Comparación de algunas pruebas estadísticas asintóticas de no-inferioridad para contrastar dos proporciones independientes
Abstract
En este trabajo se comparan las pruebas asintóticas de no-inferioridad 
de Blackwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck- 
Anderson, la prueba de razón de verosimilitudes generalizada y dos 
variantes de estas pruebas con base en sus niveles de significancia reales 
y en sus potencias. La prueba de Farrington-Manning es la que resultó 
tener la mejor aproximación del nivel de significancia real al nominal para 
tamaños de muestra 30 
≤ n ≤ 100 y para los tres límites de no-inferioridad 
más frecuentemente usados en el contexto de ensayos clínicos. La potencia 
de la prueba de Farrington-Manning resultó muy similar a las potencias 
de aquellas pruebas con buena aproximación del nivel de significancia real 
al nominal. 
Para pruebas exactas de no-inferioridad, Röhmel y Mansmann [25] 
probaron que si la región de rechazo cumple la condición de convexidad 
de Barnard, entonces el nivel de significancia en vez de calcularse como 
el supremo en todo el espacio nulo puede calcularse como el máximo en 
una parte de la frontera del espacio nulo. Esto tiene particular importan- 
cia debido al extenso tiempo de cómputo requerido para calcular niveles 
de significancia para pruebas de no-inferioridad, ver por ejemplo Röhmel 
[26]. En este trabajo se generaliza el teorema demostrado por Röhmel 
y Mansmann [25] en dos direcciones, en primer lugar se extiende el re- 
sultado para pruebas estadísticas en general (incluyendo pruebas exactas 
y asintóticas), en segundo lugar se relaja la condición de convexidad de 
Barnard a una condición menos restrictiva. El resultado incluye hipótesis 
de no-inferioridad para parámetros como la diferencia, la razón y la razón 
de momios. Este resultado permite calcular los niveles de significancia 
para pruebas como la de Blackwelder y la de Hauck-Anderson obteniendo 
el máximo en una parte de la frontera con una reducción sustancial del 
tiempo de cómputo.______In this work are compared the asymptotic tests for non-inferiority 
of Backwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck- 
Anderson, generalized likelihood ratio test and two variants of these tests, 
comparison was made based in their real levels of significance and in their 
power. The test of Farrington-Manning has best aproximation of the real 
significance level to the nominal one for sample size 30 
≤ n ≤ 100 and for 
the three non-inferiority limits more often used in clinical trials. Power of 
the Farrington-Manning test is very similar to power of tests with good 
aproximation of the real level of significance to nominal. 
For exact tests of non-inferiority, Röhmel and Mansmann [25] proved 
that if the rejection region fulfills the Barnard convexity condition, then 
the level of significance can be computed as the maximum in a part of 
the boundary of the null space instead of the supremum in the whole 
null space. This is particularly important due to the great amount of 
time required to compute levels of significance in non-inferiority tests, 
e.g. see Röhmel [26]. In this work, the theorem demonstrated by Röhmel 
and Mansmann [25] is generalized in two directions, firstly the result for 
general statistical tests is extended (including exact and asymptotic tests), 
secondly the Barnard convexity condition is relaxed to a less restrictive 
condition. The result includes hypotheses of non-inferiority for parameters 
such as difference, ratio, and odds ratio. This result allows the computing 
of levels of significance for tests such as the Blackwelder and the Hauck- 
Anderson, obtaining the maximum in one part of the boundary with a 
substantial reduction in computing time.In this work are compared the asymptotic tests for non-inferiority 
of Backwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck- 
Anderson, generalized likelihood ratio test and two variants of these tests, 
comparison was made based in their real levels of significance and in their 
power. The test of Farrington-Manning has best aproximation of the real 
significance level to the nominal one for sample size 30 
≤ n ≤ 100 and for 
the three non-inferiority limits more often used in clinical trials. Power of 
the Farrington-Manning test is very similar to power of tests with good 
aproximation of the real level of significance to nominal. 
For exact tests of non-inferiority, Röhmel and Mansmann [25] proved 
that if the rejection region fulfills the Barnard convexity condition, then 
the level of significance can be computed as the maximum in a part of 
the boundary of the null space instead of the supremum in the whole 
null space. This is particularly important due to the great amount of 
time required to compute levels of significance in non-inferiority tests, 
e.g. see Röhmel [26]. In this work, the theorem demonstrated by Röhmel 
and Mansmann [25] is generalized in two directions, firstly the result for 
general statistical tests is extended (including exact and asymptotic tests), 
secondly the Barnard convexity condition is relaxed to a less restrictive 
condition. The result includes hypotheses of non-inferiority for parameters 
such as difference, ratio, and odds ratio. This result allows the computing 
of levels of significance for tests such as the Blackwelder and the Hauck- 
Anderson, obtaining the maximum in one part of the boundary with a 
substantial reduction in computing time.
Collections
- Tesis MC, MT, MP y DC [102]
 


