Show simple item record

dc.contributor.authorHerrera Reyes, Gloria Selene
dc.creatorHERRERA REYES, GLORIA SELENE; 813375
dc.date.accessioned2019-08-30T16:38:53Z
dc.date.available2019-08-30T16:38:53Z
dc.date.issued2019-06
dc.identifier.urihttp://hdl.handle.net/10521/3922
dc.descriptionTesis (Maestría en Ciencias, especialista en Estadística).- Colegio de Postgraduados, 2019.es_MX
dc.description.abstractEn la investigación agropecuaria y forestal con frecuencia se generan respuestas múltiples, por ejemplo a la semilla de algodón se le mide el contenido de humedad, ácidos grasos, carbohidratos, tamaño, diámetro, longitud, forma, dureza, entre otras. Naturalmente, las respuestas múltiples se presentan en muchas otras áreas de investigación como la social, económica, ingenieril, salud, entre otras. El análisis de varianza multivariado (MANOVA) puede ser útil para el análisis de respuestas múltiples cuando se quiere determinar diferencias de efectos de tratamientos; sin embargo, esta metodología tiene ciertas limitaciones tales como el cumplimiento de los supuestos de normalidad multivariada y homogeneidad de matrices de varianzas y covarianzas, supuestos que son difíciles de verificar si el tamaño de muestra es pequeño. Además, las pruebas post hoc actuales, en este contexto, no son satisfactorias dada su dificultad de empleo por investigadores no expertos en la materia, o bien por limitaciones propias del método. Esta investigación propone una alternativa de análisis para contrastar la hipótesis de igualdad de efectos entre tratamientos en el caso de respuestas múltiples. Se demuestra un resultado asintótico para la variable aleatoria generada en la propuesta para el caso de variables normales no correlacionadas y queda abierto el caso para variables aleatorias normales correlacionadas. Un estudio de simulación muestra que el desempeño de la propuesta con muestras pequeñas es satisfactorio en términos de potencia y que tiene ventajas en comparación con el MANOVA. La propuesta metodológica es una buena alternativa para probar la hipótesis de igualdad de efectos de tratamientos con respuestas múltiples provenientes de un diseño experimental completamente al azar (DECA), incluso en el caso de muestras pequeñas y variables normales correlacionadas. _______________ ANALYSIS PROPOSAL FOR THE CASE OF MULTIPLE RESPONSES IN EXPERIMENTAL DESIGNS. ABSTRACT: Multiple responses are often obtained in agricultural and forest research, for example, the cotton seed is measured for moisture content, fatty acids, carbohydrates, size, diameter, length, shape, hardness, etc. Naturally, multiple responses are presented in other areas of research, such as social, economic, engineering, health, among others. The multivariate analysis of variance (MANOVA) can be useful to analyze multiple responses when we would like to determine the differences of treatment effects; but this methodology has some limitations such as the accomplishment of assumptions like multivariate normality and homogeneity of variances and covariances matrices; these assumptions are difficult to verify if the sample size is small. In addition in this context, the current post hoc tests are not satisfactory given the difficulty in employment by researchers who are not experts in the field or due to limitations inherent to the method. An alternative analysis to test the hypothesis of equality of the effects in the multiple responses case is propose in this research. An asymptotic result for the random variable generated in the proposal has been demonstrated for the normal uncorrelated case, and the result for normal random correlated variables is leave open. A simulation study shows that the performance of the proposal with small samples is satisfactory in terms of power and that it has advantages compared with the MANOVA. The proposed methodology is a good alternative to test the hypothesis of equality of treatment effects for multiple responses from a completely random experimental design, even in the case of small samples and normal correlated variables.es_MX
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACyT).es_MX
dc.formatpdfes_MX
dc.language.isospaes_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subjectANOVAes_MX
dc.subjectMANOVAes_MX
dc.subjectSupuestoses_MX
dc.subjectTransformación de datoses_MX
dc.subjectNorma euclideanaes_MX
dc.subjectAssumptionses_MX
dc.subjectData transformationes_MX
dc.subjectEuclidean normes_MX
dc.subjectEstadísticaes_MX
dc.subjectMaestríaes_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ESTADÍSTICA::ANÁLISIS Y DISEÑO DE EXPERIMENTOSes_MX
dc.titlePropuesta de análisis para el caso de respuestas múltiples en diseños experimentales.es_MX
dc.typeTesises_MX
Tesis.contributor.advisorSuárez Espinosa, Javier
Tesis.contributor.advisorRamírez Guzmán, Martha Elva
Tesis.contributor.advisorRodríguez yam, Gabriel A.
Tesis.date.submitted2019-06
Tesis.date.accesioned2019
Tesis.date.available2019
Tesis.format.mimetypepdfes_MX
Tesis.format.extent1,853 KBes_MX
Tesis.subject.nalAnálisis de varianzaes_MX
Tesis.subject.nalAnalysis of variancees_MX
Tesis.subject.nalDiseño experimentales_MX
Tesis.subject.nalExperimental designes_MX
Tesis.rightsAcceso abiertoes_MX
Articulos.subject.classificationEstadísticaes_MX
dc.type.conacytbachelorThesises_MX
dc.identificator1||12||1209||120905es_MX
dc.contributor.directorSUÁREZ ESPINOSA, JAVIER; 37302
dc.audiencegeneralPublices_MX


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0