP y DC
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Aplicación del Elastic Net LASSO y modelos relacionados en selección genómica basados en marcadores moleculares

    Thumbnail
    View/Open
    Lopez_Cruz_MA_MC_Estadistica_2012.pdf (1.333Mb)
    Date
    2012-05-21
    Author
    López Cruz, Marco Antonio
    Metadata
    Show full item record
    Abstract
    El Elastic Net Bayesiano (BEN) es un método de regresión que utiliza una mezcla de las penalizaciones L1 y L2 (Kyung et al., 2010, Li y Lin, 2010). Se ha demostrado que este modelo puede ser usado exitosamente cuando el tamaño de muestra es mucho menor que el número de predictores (n << p). En este trabajo se muestra cómo utilizar este modelo para incluir de forma conjunta Marcadores Moleculares (MM) y Pedigree, ampliamente utilizados en gen etica cuantitativa en la llamada selección asistida por MM. Por medio de validación cruzada, el poder predictivo del BEN se compara con el de otros modelos: LASSO Bayesiano y Regresión Ridge Bayesiana, usando datos reales de rendimiento de cultivares de trigo y cebada, y tiempos de floración de maíz. Los resultados muestran que el BEN tiene un poder predictivo igual o superior que el resto de los modelos mencionados. ________________ APPLICATION OF BAYESIAN ELASTIC NET AND RELATED METHODS IN GENOMIC SELECTION BASED ON MOLECULAR MERKERS. ABSTRACT: The Bayesian Elastic Net (BEN) is a regression method that uses a mixture of L1 and L2 penalties (Kyung et al., 2010, Li y Lin, 2010). It has been shown that this model can be used successfully when the sample size is much smaller than the number of predictors (n << p). This paper shows how to use this model to include jointly Molecular Markers (MM) and Pedigree, widely used in quantitative genetics in the called MM-assisted selection. Through cross-validation, the predictive power of BEN is compared with other models: Bayesian LASSO and Bayesian Ridge Regression, using real data of yield of cultivars wheat and barley and owering time of maize. The results show that BEN has a predictive power equal to or greater than the rest of the models.
     
    El Elastic Net Bayesiano (BEN) es un método de regresión que utiliza una mezcla de las penalizaciones L
     
    URI
    http://hdl.handle.net/10521/712
    Collections
    • Tesis MC, MT, MP y DC [102]

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV