Comparación de algunas pruebas estadísticas asintóticas de no-inferioridad para contrastar dos proporciones independientes
Abstract
En este trabajo se comparan las pruebas asintóticas de no-inferioridad
de Blackwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck-
Anderson, la prueba de razón de verosimilitudes generalizada y dos
variantes de estas pruebas con base en sus niveles de significancia reales
y en sus potencias. La prueba de Farrington-Manning es la que resultó
tener la mejor aproximación del nivel de significancia real al nominal para
tamaños de muestra 30
≤ n ≤ 100 y para los tres límites de no-inferioridad
más frecuentemente usados en el contexto de ensayos clínicos. La potencia
de la prueba de Farrington-Manning resultó muy similar a las potencias
de aquellas pruebas con buena aproximación del nivel de significancia real
al nominal.
Para pruebas exactas de no-inferioridad, Röhmel y Mansmann [25]
probaron que si la región de rechazo cumple la condición de convexidad
de Barnard, entonces el nivel de significancia en vez de calcularse como
el supremo en todo el espacio nulo puede calcularse como el máximo en
una parte de la frontera del espacio nulo. Esto tiene particular importan-
cia debido al extenso tiempo de cómputo requerido para calcular niveles
de significancia para pruebas de no-inferioridad, ver por ejemplo Röhmel
[26]. En este trabajo se generaliza el teorema demostrado por Röhmel
y Mansmann [25] en dos direcciones, en primer lugar se extiende el re-
sultado para pruebas estadísticas en general (incluyendo pruebas exactas
y asintóticas), en segundo lugar se relaja la condición de convexidad de
Barnard a una condición menos restrictiva. El resultado incluye hipótesis
de no-inferioridad para parámetros como la diferencia, la razón y la razón
de momios. Este resultado permite calcular los niveles de significancia
para pruebas como la de Blackwelder y la de Hauck-Anderson obteniendo
el máximo en una parte de la frontera con una reducción sustancial del
tiempo de cómputo.______In this work are compared the asymptotic tests for non-inferiority
of Backwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck-
Anderson, generalized likelihood ratio test and two variants of these tests,
comparison was made based in their real levels of significance and in their
power. The test of Farrington-Manning has best aproximation of the real
significance level to the nominal one for sample size 30
≤ n ≤ 100 and for
the three non-inferiority limits more often used in clinical trials. Power of
the Farrington-Manning test is very similar to power of tests with good
aproximation of the real level of significance to nominal.
For exact tests of non-inferiority, Röhmel and Mansmann [25] proved
that if the rejection region fulfills the Barnard convexity condition, then
the level of significance can be computed as the maximum in a part of
the boundary of the null space instead of the supremum in the whole
null space. This is particularly important due to the great amount of
time required to compute levels of significance in non-inferiority tests,
e.g. see Röhmel [26]. In this work, the theorem demonstrated by Röhmel
and Mansmann [25] is generalized in two directions, firstly the result for
general statistical tests is extended (including exact and asymptotic tests),
secondly the Barnard convexity condition is relaxed to a less restrictive
condition. The result includes hypotheses of non-inferiority for parameters
such as difference, ratio, and odds ratio. This result allows the computing
of levels of significance for tests such as the Blackwelder and the Hauck-
Anderson, obtaining the maximum in one part of the boundary with a
substantial reduction in computing time.In this work are compared the asymptotic tests for non-inferiority
of Backwelder, Farrington-Manning, Böhning-Viwatwongkasen, Hauck-
Anderson, generalized likelihood ratio test and two variants of these tests,
comparison was made based in their real levels of significance and in their
power. The test of Farrington-Manning has best aproximation of the real
significance level to the nominal one for sample size 30
≤ n ≤ 100 and for
the three non-inferiority limits more often used in clinical trials. Power of
the Farrington-Manning test is very similar to power of tests with good
aproximation of the real level of significance to nominal.
For exact tests of non-inferiority, Röhmel and Mansmann [25] proved
that if the rejection region fulfills the Barnard convexity condition, then
the level of significance can be computed as the maximum in a part of
the boundary of the null space instead of the supremum in the whole
null space. This is particularly important due to the great amount of
time required to compute levels of significance in non-inferiority tests,
e.g. see Röhmel [26]. In this work, the theorem demonstrated by Röhmel
and Mansmann [25] is generalized in two directions, firstly the result for
general statistical tests is extended (including exact and asymptotic tests),
secondly the Barnard convexity condition is relaxed to a less restrictive
condition. The result includes hypotheses of non-inferiority for parameters
such as difference, ratio, and odds ratio. This result allows the computing
of levels of significance for tests such as the Blackwelder and the Hauck-
Anderson, obtaining the maximum in one part of the boundary with a
substantial reduction in computing time.
Collections
- Tesis MC, MT, MP y DC [102]