

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS

CAMPUS PUEBLA

POSTGRADO EN ESTRATEGIAS PARA EL DESARROLLO AGRÍCOLA REGIONAL

CAMBIO DEL USO DEL SUELO Y MODELACIÓN HIDROGEOLÓGICA DEL ACUÍFERO DEL VALLE DE PUEBLA

IGNACIO MUÑOZ MÁXIMO

TESIS

PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS

PUEBLA, PUEBLA

Junio de 2015

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS CAMPECHE-CÓRDOBA-MONTECILLO-PUEBLA-SAN LUIS POTOSÍ-TABASCO-VERACRUZ

CAMPUE- 43-2-03

CARTA DE CONSENTIMIENTO DE USO DE LOS DERECHOS DE AUTOR Y DE LAS REGALÍAS COMERCIALES DE PRODUCTOS DE INVESTIGACIÓN

En adición al beneficio ético, moral y académico que he obtenido durante mis estudios en el Colegio de Postgraduados, el que suscribe Ignacio Muñoz Máximo alumno de esta Institución, estoy de acuerdo en ser partícipe de las regalías económicas y/o académicas, de procedencia nacional e internacional, que se deriven del trabajo de investigación que realicé en esta Institución, bajo la dirección del Profesor Dr. Angel Bustamante González por lo que otorgo los derechos de autor de mi tesis Cambio del uso del suelo y modelación hidrogeológica del acuífero del Valle de Puebla y de los productos de dicha investigación al Colegio de Postgraduados. Las patentes y secretos industriales que se puedan derivar serán registrados a nombre del Colegio de Postgraduados y las regalías económicas que se deriven serán distribuidas entre la Institución, el Consejero o Director de Tesis y el que suscribe, de acuerdo a las negociaciones entre las tres partes, por ello me comprometo a no realizar ninguna acción que dañe el proceso de explotación comercial de dichos productos a favor de esta Institución.

Puebla, Puebla, 24 de junio de 2015.

Ignacio Muñoz Máximo

Vo. Bo. Profesor Consejero o Director de Tesis Dr. Angel Bustamante González La presente tesis, titulada: Cambio del uso del suelo y modelación hidrogeológica del acuífero del Valle de Puebla, realizada por el alumno: Ignacio Muñoz Máximo, bajo la dirección del Consejo Particular indicado, ha sido aprobada por el mismo y aceptada como requisito parcial para obtener el grado de:

MAESTRO EN CIENCIAS ESTRATEGIAS PARA EL DESARROLLO AGRÍCOLA REGIONAL

CONSEJO PARTICULAR

CONSEJERO:	- Joseph -
	DR. ANGEL BUSTAMANTE GONZÁLEZ
ASESOR:	
	DR. SAMUEL VARGAS LÓPEZ
ASESOR:	Our San
	DR. JOSÉ ISABEL OLVERA HERNÁNDEZ
ASESOR:	June June
	DR. LUIS ALBERTO VILLARREAL MANZO
ASESOR:	1/2,
	DR. EFRAÍN RUBIO ROSAS

Puebla, Puebla, México, 2015

CAMBIO DEL USO DEL SUELO Y MODELACIÓN HIDROGEOLÓGICA DEL ACUÍFERO DEL VALLE DE PUEBLA

Ignacio Muñoz Máximo, MC. Colegio de Postgraduados, 2015

El sistema acuífero Valle de Puebla-Alto Atoyac es la principal fuente de abastecimiento de agua de los principales centros urbanos y desarrollos industriales del área metropolitana de la ciudad de Puebla. La disponibilidad del recurso hídrico del sistema ha sido presionado por la demanda creciente de agua, asociado al crecimiento poblacional y la expansión de desarrollos industriales. A este factor se añade la pérdida de áreas de recarga, por el cambio de uso del suelo de agrícola y forestal a urbano e industrial. La estrategia de manejo del sistema del acuífero, para satisfacer la mayor demanda, ha sido la perforación y explotación de nuevos pozos. Como consecuencia, la disponibilidad de agua por habitante ha disminuido y la superficie piezométrica del sistema acuífero Valle de Puebla-Alto Atoyac se ha abatido progresivamente. Esta investigación tuvo como objetivo conocer cuál ha sido el comportamiento del nivel piezométrico del acuífero durante los últimos 20 años y estimar cuál será la posible tendencia futura del mismo, considerando estrategias de aumento y disminución de extracción de agua. Se integraron los modelos Soil and Water Assessment Tool (modelo de cuenca) y MODFLOW (modelo de aguas subterráneas), para simular la dinámica espacial y temporal del sistema acuífero en una superficie de 2160 Km². Se utilizó información de registros de 63 pozos; imágenes LANDSAT de 1979, 1985, 1989, 1997 y 2014; censos de población y la proyección de la población al año 2030 para evaluar la condición actual de la superficie piezométrica, cambios de uso del suelo, proyecciones de la demanda de agua y simulaciones de la condición futura de la superficie piezométrica. Se consideraron como factores de presión del acuífero el aumento de la demanda de agua por el crecimiento de la población y la pérdida de zonas de recarga por el cambio de uso del suelo. Los resultados indicaron que de seguir la tendencia actual se tendrá una disminución promedio de -0.99 m/año en la superficie piezométrica para el periodo de 1997 al año 2017. Considerando un aumento de 30 % de la extracción en los pozos, proyectado al año 2030, la disminución es de -1.37 m/año. La política de manejo que disminuya la extracción en un 23% llevaría a una recuperación promedio de 0.297 m/año.

Palabras clave: acuífero, MODFLOW, recarga, SWAT, Valle de Puebla.

LAND USE CHANGE AND HIDROGEOLOGICAL MODELING OF THE PUEBLA VALLEY AQUIFER

Ignacio Muñoz Máximo, M.C. Colegio de Postgraduados, 2015

The Puebla Valley-high Atoyac aquifer system is the main water source of the urban and industrial developments of the metropolitan area of Puebla City. The groundwater of the aquifer system is stressed because of a growing water demand related to population growth and industrial developments. Furthermore, water recharge areas have been lost due to conversions of agricultural and forest lands to urban and industrial developments. The aquifer management strategy to satisfy this growing water demand has been the creation of new wells. As a consequence of that, groundwater resources availability per capita has decreased and the potentiometric surface has lowered progressively. The aim of this research was to assess the water-level behavior during the last 20 years and to estimate its possible future trends, considering strategies to increase and decrease water extraction. The Soil and Water Assessment Tool, a river basin scale model, and the MODFLOW, a groundwater model, were coupled for simulating the aquifer spatio-temporal dynamics in an area of 2160 square kilometers. Records of 63 wells; Landsat images from 1779, 1985, 1989, 1997, and 2014; population census, and population projections to 2030 were used to assess current potentiometric surface dynamics, land use changes, water demand projection determine changes, and future potentiometric surface simulations. Growing groundwater demand due to population growth and recharge surface losses owed to land use change were considered as aquifer stress factors. The results indicated an average of -0.99 meter per year decrease in the potentiometric surface for the period 1997 to 2017, if the current trend is maintained. A 30 % increase in the groundwater extraction, projected to 2030, will cause a potentiometric surface loss of -1.37 meter per year. While a management policy that consider a future 23% extraction decrease would lead to an average recovery of 0.297 m/year.

Key words: aquifer, MODFLOW, Puebla Valley, recharge, SWAT.

DEDICATORIA

- ❖ Ante todo a Dios, por guiarme en este camino y poner siempre a las personas correctas en mi vida personal y académica.
- A mi Madre, que desde mis primeros pasos siempre me impulsó a seguir y aprender más, y me enseñó que la vida se resuelve al vivirla, "gracias mamá".
- ❖ A mi Padre, que desde pequeño me inculcó la curiosidad por conocer más, y me enseñó que la herencia más rica de un hombre a sus hijos siempre será "El estudio", gracias por apoyarme siempre, aunque no quisiera estudiar medicina.
- ❖ A mi esposa CJ, mi compañera, mi amiga, fuente de mi inspiración, que gracias a tu apoyo incondicional es que hoy logro concluir esta nueva etapa, por tu entusiasmo, pero sobre todo gracias mi amor por confiar en mí, "esta tesis te la dedico especialmente a ti".
- ❖ A ti hermana, mi colega, que con tu apoyo incondicional me has ayudado a conseguir dar este paso tan importante en mi vida académica; sabes que te expreso mi admiración y respeto como profesionista, gracias por ser una gran maestra.
- ❖ A mi suegro, por su apoyo incondicional y sus inmensos gestos de generosidad.
- ❖ A ti Armando, por siempre apoyarnos, ser un gran amigo y compartir esa calidad humana que te distingue, así como tu filosofía de la vida.
- ❖ A todos mis familiares y amigos porque siempre están a mi lado cuando los necesito.

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por el apoyo económico brindado y la confianza por otorgarme la beca, crucial para la realización de mis estudios de Posgrado.

Al Colegio de Postgraduados Campus Puebla (CP) por permitirme subir un escalón más de mi formación académica y superación personal, a través de la Maestría en Estrategias para el Desarrollo Agrícola Regional (EDAR), en la línea de investigación Medio Ambiente y Recursos Naturales.

Al Colegio de Postgraduados Campus Montecillo, que me permitió aprender una pequeña gota de su mar de conocimientos en los Institutos de Hidrociencias y Edafología.

Agradezco especialmente a mi Consejero y director de tesis, el Dr. Angel Bustamante González, por haberme impulsado en adentrarme en este fascinante mundo del agua. Gracias por compartirme sus conocimientos y valiosas experiencias de vida, por su confianza, por dedicarme su valioso tiempo a resolver todas aquellas dudas surgidas, por su infinita paciencia, pero sobre todo por haberme dado la oportunidad de ser su alumno, "gracias Angel por una excelente tutoría, no lo habría logrado sin tí".

A mis asesores, Dr. Efraín Rubio Rosas, Dr. Samuel Vargas López, Dr. José Isabel Olvera Hernández y Dr. Luis Alberto Villarreal Manzo por su amistad, su confianza, su disposición, sus valiosos consejos, observaciones, enseñanzas y tiempo invertido en la revisión de esta tesis.

A mis profesores del Campus Montecillo, Dr. Salvador Peña, Dr. Enrique Palacios, Dr. José Antonio Pedraza, gracias por dedicarme su tiempo, pero sobre todo por compartirme sus conocimientos con el compromiso de que si flaquee como estudiante tengan la plena seguridad de que no será así en mi vida profesional, ya que tuve en ustedes a unos excelentes profesores.

A todos y cada uno de mis profesores del Campus Puebla por sus conocimientos y experiencias compartidas. Gracias por ayudarme a reflexionar sobre los nuevos desafíos que se nos presentan en el sector agrícola, y por brindarme una visión más amplia de nuestro México desde un contexto social. Si en algún momento les cuestioné solo era para aprender más de su experiencia de vida. A todo el personal administrativo del colegio por brindarme siempre su mejor atención, buscando siempre facilitarme los trámites. Especialmente a Lulú, nuestra bibliotecaria, por su valiosa amistad, tiempo y siempre acertados consejos "que seriamos los estudiantes sin ti".

A mis amigos y colegas de batalla en el estudio Ramiro, Irma, Ricardo, Lupita, Claudia y Consuelo gracias por brindarme su amistad y ser cómplices en esta búsqueda del conocimiento. Especialmente a ti Ana, sin ti mi estancia en Montecillo no habría tenido éxito, gracias por soportarme en todas aquellas desveladas. A todos mis compañeros que me brindaron su amistad durante estos últimos años. Y a todas aquellas personas que han contribuido a que hoy logre cerrar este capítulo de mi vida académica.

CONTENIDO

CAPÍTU	ULO 1. INTRODUCCIÓN	1
CAPÍTU	ULO 2. REVISÓN DE LITERATURA	3
2.	1 Manejo de cuencas en México	3
2.2	2 Antecedentes de modelación del acuífero del Valle de Puebla	4
2.3	3 Evolución histórica de la superficie piezométrica del acuífero	6
2.4	4 Suelo y agua subterránea	8
2.5	5 Uso y tipo de modelos hidrológicos	9
2.0	6 Modelación del sistema cuenca-acuífero	12
	2.6.1 Fundamentos teóricos generales de MODFLOW	12
	2.6.2 Fundamentos generales del modelo SWAT	16
	2.6.3 Recarga del acuífero	18
2.7	7 Fundamentos generales de percepción remota	19
2.8	8 Interacción de los modelos SWAT-MODFLOW	22
	ULO 3. PROBLEMA DE INVESTIGACIÓN, OBJETIVOS, HIPÓTESIS Y STOS	23
	1 Problema de investigación	
	2 Objetivos	
	3 Hipótesis	
	4 Supuestos	
٥.	· Supusios	
CAPÍTU	ULO 4. MARCO DE REFERENCIA	26
4.	1 Ubicación del área de estudio	26
4.2	2 Fisiografía	26
4.3	3 Hidrografía	28
4.4	4 Clima	29
4.5	5 Precipitación y temperatura	30
4.0	6 Geomorfología	31
4.	7 Geología general	32

	4.8 Geología estructural	34
	4.9 Datos geofísicos	38
CA	PÍTULO 5. MATERIALES Y MÉTODOS	43
	5.1 Recopilación y revisión de la información disponible sobre el sistema acuífero	43
	5.2 Elaboración del modelo conceptual	46
	5.3 Cambio de uso del suelo	47
	5.4 Obtención de las Unidades Hidrológicas de Repuesta del área de estudio	49
	5.5 Cálculo de la evapotranspiración	52
	5.6 Cálculo de la recarga	52
	5.7 Modelación del acuífero del Valle de Puebla	55
	5.7.1 Parámetros e información de entrada del modelo MODFLOW	55
	5.7.2 Ejecución del modelo MODLFOW	64
	5.7.3 Simulación de escenarios	66
	5.7.4 Proyección de los niveles estáticos de todos los pozos	67
CA	PÍTULO 6. RESULTADOS	68
	6.1 Población y cambio de uso del suelo	68
	6.2 Evapotranspiración, escurrimiento y recarga para el acuífero del Valle de Puebla y	
	del Alto Atoyac	73
	6.3 Dinámica del acuífero de acuerdo a la simulación de escenarios con MODFLOW	74
	6.4 Proyección de la variación de los niveles estáticos de los pozos con Surface	82
CA	PÍTULO7. DISCUSIÓN DE RESULTADOS	. 86
	7.1 Efectos del cambio del uso de suelo sobre la recarga del acuífero	86
	7.2 Evolución de los niveles estáticos a partir de la simulación hidrológica	87
	7.3 Simulación de escenarios futuros	88
CA	PÍTULO 8. CONCLUSIONES Y RECOMENDACIONES	
	8.1 Conclusiones	92
	8.2 Recomendaciones	93

CAPÍTULO 9. LITERATURA CITADA	95
ANEXOS	109
ANEXO A: Recopilación del archivo técnico de CONAGUA (Gerencia Puebla) de los	
principales estudios hidrogeológicos del sistema acuífero del Valle de Puebla	109
ANEXO B: Síntesis de estudios geofísicos, CONAGUA Puebla de los principales estudios	
hidrogeológicos del sistema acuífero del Valle de Puebla y Alto Atoyac	114
ANEXO C: Niveles estáticos históricos. Censos históricos de pozos	119
ANEXO D: Mapa de climas del área de estudio	141
ANEXO E: Obtención de HRUs	142
ANEXO F: Tablas de precipitación (p) y temperatura (t), del periodo 1982 a 2008	154
ANEXO G: Tablas de resultados de los valores de escurrimiento, evapotranspiración,	
infiltración y recarga de cada una de las 24 subcuencas relacionadas con las	
HRUs para los años 1979, 1985, 1989, 1997 y 2014	160

ÍNDICE DE CUADROS

Cuadro 1.	Condiciones de frontera utilizadas en análisis de sistemas de flujo subterráneo	12
Cuadro 2.	Información de los SEVs obtenidos del archivo técnico de CONAGUA	39
Cuadro 3.	Estudios recopilados de la zona de estudio	45
Cuadro 4.	Tabla de valores para el cálculo de K dependiendo el tipo y uso del suelo	54
Cuadro 5.	Unidades hidrogeológicas propuestas para las columnas 1 y 2 del modelo del acuífero del Valle de Puebla y el Alto Atoyac	58
Cuadro 6.	Características hidrodinámicas del sistema acuífero del Valle de Puebla y el Alto Atoyac	60
Cuadro 7.	Crecimiento de la población calculado de 1960 a 2010, y proyección de su aumento al año 2030, del área de estudio	69
Cuadro 8.	Resultados resumidos de recarga, evapotranspiración y escurrimiento calculados en cada una de las HRUs	74
Cuadro 9.	Resultados de los niveles estáticos (NEs en m) calculados de los 63 pozos simulados para el periodo de1997 al año 2017	75
Cuadro 10.	Resultados de las profundidades de los niveles estáticos (NEs, en m) calculados en los 63 pozos simulados, para el periodo del año 2014 al año 2030	78
Cuadro 11.	Niveles estáticos calculados de los 63 pozos simulados (2014 – 2030)	80
Cuadro 12.	Descenso de en los niveles estáticos de 76 pozos, para el periodo 1997 al año 2030	82

ÍNDICE DE FIGURAS

Figura 1.	Valle de Puebla y el Alto Atoyac	8
Figura 2.	Cubo tensor y elementos celulares	15
Figura 3.	Evolución de modelos hidrológicos de las USDA-ARS a la actual aplicación de ArcSWAT	17
Figura 4.	Espectro electromagnético con longitudes de onda	20
Figura 5.	Localización del área de estudio.	27
Figura 6.	Modelo digital de elevación del terreno en 3D del área de estudio	28
Figura 7.	Hidrografía del área de estudio	30
Figura 8.	Mapa geológico y secciones transversales del área de estudio	35
Figura 9.	Secciones geológicas estructurales regionales	36
Figura 10.	Mapa geológico estructural del área de estudio	37
Figura 11.	Mapa de secciones eléctricas SEVs efectuadas por Geotecnología S. A. (1997)	39
Figura 12.	Columnas estratigráficas elaboradas para el área de estudio	42
Figura 13.	Imagen ASTERGDEM del área de estudio (MDI).	44
Figura 14.	Integración de los modelos SWAT-MODFLOW	47
Figura 15.	Imágenes LANDSAT (L) de los años 1979, 1985, 1989, 1997 y 2014	50
Figura 16.	HRUs obtenidas en ArcSWAT para los años 1979, 1985, 1989, 1998 y 2014	51
Figura 17.	Mapa de isoyetas del área de estudio	53
Figura 18.	Mapa de isotermas del área de estudio	53
Figura 19.	Columnas hidrogeológicas propuestas para el área de estudio	59

Figura 20.	Modelo conceptual del sistema acuífero Valle de Puebla y Alto Atoyac	61
Figura 21.	Mapa de subcuencas obtenido con ArcSWAT	62
Figura 22.	Modelo elaborado en PMWin v. 5.2	63
Figura 23.	Cuadro para configurar la simulación de tiempo del modelo	64
Figura 24.	Menú Model, y cuadro de MODFLOW durante el proceso de solución del modelo simulado	65
Figura 25.	Cuadro de la ventana Presentation	65
Figura 26.	Crecimiento de la población durante los últimos 60 años y proyección del incremento poblacional al 2030	68
Figura 27.	Resultados de la clasificación no supervisada.	72
Figura 28.	Resumen de resultados obtenidos de las HRUs	73
Figura 29.	Configuración de los niveles estáticos en 1997	76
Figura 30.	Resultados del modelo obtenido con la simulación de los niveles estáticos para el año 2014	77
Figura 31.	Configuración de la superficie piezométrica para el escenario 2	79
Figura 32.	Elevación de la superficie piezométrica al año 2030, para el escenario 3	81
Figura 33	Evolución de los niveles estáticos de 1997 al año 2030	85

CAPÍTULO 1. INTRODUCCIÓN

El abastecimiento de agua de los principales centros urbanos del área metropolitana de la ciudad de Puebla depende en gran medida de las fuentes de agua subterránea. El recurso hídrico de estas fuentes ha sido presionado por una demanda creciente asociado al crecimiento poblacional y a las actividades industriales. El sistema acuífero Valle de Puebla y Alto Atoyac, del que se abastece la zona, es uno de los 10 acuíferos más sobre-explotados en la región central de México (CONAGUA, 2004). La sobre-explotación ha afectado la hidrología regional, generando un abatimiento en la superficie piezométrica (Lesser y Asociados, 1982; Lesser y Asociados, 1989; EXYCO, 1990; Geotecnología S.A., 1997; Flores-Márquez *et al.*, 2006; Salcedo-Sánchez *et al.*, 2013). La sobre-explotación de los acuíferos del Valle de Puebla se asocia, entre otros factores, a una creciente población de la ciudad de Puebla, la cual ha incidido en la demanda del agua del acuífero del Valle de Puebla. Durante la última década el número de habitantes de la ciudad de Puebla alcanzó 1, 539,819 habitantes (INEGI, 2010).

Otro factor que ha incidido en la dinámica del acuífero del Valle de Puebla es el cambio de uso del suelo, asociado a la expansión rápida y desordenada de los límites de la ciudad, lo que ha disminuido las áreas de recarga. Las estadísticas registran que de 850 colonias de la ciudad de Puebla 250 son irregulares (Barona, 2006). El creciente avance en la infraestructura urbana, carretera y desarrollos industriales de la ciudad de Puebla y la zona conurbada está vinculado directamente también a la disponibilidad de sus recursos hídricos, traduciéndose en una demanda de agua que genera una enorme presión sobre el sistema acuífero Valle de Puebla y Alto Atoyac. Durante la última década, para satisfacer la actual demanda se han perforado más pozos (aumentando la extracción del acuífero superior), principalmente en los municipios de Nealtican, San Francisco Ocotlán y Acuexcomax. En 2012, el gobierno del estado de Puebla propuso instalar un proyecto hidrológico en Atlixco, a fin de abastecer de agua a la ciudad de Puebla. Tales acciones han derivado en una serie de resistencias y conflictos sociales por parte de los habitantes, quienes se han organizado para emprender la defensa de sus tierras y el agua, culminando en enfrentamientos entre pobladores y gobierno.

De acuerdo con Rappo y Vázquez (2012), una de las principales consecuencias sociales

producto de la creciente demanda de agua fue la expropiación de tierras ejidales y de pequeños propietarios (e. g., San Bernardino Tlaxcalancingo, Santiago Momoxpan, San Andrés Cholula, La Trinidad Chiautenco y los avecindados de la Colonia Ampliación Concepción Guadalupe). En estos terrenos se instalaron o ampliaron empresas extranjeras (e. g., la ampliación de la planta automotriz VW y el corredor industrial de Puebla), se construyeron modernos centros comerciales (e. g., comercial y residencial Angelópolis), exclusivos conjuntos residenciales (e. g., La Vista) o universidades privadas y grandes vialidades (e. g., Vía Atlixcayolt) y el corredor universitario de la BUAP. La política gubernamental fue dar prioridad al uso del recurso hídrico para el sector urbano-industrial, presionando cada vez más el sector rural y agrícola, obligándolo en algunos casos a desplazarse hacia las laderas de los volcanes Popocatepetl, Iztaccihuatl y Malinche, y en otros a desaparecer.

En la presente investigación, a partir de la información hidrogeológica disponible (de las últimas tres décadas), considerando los factores de cambio de uso del suelo y crecimiento de la población, se simuló el comportamiento del sistema acuífero Valle de Puebla y Alto Atoyac bajo tres posibles escenarios. Mediante el uso del modelo SWAT (Soil and Water Assesment Tool) se delimitaron las subcuencas existentes en el área de interés a modelar. Con el modelo MODFLOW se evaluó la dinámica espacio-temporal de la superficie piezométrica del acuífero a partir del año 1997. Ambos modelos se aplicaron en esta investigación bajo el concepto de modelos integrados (Sophocleous, 2000; Sophocleous y Perkins, 2000; Kim et al., 2008, Chung et al., 2010). Se utilizaron imágenes LANDSAT para elaborar los mapas de uso de suelo temporales, a partir de una clasificación no supervisada de suelos y vegetación, para la estimación de la recarga distribuida, evapotranspiración y escurrimiento asociados a las unidades hidrológicas de respuesta (HRUs, en ArcSWAT). Esto permitió evaluar sus efectos espacio temporales sobre el sistema acuífero Valle de Puebla y Alto Atoyac a través de la simulación con MODFLOW. Esta información es importante para desarrollar las posibles estrategias, que permitan desarrollar un adecuado manejo y planificación del agua, sin comprometer su disposición para el sector agrícola y rural del Valle de Puebla y el Alto Atoyac, o comprometer su disposición futura.

CAPÍTULO 2. REVISIÓN DE LITERATURA

2.1 Manejo de cuencas en México

Una cuenca "es un volumen terrestre que en su dimensión vertical está acotado por la zona hasta donde el hombre tiene influencia con sus actividades y limitado en su superficie por la divisora de agua que se cierra en un punto de interés en el cauce. En esta unidad territorial funciona un sistema formado por un conjunto de factores físicos, sociales y económicos muy dinámicos e interrelacionados entre sí" (Hernández y López, 1972). La cuenca es un sistema que integra factores naturales, sociales, económicos políticos e institucionales, interrelacionados y variables en el espacio-tiempo. Hufchmidt (1983) considera a las cuencas, desde el punto de vista económico, como un proceso productivo. Bajo esta concepción, la cuenca constituye un sistema interrelacionado, que debe ser entendido como una unidad de planificación posible de investigar y manejar en beneficio de sus habitantes y de las poblaciones ubicadas "aguas abajo".

Para su ordenamiento y manejo se analiza a la cuenca como una unidad conformada por subcuencas y microcuencas. El manejo de cuencas hidrográficas puede ser conceptualizado como el conjunto de acciones integrales, orientadas y coordinadas sobre los elementos variables del medio ambiente, tendientes a regular el funcionamiento de este ecosistema, con el propósito de elevar la calidad de vida de la población implícita en ella. Por ello, solo es posible alcanzar resultados efectivos si se trabaja considerando aspectos básicos de planificación, organización coordinación y participación. Por tal, el manejo de cuencas puede abordar aspectos tan importantes de la calidad de vida como la alimentación, nutrición, sanidad ambiental, sostenibilidad y desarrollo agrícola. El utilizar a las cuencas como unidad de manejo tiene la ventaja que además de estudiar el factor físico, dentro de la cuenca, se pueden estudiar las acciones humanas, su forma de organización y su espacio cultural. Ello permite entender con una visión más amplia la repercusión de las acciones antropogénicas al interior de la cuenca desde múltiples dimensiones en una relación de causa y efecto.

Algunos autores como Cotler *et al.* (2004) y Pimentel (1993) consideran que el manejo de cuencas en México es casi nulo o bien no se realiza. Ya que sin importar que se hayan hecho intentos aislados no han pasado de tener buenas intenciones. Es claro, en casi todos los casos, que los usuarios y los habitantes dentro de las cuencas tuvieron o tienen una opinión (a veces nula) respectó al manejo del recurso hídrico, pero poco acceso a la toma de decisiones sobre la forma de manejo y distribución de recurso hídrico (*e. g.*, la privatización en 2014 del SOAPAP en la ciudad Puebla). Pimentel (1993) menciona que el manejo de cuencas de México (en la mayoría de los casos) ha olvidado tomar en cuenta las partes altas, y recuerda que los bosques no solo son productores de madera, sino son abastecedores de agua natural que pueden servir como protectores de catástrofes en las parte bajas de las cuencas.

2.2. Antecedentes de modelación del acuífero del Valle de Puebla

La cuenca del Valle de Puebla está integrada principalmente por el sistema acuífero del Valle de Puebla-Alto Atoyac. Este sistema acuífero ha sido evaluado utilizando distintos modelos, con el propósito de conocer su comportamiento y la disposición del recurso hídrico (Geotecnología S. A., 1997). Salcedo-Sánchez *et al.* (2013) evaluaron la posible reducción del 30 % de extracción de 35 pozos del municipio de Puebla, para mitigar el abatimiento del acuífero de Valle de Puebla y mitigar el ascenso de aguas sulfurosas. Gárfias *et al.* (2010) analizaron la geoquímica isotópica (mediante isotopos estables) de la cuenca de Puebla para determinar la génesis del agua subterránea y su relación agua-roca. Asociaron el origen de las aguas sulfurosas al intercambio geoquímico entre aguas profundas que se mineralizan en función del tiempo de residencia en contacto con las rocas (relación agua-roca), que posteriormente ascienden y se combinan con el acuífero superior.

Velázquez (2007) realizó un estudio geoquímico de isotopos estables. En él clasifica en nueve familias los tipos de aguas existentes. Encontró que la familia más abundante en el acuífero libre (o superior) es la familia con una composición de Ca-Mg-Na-HO₃ (con un dominio del 63 %). También identificó una subfamilia menos abundante en el acuífero superior denominada como subgrupo Cholula-Atlixcayotl, que presenta alto contenido de CO₂. En el acuífero medio identificó como familia más abundante un agua compuesta de

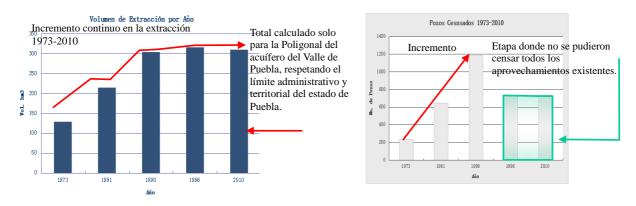
Ca-Mg-HCO₃-SO₄ (con un 86 % en abundancia, y que en un 82 % son ricas en sulfatos). Para el acuífero confinado de la parte profunda identificó dos familias principales de Ca-Mg-SO₄ HCO₃ y Ca-Mg-SO₄, y sugirió que las aguas ricas en calcio y magnesio deben su enriquecimiento por el contacto con las rocas calizas del Cretácico Superior (relación agua roca). Esta composición es congruente con el enriquecimiento mineral en SO₄ propuesto por Gárfias *et al.* (2010). Velásquez (2007) sugiere también que las aguas sulfurosas, y las altas concentraciones de CO₂ presentes, guardan una estrecha relación con el sistema de fallas y la actividad volcánica de la zona.

De acuerdo con Flores-Márquez *et al.* (2006) y Jiménez (2005) la invasión acelerada de las aguas sulfurosas, que están por debajo del acuífero superior, durante las últimas dos décadas es causada por el continuo abatimiento de la superficie piezométrica, debido a la sobre-explotación de pozos. Flores-Márquez *et al.* (2006) cuantificaron que entre el periodo de 1973 a 2002 la superficie piezométrica descendió aproximadamente 80 m, y predijeron una disminución de 15 m más para el año 2010. Para conocer la evolución y configuración de la superficie piezométrica histórica y determinar la evolución de las aguas sulfurosas (Flores-Márquez *et al.*, 2006), de 1973 a 2002, se utilizó el modelo VisualModflow. Tanto en los trabajos de Salcedo-Sánchez *et al.* (2013) y Flores-Márquez *et al.* (2006) se utilizó también VisualModflow para realizar simulaciones y posibles escenarios futuros en la tendencia del acuífero del Valle de Puebla. Hasta el momento ninguno de los modelos elaborados ha sido del tipo integral o acoplado, que permitiera evaluar al acuífero del Valle de Puebla y el Alto Atoyac considerando el efecto del cambio del uso de suelo y los efectos de la hidrología superficial en forma distribuida sobre la hidrogeología existente.

Por otra parte, durante las últimas tres décadas se han realizado distintos estudios técnicos por parte de compañías independientes contratadas por Comisión Nacional de Agua (CONAGUA; Anexos A y B) y el Sistema Operador de Agua Potable y Alcantarillado de Puebla (SOAPAP, privatizada en el 2014) para evaluar el agua subterránea del Valle de Puebla-Alto Atoyac. Gracias a estos trabajos se pueden conocer datos del coeficiente de almacenamiento (Δ s), así como las entradas de flujo y salidas del acuífero (asociado a los estratovolcanes y el río

Atoyac y Zahuapan, respectivamente). También han permitido identificar la existencia de un acuífero superior, un acuífero medio, un acuífero profundo y dos acuitardos interdigitados.

De acuerdo con el último censo oficial de pozos (el que se efectúa cada 10 años; Anexo C) disponible en el archivo técnico de CONAGUA (IGH S.C., 2012), se estima una pérdida en los niveles estáticos de -0.45 m/año. Dicho estudio solo evaluó la proporción del acuífero del Valle de Puebla (con una extensión calculada de 1308 Km²) y se ciñó a la frontera territorial entre Puebla y Tlaxcala. Actualmente, la porción del sistema acuífero en el Valle de Puebla que se comparte con el estado de Tlaxcala es denominado como Alto Atoyac. En esta investigación se evaluó el sistema acuífero del Valle de Puebla-Alto Atoyac, como en los trabajos de Salcedo-Sánchez *et al.* (2013), Garfias *et al.* (2010), Velázquez (2007), Flores-Márquez *et al.*(2006), Jiménez (2005) y Geotecnología S. A. (1997), en virtud de que existe una relación morfológica, geológica, hidrodinámica, ambiental y social, inherente entre el acuífero del Valle de Puebla y el del Alto Atoyac, que más allá de los limites estatales funciona como un solo sistema hidrológico en la cuenca de Puebla.


2.3 Evolución histórica de la superficie piezométrica del acuífero

De acuerdo a la información consultada del archivo técnico de CONAGUA Gerencia Puebla (2013), la medición de los niveles estáticos ha registrado un descenso progresivo, asociado al aumento en la extracción de pozos. En forma resumida de cinco de los principales estudios históricos la información registrada es:

- En 1973 se censaron 943 aprovechamientos (32 manantiales, 679 norias, 234 pozos profundos y 4 galerías) cuya extracción era equivalente a un volumen de extracción de 128.1 hm³/año (Figura 1).
- En 1981 se censaron 1030 aprovechamientos (14 manantiales, 370 norias y 646 pozos profundos) equivalentes a un volumen de extracción 214.1 hm³/ año (Figura 1).
- En 1990, se reportó la existencia de 2635 aprovechamientos de agua subterránea (17

manantiales, 2514 norias, 1189 pozos profundos y 2 galerías) y 9 de agua superficial sobre los ríos, que en conjunto suman una extracción estimada de 303.8 hm³/año (Figura 1). De los 1,189 pozos, 246 eran destinados al uso urbano, 230 al agrícola, 705 al uso industrial y 8 al uso ganadero. Si se suman el número de pozos para uso urbano al industrial resulta un total de 951 pozos; es decir, el 80 % de los pozos ya era para uso urbano-industrial en 1990.

- En 1996 se censaron únicamente 894 aprovechamientos (5 manantiales, 158 norias y 731 pozos), aunque se excluyeron aquellos pozos de uso industrial que extraen un volumen menor a 0.1hm³/año. Del total de aprovechamientos, 418 eran destinados al uso urbano (297 de uso urbano y 121 de uso doméstico), 297 al agrícola y 116 al uso industrial, que en conjunto suman una extracción de 315.9 hm³/año (Figura 1). Aun descartando los pozos mencionados de uso industrial, la cantidad de pozos para uso urbano industrial representaba el 59.7 % del total de pozos.
- Para el 2010 se tenía un registro en la REDPA de 1051 aprovechamientos de agua subterránea, más 193 registrados por el SOAPAP (bajo su operación), con un total de 1244 aprovechamientos. 737 era pozos profundos, 463 norias y 2 manantiales. 1111 aprovechamientos se encuentran activos y 95 inactivos. Se calculó un volumen total de extracción de 310 hm³/año. De los cuales 75.83 hm³/año era para uso agrícola, 39.65 hm³/año para uso industrial, 2.08 hm³/año para uso pecuario, y 192 hm³/año para uso urbano (167.48 hm³/año uso urbano, 22.65 hm³/año para uso doméstico y 2.35 hm³/año para servicios).
- La empresa IGH S. C. (2012) estimó que el balance hidrológico de 2002 al 2010 reflejó una sobre-explotación del acuífero superior del Valle de Puebla. La descarga total cuantificada fue de ~381.24 hm³/año, mientras la recarga total cuantificada fue de ~357.6 hm³/año, por lo que el cambio de almacenamiento (ΔS) fue de -23.68 hm³/año, es decir de -189.4hm³ en 8 años. Se calculó un abatimiento acumulado en los niveles estáticos de -3.44 m en 8 años, equivalente a 0.43 m/año. Sin embargo, de acuerdo con Flores-Márquez *et al.* (2006), el descenso promedio en la superficie piezométrica de 1973 a 2002 fue de 2 m/año, estimando que la extracción excedió en 12 Mm³.

Figura 1. Incremento en la extracción de agua subterránea de 1973 a 2010, del sistema acuífero Valle de Puebla y Alto Atoyac (elaboración propia con información de CONAGUA).

2.4 Suelo v agua subterránea

La capa que cubre la superficie de la tierra llamada suelo, es un material poroso de muy diversas propiedades tanto físicas como químicas. Su importancia radica en la utilización que se hace de él para cubrir las necesidades básicas del hombre (e. g., como su alimentación). El suelo es el conductor natural de la recarga hídrica de los acuíferos subterráneos. El agua subterránea es la mayor fuente natural de abastecimiento en el mundo, y se define como la porción de agua subsuperficial que está a mayor presión que la atmosférica, debido a la presión litostática, y que mantiene completamente saturadas las formaciones geológicas. Para poder utilizar las aguas subterráneas como fuentes de abastecimiento, las rocas deben tener ciertas características de permeabilidad para transmitirla. Al conjunto de rocas asociadas a una formación con la capacidad de contener, almacenar y transmitir agua se les llama "acuíferos".

El suelo consta de dos zonas hidrogeológicas:

• La zona no saturada: incluye la zona capilar, la zona vadosa y la zona de suelo. La zona capilar consta de agua que se encuentra arriba del nivel freático (definido como el nivel de agua en que la presión del fluido en los poros del suelo es exactamente la atmosférica; también representa el nivel que alcanza el agua en un pozo abierto poco profundo) y se considera como agua no recuperable. La zona saturada es la que se encuentra abajo del nivel freático y tiene como frontera superior al nivel freático.

Existen dos grandes tipos de acuíferos: "los confinados y los no confinados". Los primeros, también llamados artesianos, se encuentran entre dos capas de materiales relativamente impermeables llamados acuitardos. En estos casos el agua se encuentra a mayor presión que la atmosférica. Mientras que a los acuíferos no confinados también se les conoce como libres.

El agua subterránea también presenta algunas desventajas. La principal es que el agua subterránea no es visible, lo cual dificulta seriamente su estudio, cuantificación, explotación racional y manejo. Muchas veces éste termina siendo subjetivo (Chávez, 1987), dado que más que seguir una política de manejo sustentable, persigue satisfacer las demandas sociales que continuamente aumentan, presionando cada vez más a su sobreexplotación.

2.5 Uso y tipo de modelos hidrológicos

Un modelo "es una descripción física o matemática de un sistema físico, incluyendo la interacción con el mundo que lo rodea. Puede usarse para recrear el efecto de los cambios en el sistema mismo, o bien, el efecto de los cambios en las condiciones simuladas sobre él" (Verwey, 1995). De acuerdo con Konikow y Bredehoeft (1992), la tendencia actual de los modelos de aguas subterráneas es la de buscar su validación. Sin embargo, los modelos solo son abstracciones de la realidad, diseñados a partir de hipótesis científicas, por lo tanto no se puede probar o validar en forma fehaciente. Por otra parte, la búsqueda de su validación nos conduce a la evaluación de sus errores, mismos que nos permiten desarrollar modelos mejorados y una mejor comprensión del problema en cuestión.

Si bien un modelo se considera calibrado a partir de que se reproduce, tomando cierta cantidad de datos históricos (subjetivamente aceptables), no hay reglas claras al respecto entre la comunidad científica, quedando así sujeto al juicio del propio investigador. Actualmente se reconoce que se requieren modelos que permitan el manejo de sistemas integrados de los recursos hídricos (Biswa *et al.*, 2013; Chung *et al.*, 2010; Kim *et al.*, 2008; Sophocleous y Perkins, 2000), que incluya el acuífero en relación con la geología de la cuenca, las interacciones con las aguas superficiales (ríos, lagos, humedales), las prácticas de uso de la

tierra (Birdie *et al.*, 2010; Karstensen *et al.*,2010; Zarriello y Bent, 2004) y más recientemente los elementos para evaluar los impactos del cambio climático (Bokar *et al.*, 2012; Feyen, 2011; Harrie-Jan, 2009; Scibek y Allen, 2005).

En lo referente a aguas subterráneas se pueden distinguir actualmente cuatro grandes tipos de modelos que son: modelos independientes, modelos unidos, modelos semi-integrados y modelos totalmente integrados. El estudio y planeación de los usos del agua, debe realizarse en conjunto con la disponibilidad de los recursos hídricos superficiales y subterráneos, considerando en los modelos sus interacciones y los efectos globales del cambio climático (Roth y Capel, 2012). Las unidades de análisis son las cuencas y acuíferos subterráneos, lo que requiere la aplicación conjunta de modelos hidrológicos e hidrogeológicos (Kim *et al.*, 2008; Spanoudaki *et al.*, 2005; Sophocleous y Perkins, 2000). La información generada es útil para formular políticas de explotación y reasignación de los escasos recursos hídricos disponibles, evitando la sobre-explotación y la perdida de zonas de recarga estratégicas. Sanford (2002) menciona que en los trabajos de modelación de aguas subterráneas, la forma más eficiente de representar un modelo depende de los factores físicos y de los objetivos del estudio.

La importancia de los modelos radica, entre otros aspectos, en la predicción de fenómenos a largo plazo (Purjenaie *et al.*, 2012). También permite obtener relaciones de causa-efecto, sin haber realizado cambios en los sistemas reales, simulando distintos escenarios posibles (Pradeep and Anil, 2014; Kouamé *et al.*, 2013; GIDAHATARI, 2012; Müller-Wohlfeil *et al.*, 2008; Torres *et al.*, 2005; Fretz *et al.*, 1993; Prickett y Lonnquist, 1971). Los modelos hidrogeológicos permiten simular el comportamiento hídrico de los procesos físicos dentro de la cuenca, estudiando la relación causa-efecto a través de datos de entrada y salida. El objetivo de un modelo hidrológico e hidrogeológico es determinar cuantitativamente los componentes del ciclo hidrológico en una cuenca y estimar el comportamiento y magnitud (abundancia y carencia) del agua. El uso de estos modelos es primordial para simular y predecir los daños causados por las distintas políticas de manejo adoptadas en cada región. Por lo tanto, los modelos son considerados herramientas que buscan recrear el funcionamiento de los sistemas

naturales, con el propósito de estudiar, comprender y analizar al sistema bajo el sometimiento de distintas condiciones (*e. g.*, explotación del agua subterránea).

Un modelo hidrogeológico permite determinar, en medida de lo posible, el comportamiento del acuífero subterráneo mediante el uso de modelos matemáticos (digitales o numéricos), que permiten reproducir escenarios de su comportamiento, a partir de la simulación (espacial o temporal). El análisis de los resultados obtenidos de estos escenarios simulados (que pueden resultar factibles o no) pueden ayudar a la toma de dediciones, mediante la formulación de políticas ante una serie de alternativas de explotación posible, derivadas de la simulación de extracciones de agua ante condiciones de demanda futura.

De acuerdo con Custodio y Llamas (1983), hay 3 tipos de modelos hidrológicos:

- Modelos analíticos: Son los que dan la solución exacta de la ecuación diferencial por medio de funciones analíticas. Solo se ha resuelto para casos particulares y relativamente simples (Walton, 1971).
- Modelos analógicos: Resuelven la ecuación diferencial de forma indirecta, para ello se utiliza un fenómeno físico que tenga una ecuación diferencial del mismo tipo que los acuíferos. Los más importantes son los que utilizan la analogía eléctrica, ya que la Ley de Ohm es del mismo tipo que la Ley de Darcy (Custodio y Llamas, 1983).
- Modelos matemáticos (modelos numéricos o digitales): Son aquellos que utilizan los métodos numéricos para resolver la ecuación diferencial. Hay dos enfoques o grupos de métodos para resolver numéricamente las ecuaciones de flujo del agua en el suelo. A) el método de las diferencias finitas y el de elementos finitos. Actualmente, el método más desarrollado es el de diferencias finitas, con el que se obtiene la solución de la ecuación para una serie de puntos discretos en el espacio-tiempo (Custodio y Llamas, 1983). B). La ecuación diferencial se aproxima por un sistema de ecuaciones lineales en el que las incógnitas son las cargas hidráulicas en el centro de los elementos en los que se discretiza el medio.

Siempre que se resuelve una ecuación diferencial se debe contar con las condiciones iniciales de frontera. Los casos más comunes de condiciones de frontera (en modelos hidrogeológicos) en sentido físico son lagos, mares, ríos, que corresponden a la condición de Dirichlet y flujo volumétrico por unidad de área y de frontera impermeable que corresponde a la condición de Neumann (Cuadro 1).

Cuadro 1. Condiciones de frontera utilizadas en el análisis de sistemas de flujo subterráneo.

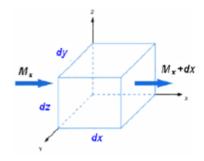
Tipo de condición	Nombre	Expresión
Tipo uno carga específica	Dirichlet	h(x,y,z,t)=constante
Tipo dos flujo específico	Neumman	dh(x,y,z,t)/dn=constante
Tipo tres flujo dependiendo de la carga	Cauchy	dh/dn+ch=constante donde c es solo una constante

2.6 Modelación del sistema cuenca-acuífero

Para modelar la hidrología superficial y subterránea de una cuenca generalmente se combinan modelos robustos para simular la hidrología superficial, como el Soil and Water Assessment Tool (SWAT), con modelos especializados en la simulación de la hidrología subterránea, como el modelo MODFLOW (Sophocleous y Perkins, 2000; y Kim *et al.*, 2008; Chung *et al.*, 2010).

2.6.1 Fundamentos teóricos generales de MODFLOW

El modelo MODFLOW (McDonald and Harbaugh, 1988), requiere de un preprocesador (*e. g.*, MFi2K, PMWin, VisualModflow, ModelMuse, etc.) que funciona como entrada principal de datos que permite definir y establecer las condiciones del sistema de flujo a simular, y una vez resuelta la ecuación de flujo se emplea un postprocesador que lee el archivo de salida y presenta los resultados en 2d y 3d. Para resolver el modelo, es necesario definir los aspectos hidráulicos como pozos, zonas de recarga (r), evapotranspiración (EVT), drenes, ríos; la topografía de la zona, el fondo de las capas que conforman el acuífero, la conductividad hidráulica (K_{x,y,z}), los coeficientes de almacenamiento especifico (Ss) y rendimiento especifico


(S), acuíferos en medios homogéneos, isótropos, heterogéneos, anisótropos, multicapas y establecer la interacción río-acuífero.

Pese a los numerosos sistemas de modelamiento, MODFLOW es la selección lógica ante la mayoría de situaciones de modelado de aguas subterráneas debido a:

- Sus antecedentes ampliamente comprobados en la comunidad científica y tecnológica.
- La actualización y mejora continúa del paquete y sus aplicaciones.
- El soporte de pre-procesadores y post-procesadores.
- Es gratuito.

El modelo MODFLOW emplea los aspectos hidrológicos como funciones, que se resuelven en rutinas (Hecox *et al.*, 2002; Fenseke *et al.*, 1996). MODFLOW resuelve en bloques cada uno de los procesos como: RIV (ríos), RCH (recarga vertical), DRN (drenes o manantiales), GHB (entradas y salidas horizontales), y EVT (evapotranspiración) y la presencia del bombeo (WELL, pozos). El programa MODFLOW es un modelo de flujo en tres dimensiones resuelto (generalmente) en diferencias finitas, compuesto por una estructura modular (multicapa), que permite al usuario analizar características diferentes del acuífero. Martínez *et al.* (2002) establece que este principio (o ecuación de continuidad) se puede combinar con una expresión matemática (Ley de Darcy) para obtener una ecuación de tipo diferencial que describa el flujo (1) y el transporte (2). El flujo del agua subterránea, en un medio poroso, es gobernado por la ecuación general de flujo, cuya solución permite obtener el potencial hidráulico en cualquier punto del acuífero (ec.1), como sigue:

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} + \frac{F}{K} = \frac{S}{T} \frac{\partial h}{\partial t} \text{ ec. } 1$$

Donde

h = potencial hidráulico (nivel piezométrico; m)

F = recargas exteriores (verticales, lluvias, etc.; m³/s)

K = permeabilidad del acuífero (m/s)

S = coeficiente de almacenamiento (adimensional).

 $T = transmisividad (m^2/t)$

t = tiempo

Esta ecuación (ec.1) considera el teorema de la conservación de la materia, que establece que en un volumen determinado en un medio poroso saturado la masa de fluido que entra en un intervalo de tiempo es igual a la que sale en el mismo intervalo. La diferencia entre la cantidad de agua que entra y sale por las caras de un cubo poroso ideal, más las entradas de agua exteriores al sistema, tiene que ser igual a la variación del almacenamiento (en lo que se llena o vacía dicho cubo). La ecuación 1, basada en la Ley de Darcy, puede describirse como (ec.2):

$$\partial q_x/\partial x + \partial q_y/\partial y + \partial q_z/\partial z + R = S' \cdot \partial h/\partial t$$
 ec.2

Dónde: q = caudal específico (o velocidad de flujo de Darcy); h = nivel piezométrico; S' = porosidad eficaz; R = recarga/descarga neta; t=tiempo. Al sustituir la ecuación de Darcy en la ecuación general de flujo, se obtiene la ecuación de flujo para agua subterránea (ec.3), que es:

$$\partial (K_x.\partial h/\partial x)/\partial x + \partial (K_y.\partial h/\partial y)/\partial y + \partial (K_z.\partial h/\partial z)/\partial z + R = S'.\partial h/\partial t$$
ec.3

Escrita en forma de derivadas parciales resulta (ec.4):

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) - W = S_s \frac{\partial h}{\partial t}$$
 ec.4

En la cual $k_{x,y,z}$ es la conductividad hidráulica en dirección de los ejes de coordenadas en el cubo, es decir: x, y, z son las coordenadas cartesianas alineadas a lo largo del tensor de conductividad hidráulica K_i , W es el volumen de agua por unidad de tiempo inyectado/extraído (análogo a R); y Ss es el coeficiente de almacenamiento específico. Esta ecuación diferencial puede ser resuelta matemáticamente por dos métodos numéricos

principales: el de diferencias finitas y el de elementos finitos. El primero, implícito en el programa MODFLOW, caracteriza al sistema por elementos celulares (malla de celdas o *grid*) asignados a cada uno de los puntos del espacio elegido. En esta ecuación diferencial (ec.4) las incógnitas son las alturas piezométricas (*initial heads*) en los puntos escogidos (nodos). El modelo básicamente calcula la ecuación algebraica sucesivamente para cada una de las celdas a lo largo de las filas o columnas de una malla, partiendo de un límite inicial y continuando hasta llegar al otro final (Figura 2). Si el régimen es estacionario (o permanente), a lo largo del tiempo, h es una constante por lo que se anula su derivada con respecto al tiempo, teniendo que:

Para un medio heterogéneo y anisótropo (ec.5):

$$Kx\frac{\partial^2 h}{\partial x^2} + Ky\frac{\partial^2 h}{\partial y^2} + Kz\frac{\partial^2 h}{\partial z^2} = 0$$
 ec.5

Mientras para un medio homogéneo e isótropo (ec.6):

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = 0$$
 ec.6

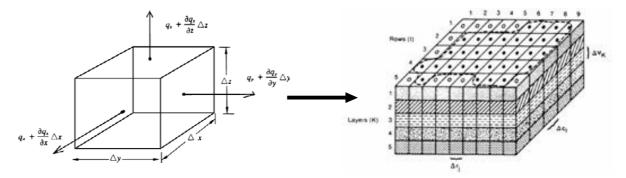


Figura 2. Cubo tensor y elementos celulares.

En el régimen transitorio la carga hidráulica h varía con el tiempo. Indica si el sistema pierde o gana agua durante dicho periodo de tiempo. Así para un acuífero confinado (heterogéneo y anisótropo) resulta (ec.7):

$$\frac{\partial}{\partial x} \left(-K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(-K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(-K_{zz} \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t} - q(x, y, t)$$
 ec.7

Mientras para un acuífero libre (heterogéneo y anisótropo; ec.8):

$$\frac{\partial}{\partial x} \left(-K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(-K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(-K_{zz} \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t} + Sy \frac{\partial h}{\partial t} - q(x, y, t) \text{ ec. } 8$$

El término que representa las fuentes o sumideros (ríos, recargas, drenes, manantiales, pozos de extracción o de inyección, etc.); siendo designados como positivos (+) si una fuente aporta agua al acuífero y negativo (-) si se extrae. El término h representa la carga hidráulica; K_x , K_y , K_z son las conductividades hidráulicas en las direcciones cartesianas x, y, z respectivamente; S_s es el coeficiente de almacenamiento específico; S_y el coeficiente de rendimiento específico (o porosidad específica) y t variable temporal (o tiempo).

2.6.2 Fundamentos generales del modelo SWAT

El modelo SWAT (Soil and Water Assessment Tool; Arnold *et al.*, 1987), es un software que modela las condiciones hidrológicas de una cuenca, desarrollado por el Dr. Jeft Arnold para el Departamento de Agricultura de los Estados Unidos (USDA-ARS), en colaboración con la Universidad de Texas. Es un modelo continuo de tiempo desarrollado para predecir a escala de cuenca los efectos en las prácticas de su manejo y es una herramienta indispensable en cuencas complejas con diversidad de suelos, uso de tierra y condiciones resultantes de su manejo (*e. g.*, producción de sustancia agrícolas químicas)

El programa SWAT (Neitsch *et al.*, 2011; Di Luzio *et al.*, 2002) es el resultado de la integración de muchos modelos previos del ARS, heredando muchas de sus características de su antecesor

el modelo SWRRBI (Simulador de Recursos de Agua en Cuencas Hidrográficas Rurales; William *et al.*, 1985; Arnold *et al.*, 1987). La evolución del modelo SWAT (Figura 3) ha sufrido una verdadera revolución, recibiendo mejoras continuas. En la versión SWAT94.2 se integraron las múltiples unidades de respuesta (HRUs). En la versión SWAT96.2 se agregaron los bloques de auto-fertilización y de auto-irrigación. En la versión SWAT98.1 se mejoraron las rutinas de derretimiento de nieve. En la versión SWAT99.2 se mejoró el bloque del ciclo de nutrientes. En las versiones SWAT2000 y SWAT2005 se incorporaron las rutinas mejoradas del transporte de bacterias.

Figura 3. Evolución de modelos hidrológicos de las USDA-ARS a la actual aplicación de ArcSWAT.

El modelo de SWAT pertenece a la familia de modelos integrados en bloques, donde cada proceso hidrológico es resuelto en un submodelo (*e. g.*, sedimentación, transporte, infiltración, etc.). Los principales bloques se pueden dividir en (Uribe, 2010): hidrología, clima, sedimentación, temperatura del suelo, nutrientes, pesticidas, crecimiento de cultivos y manejo de cultivos.

El ciclo hidrológico en SWAT es evaluado con un balance, cuánta agua entra y cuanta sale, ocupando la siguiente ecuación de equilibrio (ec.9):

$$SWt = SW0 + \sum (Rday - Qsurf - Ea - Wseep - Qgw)$$
 ec.9

Dónde: SW_t es el contenido de agua final en el suelo (t, tiempo en días), SW0 es el contenido de agua inicial del suelo en un día i, Rday es la precipitación en un día i, Qsurf es la cantidad de escorrentía de la superficie en un día, Ea es la evapotranspiración en un día i, Wseep es la cantidad de agua que se percola en el perfil de suelo en un día i, y Qgw es el flujo de retorno en un día i (todos los términos están en mm).

El rápido desarrollo, durante la última década de software de Sistemas de Información Geográfica (SIG) ha facilitado la colección e integración de bases de datos que contienen información precisa de un territorio (*e. g.*, tipo de suelos, uso, radiación solar, etc.). Esto ha facilitado su integración y manipulación para la evaluación y entendimiento de los recursos naturales. La integración del modelo SWAT como una extensión de ArcGIS originó ArcSWAT. ArcSWAT es la interface entre ArcGIS y SWAT2005 que permite utilizar las características del modelo SWAT explotando todas las ventajas de ArcGIS. Dentro de las principales ventajas que ofrece son: la generación de archivos de entrada directamente de archivos en formato tipo raster, tipo shape files (*.shp) y meta-bases de datos.

Otra ventaja es que la salida de datos del modelo SWAT puede obtenerse en estos y otros formatos. Pero la principal ventaja la ofrece la posibilidad de interactuar con otros modelos que se han ido incorporando a ArcGIS, como MODFLOW (en la aplicación PMWin). La comunicación entre los modelos SWAT y MODFLOW, se da a través de las denominadas unidades hidrológicas de respuesta (HRUs, generadas con ArcSWAT) y las celdas de respuesta (en MODFLOW). Las HRUs, son porciones dentro de las subcuencas que corresponden a una única posible cobertura de tierra o suelo y su uso, que requiere como información para su generación: un modelo digital de elevaciones (DEM), un mapa de ríos, la delimitación de subcuencas existentes, un mapa de tipos de suelo y un mapa del uso del suelo y vegetación. El modelo SWAT por sí mismo, tiene numerosas aplicaciones y usos, que son objeto de analizar por sí mismos en algunas tesis (*e. g.*, Torres, 2000).

2.6.3 Recarga del acuífero

Durante la última década el cálculo de la recarga hídrica fue motivo de discusión en muchas investigaciones (e. g., Huang y Pang, 2013; Ali et al., 2013; Rusinga y Taigbenu, 2005; Conrad et al., 2004; Scanlon et al., 2002) ya que la importancia que tiene la renovación de los acuíferos subterráneos es vital. La recarga se puede definir como la entrada de agua a la zona saturada donde alimenta los niveles piezométricos. Los factores que intervienen en la recarga son (Vélez y Vásquez, 2011; Scanlon et al., 2002):

- 1) De superficie terrestre: topografía y precipitación; donde la intensidad, magnitud, duración, distribución espacial, escorrentía y evapotranspiración real son importantes.
- 2) De irrigación: donde el horario de irrigación y pérdidas son importantes.
- 3) De ríos: de todos los ríos del área de estudio (y sus alrededores que puedan estar relacionados al sistema) que pierden o ganan agua del acuífero.
- 4) Zona superior del suelo: es decir, la naturaleza del suelo, profundidad y propiedades hidráulicas asociadas a su génesis.
- 5) Zona no saturada: asociadas al suelo y las rocas de la zona no saturada, con diferentes propiedades hidráulicas (*e. g.*, conductividad hidráulica).
- 6) Acuífero: determinadas por el tipo de acuífero y sus características geológicas, mecánicas, físicas y químicas, que permiten al acuífero aceptar y transmitir agua.

2.7 Fundamentos generales de percepción remota

Para poder elaborar mapas de uso de suelo temporales, se puede recurrir a la clasificación supervisada y no supervisada, basada en imágenes satelitales. Actualmente, hay un gran número de satélites con diferentes tipos de sensores (*e. g.*, LANDSAT, SPOT, Terra, IKONOS, etc.), que permiten realizar observaciones frecuentes con distintas resoluciones espaciales, radiométricas y temporales. En general, la información tomada por estos sensores, desde gran altura, permiten cubrir grandes áreas para el estudio de los recursos naturales y dar seguimiento en espacio-tiempo a su uso y evolución. Los sensores remotos han hecho posible adicionar y almacenar gran cantidad de información localizada con precisión. La detección de objetos terrestres requiere clasificar y dimensionar digitalmente en píxeles una imagen determinada, y así se genera, a partir de la respuesta espectral de los objetivos de estudio, una imagen viva de la superficie terrestre. Los datos obtenidos a partir de los sensores remotos permiten obtener información muy detallada de grandes áreas, o de regiones sistemáticamente localizadas que serían casi imposibles de obtener en tierra. Estas técnicas son muy valiosas en

aquellas disciplinas relacionadas con la generación de inventarios terrestres, manejo de los recursos naturales, sistemas de producción agropecuarios, el estudio del uso agrícola de la tierra y el cambio del uso de suelo espacial y temporal (Palacios y Palacios, 2011).

Los sensores satelitales son parecidos a las cámaras fotográficas, pero su sensibilidad es mayor. Las cámaras generalmente son sensibles a la luz visible y a una pequeña parte del espectro electromagnético; en cambio, los sensores satelitales son más sensibles a una parte mayor del espectro electromagnético. La percepción remota implica la medición de la energía reflejada o emitida por objetos sin entrar en contacto con ellos. El espectro electromagnético, que es continuo, es dividido en bandas: azul, verde y roja (visible); y luego los infrarrojos hasta llegar a los térmicos (Figura 4). Los sensores tienen diferentes sensibilidades a la radiación solar reflejada por objetos en la tierra o que emiten en forma directa. La energía electromagnética viaja por el espacio como ondas electromagnéticas, diferenciadas por su longitud de onda (distancia entre dos crestas sucesivas de una onda). El espectro electromagnético está formado por todas las longitudes de onda de la energía electromagnética (Figura 4). El espectro continuo se subdivide en algunos tipos familiares de energía electromagnética, como: los rayos X, los rayos ultravioletas (UV), visibles, infrarrojo (IR), microondas, y ondas de radio (Figura 4). Los rayos X tienen longitudes de onda muy pequeñas (~0.0001 micrómetros) y las ondas de radio pueden tener longitudes de onda grandes (~100 m).

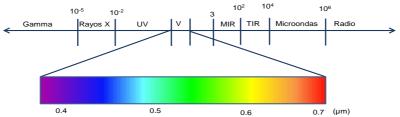


Figura 4. Espectro electromagnético con longitudes de onda expresadas en micrómetros (millonésima de metro).

La onda electromagnética está compuesta por dos vectores ortogonales (uno eléctrico y otro magnético) y viaja a la velocidad de la luz (c=299,792.5 km/s). Se puede distinguir en el espectro electromagnético: Rayos Gamma < 0.01 nm, Rayos X intensos, Rayos X débiles, Rayos Ultravioleta, Espectro Visible: 0.4 a 0.7 μm (Azul 0.4-0.5 μm, Verde 0.5-0.6 μm y Rojo de 0.6-0.7 μm), Infrarrojo Cercano: 0.7-1.3 μm, Infrarrojo Medio: 1.3-8.0 μm, Infrarrojo

Lejano o Térmico: 8.0-14 µm, Microondas: a partir de 1 mm y Radar: bandas de más de 1 m. Existen dos opciones básicas usadas para la percepción remota de objetos sobre el terreno: a) sistemas de percepción activa y b) sistemas de percepción pasiva. Los sistemas de percepción pasivos, son los que miden la información de fuentes de radiación externa a ellos, por ejemplo los satélites LANDSAT. Mientras que los sistemas de percepción activos, son los que emiten su propia señal de radiación para posteriormente medir la señal reflejada de la superficie terrestre (*e. g.*, satélites con dispositivos de radar o de LIDAR). El uso de sensores que utilizan medios de generación de energía activos, son de mucha utilidad en regiones con mucha nubosidad, donde la reflexión energética es deficiente (Palacios y Palacios, 2011).

La energía que recibe un sistema de sensores remotos es proporcional a la superficie reflectante (región de reflexión solar) y de la superficie con emisividad térmica (región térmica). En la señal detectada se presenta un término espacialmente invariable pero espectralmente independiente, con un sesgo constante, debido a la difusión atmosférica (en la región de reflexión solar) y por emisión térmica. Existe un acoplamiento entre la superficie y la atmósfera, hay una interacción como una función de la superficie reflectante, de la emisión térmica y de la topografía. Las regiones espectrales comúnmente empleadas en la teledetección son las que se encuentran entre la zona visible y la de microondas. Estas regiones son de interés debido a que son ventanas atmosféricas relativamente transparentes.

La resolución espacial obtenida por la mayoría de los satélites, es baja para poder identificar los objetos según su forma o detalles espaciales, por esta razón suele utilizarse la medición de la reflectancia espectral (a estos valores se les denomina como "firma espectral del objeto"). Las firmas espectrales permiten clasificar diferentes tipos de objetos que se ubican en la zona estudiada. En los satélites la información electromagnética analógica, es convertida a digital (mediante una transformación lineal) después de hecha la calibración. La información para cada píxel (x, y) de cada banda es convertida a un número digital (ND; 2Q-1), así para Q=2 el número varía entre 0 y 255. Las imágenes recibidas en tierra, tienen distorsiones de varios tipos adquiridas durante su captura por los sensores, debido a la curvatura de la tierra y por la topografía del terreno, para su utilización deberán corregirse. La percepción remota se limita a la transmisión espectral de ventanas a través de la atmósfera, por lo tanto, un aspecto básico

que debe tomarse en cuenta para lograr una buena identificación de objetos es tener el mayor número de bandas espectrales.

2.8 Interacción de los modelos SWAT - MODFLOW

Durante la última década se ha buscado evaluar el recurso hídrico en una forma integral a través de modelos acoplados, también llamados modelos integrados (Perkins y Sophocleous, 1999; Sophocleous *et al.*, 1999). Sophocleous and Perkins (2000), mencionan la necesidad de considerar la evaluación de las aguas superficiales y subterráneas como elementos unidos dentro del ciclo hidrológico. Pero dada la complejidad de estos sistemas es necesario modelarlos de manera integral, mediante evaluaciones interdisciplinarias.

Numerosos autores (e. g., Woods et al., 2013; Xu Xu et al., 2012; Barnett et al., 2012; Joh et al., 2011; Chung et al., 2010; Valerio et al., 2010; Brunner et al., 2010; Hanson et al., 2010; Cho et al., 2009; Kushwaha et al., 2009; Kim et al., 2008; Wang et al., 2008; Cherkauer et al., 2005; Mikko et al., 2002; Sophocleous y Perkins, 2000) han buscado evaluar y modelar de forma integral el recurso hídrico. Dentro del uso de los modelos acoplados o integrados, una de las combinaciones con mejores resultados es "SWAT-MODFLOW". Esta combinación permite obtener durante el proceso de simulación mejores resultados en cuanto la comprensión y simulación espacial del recurso hídrico al evaluar una cuenca, como lo han demostrado numerosos trabajos (e. g., Tillman et al., 2013; Luo Yi et al., 2011; Chung et al., 2010; Estrada, 2009; Kim et al., 2008; Domínguez et al., 2005).

CAPÍTULO 3. PROBLEMA DE INVESTIGACIÓN, OBJETIVOS, HIPÓTESIS Y SUPUESTOS

3.1 Problema de investigación

La demanda de agua para satisfacer las necesidades humanas actuales en la mayor parte del país es cubierta principalmente por la extracción de aguas subterráneas. En el Valle de Puebla la tendencia de explotación del agua subterránea durante las últimas tres décadas ha mermado el acuífero superior. Esto afecta la disposición de agua para el sector urbano, agrícola y rural, generando conflictos entre ciudadanos y gobierno. Se prevé que de continuar con la actual tendencia de explotación del acuífero del Valle de Puebla-Alto Atoyac el suministro de agua para la zona metropolitana de la ciudad de Puebla será escaso e insuficiente. La tendencia de crecimiento en las zonas urbanas durante las últimas dos décadas, ha incrementado la demanda del vital líquido, lo cual ha conducido a la perforación de más pozos, aumentando el volumen de extracción. Ante esta situación, la presente investigación busca generar información cuantitativa sobre la evolución de la superficie piezométrica del acuífero del Valle de Puebla-Alto Atoyac, su estado actual y su posible tendencia dinámico espacio-temporal futura del recurso hídrico subterráneo, principal fuente de agua para el Valle de Puebla. Contar con esta información es crucial para prever problemas socioeconómicos y conflictos sociales relacionados con el aprovechamiento del agua subterránea. La pregunta de investigación planteada fue:

¿Cuál ha sido el comportamiento hidrodinámico del sistema acuífero Valle de Puebla-Alto Atoyac durante los últimos 20 años, y cuáles son los impactos del cambio de uso del suelo y del crecimiento poblacional sobre dicho comportamiento?

3.2 Objetivos

3.2.1 Objetivo general

Analizar cuál ha sido el comportamiento hidrodinámico del sistema acuífero Valle de Puebla-Alto Atoyac durante los últimos 20 años, e identificar los impactos del cambio de uso del suelo y del crecimiento poblacional sobre dicho comportamiento.

3.2.2 Objetivos específicos

- Conocer cuál ha sido el comportamiento de la superficie piezométrica del acuífero del Valle de Puebla-Alto Atoyac durante las últimas dos décadas.
- Evaluar de forma general el cambio de uso de suelo agrícola—forestal a uso urbano—industrial, y sus efectos sobre la superficie piezométrica del sistema acuífero Valle de Puebla- Alto Atoyac, durante las últimas dos décadas.
- Estimar cuál va a ser el posible comportamiento futuro del sistema acuífero Valle de Puebla-Alto Atoyac, para el año 2030 asociado al crecimiento de la demanda de agua, de acuerdo a la actual tendencia sobre la extracción, considerando la creciente población y el cambio de uso del suelo.

3.3 Hipótesis

- Los niveles estáticos y dinámicos del acuífero del Valle de Puebla-Alto Atoyac han descendido de manera progresiva por la disminución de las zonas de recarga asociadas al cambio de uso del suelo, así como por la creciente demanda de agua asociada al incremento poblacional en los últimos 20 años, alterando el balance hídrico regional.
- De continuar aumentando la extracción de agua subterránea en el acuífero del Valle de

Puebla-Alto Atoyac se tendría la pérdida parcial o total del acuífero superior como abastecedor de agua de buena calidad para la zona metropolitana de la ciudad de Puebla.

3.4 Supuestos

- Se asume, que la información recopilada del archivo técnico de CONAGUA delegación Puebla, y las tesis doctorales de Velázquez (2007) y Jiménez (2005), son las fuentes más serias y confiables con datos de calidad. Por lo que dicha información será la base, posterior a su respectivo tratamiento y depuración, para elaborar el modelo conceptual del funcionamiento del acuífero del Valle de Puebla-Alto Atoyac y establecer sus condiciones hidrodinámicas.
- También se considera que las imágenes satelitales LANDSAT 5, 7 y 8, tienen la calidad y resolución necesaria para realizar la clasificación no supervisada de suelos y vegetación, dadas las dimensiones del área de estudio.

CAPÍTULO 4. MARCO DE REFERENCIA

4.1 Área de estudio

El acuífero del Valle de Puebla-Alto Atoyac tiene una extensión de 2025.8 km². La distribución porcentual del volumen de aguas subterráneas concesionado actualmente en la unidad hidrogeológica de la porción Valle de Puebla es de 29.6 % para uso agrícola, de 10.3 % para uso industrial, 59.2 % para uso público urbano y 0.9 % para otros usos. El acuífero abastece al 45 % de la población del estado de Puebla (22 municipios), una parte del estado de Tlaxcala y al 80 % de la industria (IGH S. C., 2012). El Valle de Puebla es una depresión entre la ciudad de Puebla y Tlaxcala, limitado al norte por la meseta de Tlaxcala y al sur por la sierra del Tentzo. Al oeste se encuentra limitado por los estratovolcanes Popocatépetl e Iztaccihuátl (que forman parte de la Sierra Nevada), y al este por el estratovolcán Malinche (Figura 5).

El sistema acuífero del Valle de Puebla-Alto Atoyac, se extiende geográficamente a lo largo de la porción sur de la meseta de Tlaxcala y el Valle de Puebla. Los límites de dicho sistema hidrogeológico (en esta investigación) se han definido a partir de criterios geológicos e hidrogeológicos. Esta delimitación tiene el propósito de caracterizar las condiciones de contorno necesarias, para realizar una modelación matemática de flujo en el sistema hidrogeológico del acuífero superior del Valle de Puebla-Alto Atoyac (Figura 5).

4.2 Fisiografía

El área de estudio se ubica en la provincia fisiográfica denominada Faja Volcánica Transversal Mexicana (FVTM; Ferrari *et al.*, 2002 y 2005) en la porción llamada Eje Neovolcánico Transmexicano. Superficialmente se caracteriza por volcanes monogénicos jóvenes (Terciarios-Cuaternarios). Las topoformas volcánicas más dominantes son los estratovolcanes Popocatépetl, Iztaccihuátl y Malinche, dan lugar al Valle de Puebla (depresión intermontana), cubierto por planicies aluviales y lacustres.

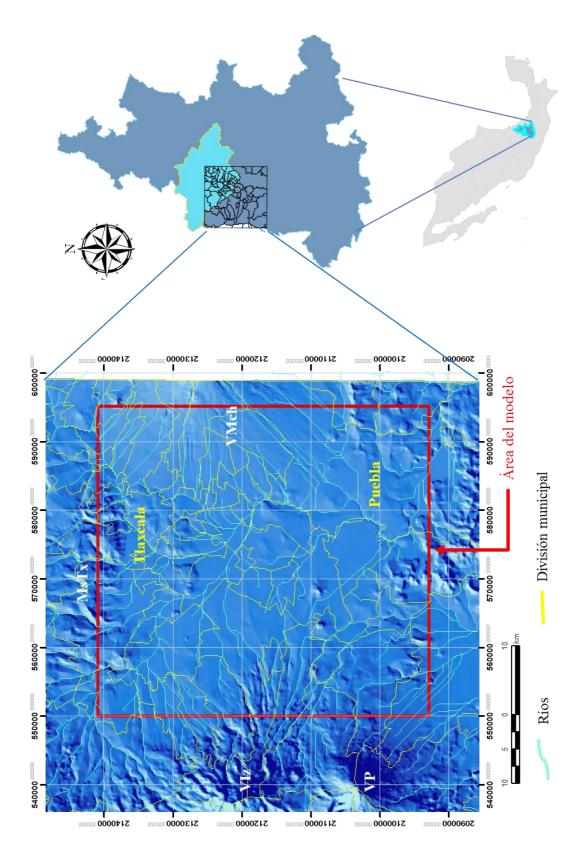
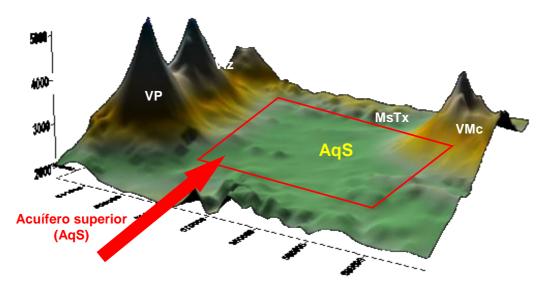
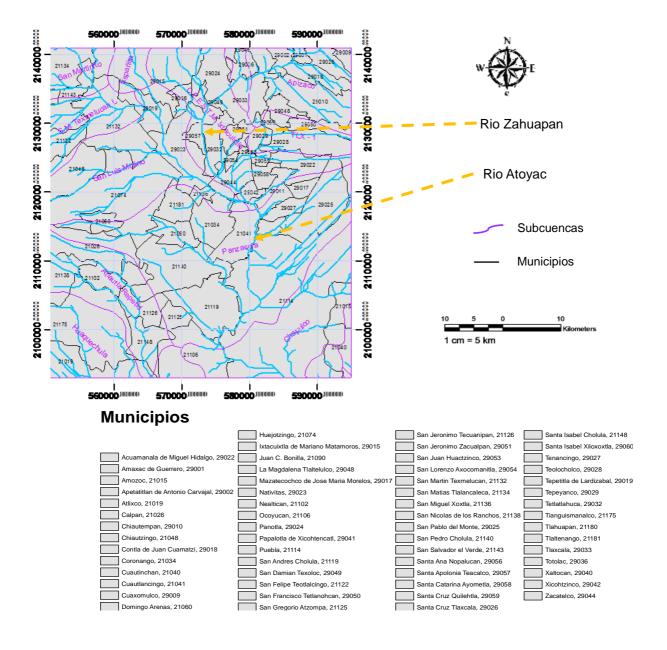



Figura 5. Localización del área de estudio y área del modelo, obtenidas a partir de DEM (elaboración propia). Simbología. VP: volcán Popocatépetl, VIz: volcán Iztaccihuátl, VMch: volcán Malinche, MsTx: meseta de Tlaxcala.

El relieve dentro del área de estudio se caracteriza por las siguientes topoformas (Mooser, 1972; Mooser, 1996): llanura aluvial con lomerío, llanura de piso rocoso o cementado, lomerío de basalto con cañadas, mesetas asociadas con malpaís, meseta basáltica con cañadas, sierra volcánica con estratovolcanes o volcanes y sierra volcánica de laderas tendidas. En la zona de estudio las elevaciones van de los 2017 m en la porción central a los 4464 m hacia el NE y 5500 m hacia el W de la misma (Figura 6). Los mayores relieves comprenden la llamada Sierra Nevada, representada por un lineamiento complejo de estratovolcanes dirigidos de NNW a SSE. Sus elementos van aumentando de altura de norte a sur, de 2017 m en el Tláloc a 5360 m en el Popocatépetl.

Figura 6. Modelo digital de elevación del terreno en 3D del área de estudio, extraído a partir de imagen ASTERGDEM (2014; elaboración propia). *Simbología* VP: volcán Popocatépetl, VIz: volcán Itztaccihuatl, VMch: volcán Malinche, MsTx: meseta de Tlaxcala.


4.3 Hidrografía

El área de estudio pertenece a la Región Hidrológica No. 18 Río Balsas, cuenca del río Atoyac-Alto Atoyac, subcuencas río Atoyac-Balcón del Diablo, presa Manuel Ávila Camacho, río Atoyac-San Martín Texmelucan, río Nexapa y río Zahuapan. El río Atoyac, colector principal de la zona estudiada, se forma superficialmente por los escurrimientos que bajan por la vertiente norte del Iztaccíhuatl, desde una altitud de 4,000 m en los límites de los estados de México y Puebla. El río Atoyac, aguas abajo de la confluencia con el Zahuapan, entra a la Cd.

de Puebla recibiendo aportaciones de los ríos Coronado y Malinche, así como las aguas residuales de dicha ciudad y otras vecinas como Cholula, que finalmente llegan a la presa Valsequillo. El río Zahuapan, tributario del río Atoyac, nace en la serranía de Tlaxco (estado de Tlaxcala), 40 km al norte de la ciudad de Tlaxcala, a una altitud de 3,418 m. Sus primeros escurrimientos son controlados por la presa Atlangatepec, misma que da servicio al riego de ~ 2,000 ha. Aguas abajo atraviesa la ciudad de Tlaxcala, en cuyas inmediaciones se tiene instalada la estación hidrométrica del mismo nombre. Una vez que recibe las aportaciones de los ríos Xilotepec, San Juan y Soledad, recibe por su margen derecha al río Atoyac, 10 km antes de la ciudad de Puebla, confluencia donde cambia nombre al de Atoyac. El río Atoyac atraviesa la Cd. de Puebla y sirve de dren natural a las aguas residuales que se originan en este importante centro urbano y poblaciones vecinas como Cholula, para finalmente descargar en la presa Manuel Ávila Camacho, donde se regulan y utilizan para irrigación en el Distrito de Riego No. 30. Hasta aquí se identifica como cuenca alta del río Balsas, considerada como la de mayor desarrollo económico en toda la región hidrológica No. 18 (Figura 7).

4.4 Clima

De acuerdo a la información del Atlas Nacional del Medio Físico, el clima predominante que cubre el acuífero del Valle de Puebla se caracteriza por ser templado-subhúmedo con invierno frío y régimen de lluvias en verano (Anexo D). El clima en el área de la ciudad de Puebla se clasifica del tipo templado - subhúmedo, con lluvias en verano, donde la precipitación del mes más seco es menor de 40 mm, y el porcentaje de precipitación invernal es menor de 5 mm. Al sur de Puebla, hacia Valsequillo lo mismo que al norte de Tlaxcala y sus alrededores, su clasificación varía sólo porque se agrupa entre los subtipos de humedad media y los templados subhúmedos. En la parte más alta de La Malinche (al igual que en la Sierra Nevada) es frío, y en sus estribaciones por las elevaciones topográficas más altas se clasifica dentro del tipo semifrío-subhúmedo con lluvias en verano.

Figura 7. Hidrografía del área de estudio, en lila límites de subcuencas (elaboración propia a partir de información de CONABIO, 2014).

4.5 Precipitación y Temperatura

La mayor precipitación pluvial se registra muy próxima a la cima de los volcanes Popocatépetl e Iztaccíhuatl, con 1,350 mm como valor promedio anual. En la ciudad de Puebla, y hasta el límite con Tlaxcala, varía entre 660 y 900 mm/año; en Valsequillo se incrementa a 960

mm/año. La estación más representativa del área es la de Puebla, con una precipitación media anual de 929 mm (correspondiente al periodo 1982-2008), siendo la máxima del periodo la del año 1995 con 1,221, y la mínima corresponde al año de 1982 con apenas 634 mm.

De acuerdo con IGH S. A. (2012) para el periodo 1982-2008, se deduce una temperatura media anual de 12.9 °C, en toda el área de estudio, mientras que en la zona del valle donde se concentran los aprovechamientos de agua subterránea, la temperatura media ponderada en el mismo periodo es de 14.9 °C. La temperatura media máxima promedio se registra hacia la porción norte de la ciudad de Puebla con 17.4 °C, y la temperatura media mínima se concentra en las simas de los grandes volcanes con temperaturas de -2.3 °C, siendo los meses más calurosos mayo y junio, mientras que los más fríos son diciembre y enero. Las estaciones climatológicas se concentran únicamente en la zona del Valle de Puebla y dejan fuera las grandes estructuras volcánicas donde las condiciones climatológicas son inferiores a las del valle.

4.6 Geomorfología

La zona de estudio se ubica en su mayor parte dentro de la provincia fisiográfica Faja Volcánica Transversal Mexicana (FVTM) en su porción centro, conocida como Eje Neovolcánico Transmexicano o Sierra Nevada. La FVTM tiene una distribución transversal con respecto a las grandes provincias geológicas mexicanas que corren con una orientación NNW-SSE (Ortega-Gutiérrez *et al.*, 1992). Se caracteriza por la presencia de volcanes jóvenes, dominando en la topografía los estratovolcanes Popocatépetl, Iztaccíhuatl y Malinche. Estos tres estratovolcanes se asocian a un vulcanismo mafico a intermedio, de edad calculada de 3Ma, entre el Plioceno Tardío–Cuaternario inferior a (Ferrari *et al.*, 2005).

En la porción del Valle de Puebla, existen extensas planicies aluviales y lacustres (Qal) de edad joven (Cuaternario). La agricultura ha utilizado estos materiales, dado que la génesis de los suelos existentes es el resultado de la degradación de estos depósitos aluviales y lacustres, junto con la materia orgánica y otras rocas. Hacia la porción sur estos depósitos descansan suprayaciendo rocas calizas (plegadas, fracturadas y falladas) y travertinos. En la porción

norte, se levanta el bloque Tlaxcala y Cacaxtla, compuesto por materiales aluviales y lacustres del Plioceno (Tpl). En la Sierra Nevada, los volcanes presentan un lineamento con dirección NNW-SSE aumentando su altura de norte (3700 m) a sur (5500 m en el volcán Popocatépetl). En los volcanes Popocatépetl e Iztaccíhuatl, existen glaciares de diámetro y profundidad variable, que dependen del clima (temperatura y precipitación) a escala local y regional. En Río Frío y alrededores, existen numerosos volcanes erosionados que presentan abanicos aluviales, compuestos de materiales derivados de las erupciones volcánicas que han sido depositados en sus flancos (debido a la erosión de las partes altas), por aire, o bien por lahares y avalanchas. La presencia de estos abanicos aluviales también se encuentran en los volcanes Popocatépetl, Iztaccihuátl y Malinche.

Al sur del área de estudio, se reconocen sierras medianas (la Sierra del Tentzo, el anticlinal de la Sierra Larga de Atlixco y la Sierra de Amozoc) con elevaciones entre 2,000 a 2,300 m. Estas elevaciones están compuestas por sedimentos del Mesozoico (formados principalmente por calizas, lutitas y areniscas). El intenso plegamiento, que produjo anticlinales y sinclinales, se asocia típicamente con la deformación ocurrida en la orogenia Laramide (Eguiluz *et al.*, 2000). La deformación asociada a las rocas calizas, se asume que es producto, o guarda relación con la evolución del Cinturón de Pliegues y Cabalgaduras Mexicano (Campa y Coney, 1983). Estas elevaciones van desapareciendo eventualmente hacia los volcanes, mesetas y planicies del Valle de Puebla. El lago Valsequillo es una depresión tectónica entre la Sierra del Tentzo y la Sierra de Amozoc, que es circundado por elevaciones volcánicas menores (del Cuaternario inferior o medio), y derrames de rocas andesitas y basaltos. Al interior del Valle de Puebla existen conos volcánicos de reducidas dimensiones (de 100 a 200 m, máximos), como aquellos situados al NW de la ciudad de Puebla.

4.7 Geología general

El Valle de Puebla es una cuenca de relleno sobre una topografía preexistente, actualmente es una planicie aluvial limitada por elevaciones topográficas que actúan como barreras impermeables y zonas de recarga. El Valle de Puebla es una zona de origen volcánico-lacustre con afloramientos esporádicos de rocas sedimentarias marinas de edad Cretácica, que

profundizan para constituir el basamento del acuífero. La secuencia estratigráfica está formada por materiales granulares: arenas, arcillas, gravas y cantos rodados, de origen aluvial interdigitados con productos volcánicos y sedimentos lacustres de edad Terciario—Cuaternario. Estos materiales descansan sobre rocas sedimentarias calizas del Cretácico superior, intercaladas con lutitas y areniscas de la Formación Mezcala (Padilla y Sánchez, 2007; SGM, 2002 y 2006).

Los estratovolcanes presentan una petrogénesis que se ha asociado a una provincia calcoalcalina (Gómez-Tuena *et al.*, 2005). Estos estratovolcanes están formados por rocas ígneas extrusivas (principalmente basaltos, andesitas y dacitas), porfidos andesíticos-dacíticos y materiales piroclásticos de alta, media y baja consolidación de colores gris y ocre. La meseta de Tlaxcala, está formada por materiales piroclásticos (tobas, en color ocre) del Terciario Superior-Mioceno Tardío (SGM, 2002 y 2006; INEGI, 1983 y 1985), materiales piroclásticos granulosos depositados en lagos salobres que han dado origen a estratos de color verde compuestos de nontronita (Hilger, 1973) y paleosuelos arcillosos alternados con arenas finas y medias.

En las partes altas se observan derrames de basalto y andesita cuya edad ha sido calculada en ~2.6Ma (SGM, 2002). En las partes bajas de Tlaxcala y el Valle de Puebla, se encuentran depositadas secuencias de tobas, aglomerados volcánicos, gravas volcánicas y material aluvial, cuya edad calculada a partir de C¹⁴ es del Pleistoceno Tardío y Holoceno asociadas a la Formación Calpulalpan (SGM, 2002 y 2006). En la parte sur-oriental de la Cd. de Puebla, afloran estratos masivos de rocas calizas de color gris claro y crema, de grano fino, que son asociadas a la Formación Cicapa del Cretácico Medio (SGM, 2002). Estas rocas calizas están cubiertas parcialmente por tobas areno arcillosas de color ocre, y algunos conglomerados de la Formación Balsas, principalmente en las zonas circundantes al lago de Valsequillo. La presencia de rocas calizas aflora claramente en la Sierra del Tentzo, pero no así en la ciudad de Puebla. Sin embargo, los numerosos estudios hidrogeológicos realizados en la región, revelan que el acuífero profundo está constituido por rocas calizas. A escala regional, actualmente, se desconocen las variaciones en profundidad de estas rocas calizas y su distribución real, que controla el espesor de los acuíferos superiores que le sobrayasen (Morán Zenteno *et al.*, 2005).

La presencia de travertinos abarca cerca del 60 % en la ciudad de Puebla, su existencia y distribución se ha identificado plenamente en distintos trabajos geológicos, geofísicos y geoquímicos (Flores-Márquez *et al.*, 2006; Jiménez, 2005), principalmente, en la colonia la Libertad (ciudad de Puebla), donde debido a procesos de disolución kárstica se han desarrollado cavernas que han producido algunos hundimientos a su colapso. Asociadas a las fracturas del volcán Malinche en las barrancas la Pila, Xaltonalt y Barranca Honda, se pueden observar claramente grandes fragmentos de porfidos andesíticos-dacíticos (hasta de ~1.5 m de diámetro) que han sido transportados de zonas más altas, depositados con tobas y arenas volcánicas de distintos colores y consolidación.

Se elaboró un mapa geológico (Figura 8) en función de la recopilación de estudios hidrogeológicos disponibles de: CONAGUA—Puebla (principalmente del estudio de Geotecnología S. A., 1997), la carta geológico—minera ciudad de México E14-2 escala 1:250,000 (SGM, 2002), las cartas geológicas E14-B33 y E14-B43 escala 1:50,000 de Tlaxcala y Puebla (INEGI, 1983; INEGI, 1985) y algunos recorridos de campo. Es necesario mencionar que actualmente no existe una columna estratigráfica formal, motivo aun de debate.

Por lo tanto, en este trabajo se ha limitado a mencionar las rocas en las secuencias estratigráficas reportadas en los trabajos elaborados hasta ahora, sin acuñar de forma explícita alguna secuencia con una formación determinada. Principalmente, por la importancia de la estratigrafía que concede las propiedades hidrodinámicas del sistema acuífero del Valle de Puebla-Alto Atoyac, de ahí lo crucial de comprender la geología existente de forma detallada.

4.8 Geología estructural

De acuerdo con Mooser *et al.* (1996), Santoyo-Villa *et al.* (2005) y Lermo-Samaniego y Bernal-Esquia (2006) la depresión existente entre la ciudad de Puebla y Tlaxcala es producida por un sistema de fallas normales con dirección E-W que ha sido formado por cuatro principales fallas normales que son: la falla Tlaxcala, la falla Tlatehuaca, la falla inferida San Buena Aventura y la falla Tuxcayo.

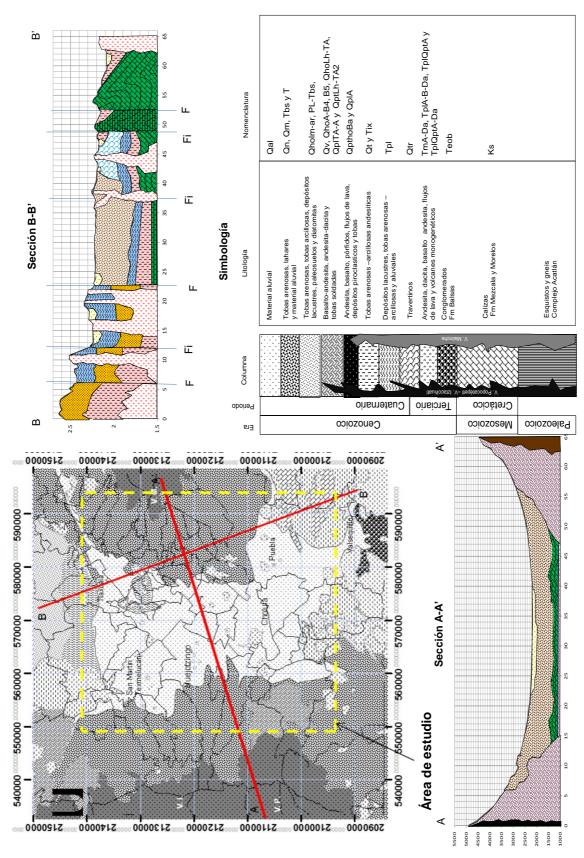


Figura 8. Mapa geológico y secciones transversales del área de estudio, elaboración propia a partir de carta geológico-minera ciudad de México E14-2 (SGM, 2002; escala 1:250,000), las cartas geológicas E14-B33 y E14-43 de Tlaxcala y Puebla (INEGI; escala 1:50,000) y estudios de campo personales. Simbología: VP=volcán Popocatépetl; VI.= volcán Iztaccihuatl; VM.=volcán Malinche; F=falla; Fi=falla inferida.

Este sistema de fallas, E-W, atraviesa el Valle de Puebla, y su escalonamiento da origen a la denominada fosa Iztaccihuatl-Malinche. En este trabajo a este sistema de fallas entre Puebla y Tlaxcala se le denomina como el graben Tlaxcala-Puebla (Figura 9).

Estructuralmente las fallas de Tlaxcala y Tlatehuaca tienen un buzamiento hacia el sur, y en la región de Puebla las fallas de San Buena Aventura y Tuxcayo tienen un buzamiento hacia el norte. A profundidad existen reportes de otras fallas, como la falla inferida por debajo de la V.W. Puebla, reportada en todos los estudios geofísicos elaborados para CONAGUA (Gerencia Puebla). Existe también la inferencia de la denominada falla de Atlixco y la Malinche, la falla de Atlixco da origen a la denominada fosa de Atlixco (Figura 10) que provoca un cambio en la dirección del río Atoyac en la ciudad de Puebla (Mooser *et al.* 1996; en Geotecnología S.A., 1997).

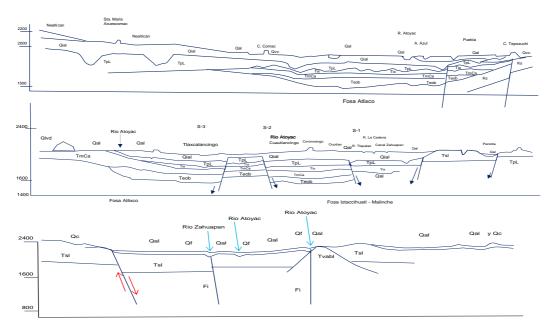
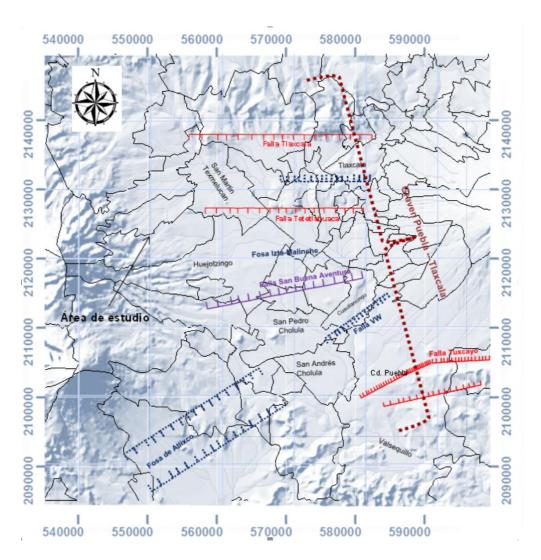
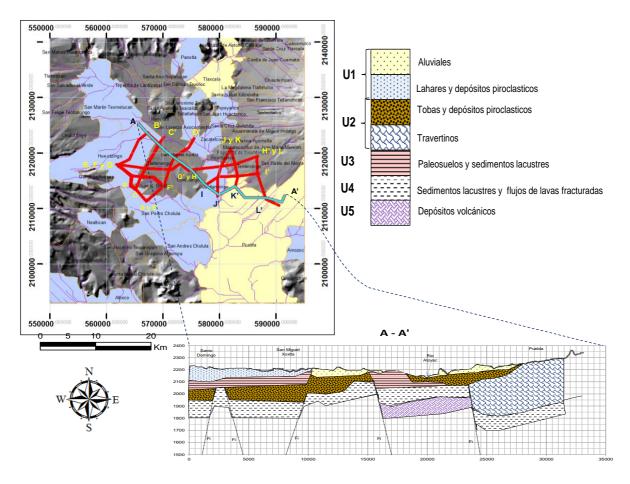



Figura 9. Secciones geológicas estructurales regionales tomadas y adaptadas del Geotecnología S. A. (1997).

La distribución de este sistema de fallas, con dirección E-W, es paralelo a la Faja Volcánica Tranversal Mexicana (FVTM), por lo que su origen puede relacionarse con el sistema de fallamiento intra-arco descrito por Suter *et al.*,(1995) como sísmicamente activo, al igual que los grabenes de Querétaro y Acambaro-Michoacán (Zuñiga *et al.*, 2003; Garduño Monroy *et al.*, 2009), designados por Mooser *et al.*, (1972 y 1996) como grabenes modernos.

Figura 10. Mapa geológico estructural del área de estudio. Elaboración propia a partir de los trabajos recopilados del archivo técnico de CONAGUA, la carta geológico – minera ciudad de México E14-2 (SGM, 2002; escala 1:250,000), las cartas geológicas E14-B33 y E14-43 de Tlaxcala y Puebla (INEGI; escala 1:50,000) y estudios de campo personales.


A pesar de que el sistema de fallas normales en la región de Puebla-Tlaxcala genera morfologías típicas de extensión (Hors y Grabens), similares a los descritos en la provincia de cuencas y sierras (Basin and Range) de los Estados Unidos, documentada al norte de CMVT en México (Suter *et al.*, 1992; Henry y Aranda, 1992), preliminarmente con los datos recabados en esta investigación se asocia que dichas fallas están asociadas a la extensión tectónica producida por el Cinturón Volcánico Trans-Mexicano (Suter *et al.*, 1995; Alaniz-Alvarez y Nieto-Samaniego, 2005; Suter *et al.*, 2001), apoyándose en la teoría propuesta por Ferrari (2002) acerca del origen del arco magmático continental mexicano. No

obstante debido a la inexistencia de estudios geológicos y geofísicos dirigidos a entender la geología estructural de forma detallada localmente en el Valle de Puebla y Tlaxcala, no puede asociarse en forma fehaciente el origen de este sistema de fallas, y su distribución durante esta investigación. Esto es crucial dado que la geología estructural controla en gran medida la circulación de fluidos del sistema acuífero.

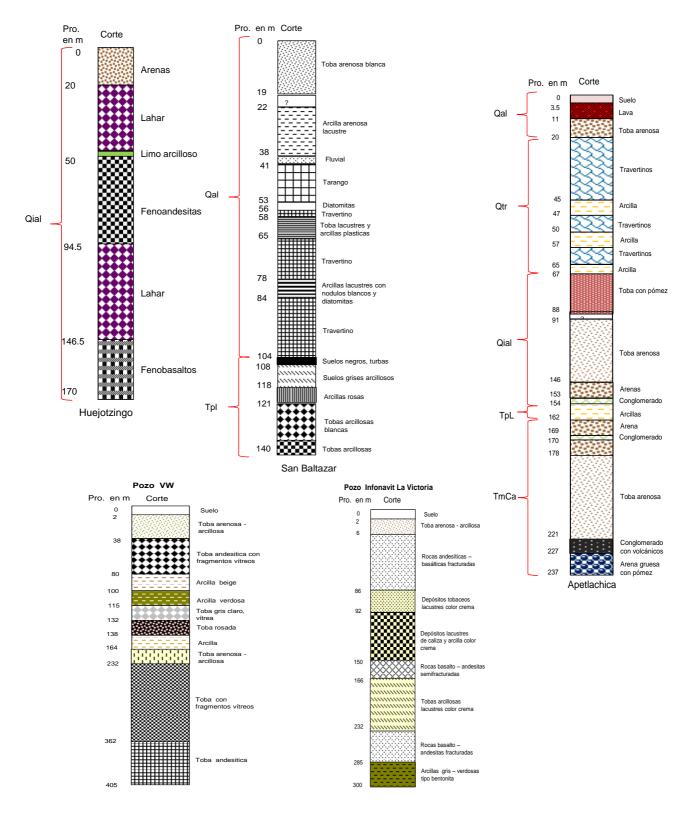
4.9 Datos Geofísicos

Con el propósito de conocer la distribución de las unidades hidrogeológicas para el sistema acuífero Valle de Puebla-Alto Atoyac, su espesor y profundidad, SOAPAP y CONAGUA han contratado la realización de numerosos estudios geofísicos en los años de 1981, 1982, 1989, 1990 y 1997 (ver resumen en el Anexos A y B). Existe un solo trabajo de prospección gravimétrica (de carácter regional) y varios estudios de prospecciones eléctricas (sondeos eléctricos verticales, SEVs). Los resultados obtenidos a partir de las investigaciones con SEVs (EXYCO, 1990; y Geotecnología S. A., 1997) permiten identificar, para el sistema acuífero Valle de Puebla y Alto Atoyac, 5 unidades geoeléctricas (Figura 11; ver características principales en el Anexo B).

Los estudios de Geotecnología S. A. (1997) y EXYCO (1990) han sido la base de información técnica para distintos trabajos de investigación (Salcedo-Sánchez *et al.*, 2013; Gárfias *et al.*, 2010; Velásquez, 2007; Flores-Márquez *et al.*, 2006; y Jiménez, 2005). En la Figura 11, se presentan 12 de los recorridos efectuados donde se ilustran los principales SEVs referidos en el trabajo Geotecnología S. A. (1997). En el Cuadro 2, se presenta la información referente a dichos SEVs y las 12 secciones efectuadas. A partir de la información disponible de estos SEVs e información petrográfica obtenida durante la extracción de barrenos Geotecnología S. A. (1997), se han elaborado 5 columnas estratigráficas (Figura 12).

Figura 11. Mapa de secciones eléctricas SEVs efectuadas por Geotecnología S. A. (1997). Sección geoeléctrica construida a partir de la sección A–A' (el perfil topográfico se levantó a partir del modelo de elevación digital con un factor de corrección de -18 m con respecto a la topografía real, elaboración propia).

Cuadro 2. Información de los SEVs obtenidos del archivo técnico de CONAGUA


Sondeos de Xoxtla y Barranca Honda			Huejotzingo a Coronango			
Sección C_C'			Sección H-H'			
Unidad	Inidad Resistividad ohm-m Material		Unidad	Resistividad ohm-m	Material	
U2	34	Arenas y limos mediana permeabilidad	U1	3 a 14	Aluvial y tobas areno-arcillosas	
U2'	49 a 91	Arenas, gravas y basaltos	U2	41 a 69	Arenas y tobas limo arenosas	
U2"	102 a127	Basaltos y escorias volcánicas	U2'	70 a 153	Arenas y gravas, y derrames basálticos	
U3	9 a 14	Sed lacustres limo arcillosos	U3	9 a 20	Tobas limo arenosas	
U3'	22 a 41	Arenas, limos, tbs.	U4'	269	Andesitas	
U4	262 a 297	Andesitas ?	U4"	82	Lutitas y calizas arcillosas (margas)	

Cuadro 2. Información de los SEVs obtenidos del archivo técnico de CONAGUA

Sondeos Los Reyes (Zacatelco-San Mateo Cuanala)			Estudio Clavijero				
Sección D-D'			Sección A-A'				
Unidad	Resistividad ohm-m	Material	Unidad	Resistividad ohm-m	Material		
U1	8 a 34	Tobas limo arenosas	U1	8 a 164	Aluviales		
U2	22 a 30	Arenas y limos	U2	279 a 447	Tbs arenosas intercaladas con coladas de roca ígnea		
U2'	52 a 91	Arenas y gravas	U2"	13 a 40	Tbs areno-arcillosas		
U3	3 a 18	Sed. lacustres limo arcillosos	U3'	70 a 192	Rocas ígneas fracturadas		
U4	1000 a 1142	Calizas	U4	3000 a 4048	Rocas calizas		
U4'	83	Lutitas calizas					
San Tori	bio Xicohtzingo a VW		Estudio (Estudio Clavijero			
Sección	E-E'		Sección l	B-B"			
Unidad	Resistividad ohm-m	Material	Unidad	Resistividad ohm-m	Material		
U1	8 a 29	Tobas limo arenosas	U1	30 a 114	Aluviales		
U2	19 a 44	Arenas y limos	U2	15 a 20	Tbs areno-arcillosas		
U2'	44 a 155	Arenas y gravas, y derrames lávicos	U3	113 a 273	Rocas ígneas fracturadas		
U3	4 a 14	Arcillas lacustres	U4	3000	Rocas calizas		
U4	2000	Calizas					
U4'	179	Andesitas?					
San Tori	bio Xicohtzingo a Barranc	a Honda	Estudio Cholula - SOAPAP				
Sección	F-F'	Paralela a E	Unidad	Resistividad ohm-m	Material		
Unidad	Resistividad ohm-m	Material	Ula	1 a 1380	Materiales aluviales, arcillas y tobas areno arcillosas		
U1	3 a 14	Aluvial y tobas areno - arcillosas	UIIa	5 a 157	Tobas areno-arcillosas		
U2	40 a 67	Tbs arenas, limos y arcillas	UIIb	16 a 155	Tobas andesíticas-basálticas		
U2'	136 a 1098	cuerpos lenticulares de arenas y gravas, y derrames lávicos	UIIc	7 a 157	Heterogéneos		
U3	13 a 25	Tbs limo arenosas	UIIIa	4 a 36	Depósitos lacustres y materiales piroclásticos areno arcillosos		
U4	931 a 2000	Calizas	UIVa	131 a 296	?		
San Cosi	me Mazatecochco a San Se	ebastián Aparicio	Estudio Cacalotepec Pozos Atlixcayotl				
Sección	G-G'		Sección A-A'		•		
Unidad	Resistividad ohm-m	Material	Unidad	Resistividad ohm-m	Material		
U1	9 a 36	Tobas limo arenosas	U1	6 a 31	Tobas areno-arcillosas		
U2	32	Cuerpos lenticulares de arenas y gravas, y derrames lávicos	U1a	107 a 159	Coladas de rocas volcánicas fracturadas		
U2'	44 a 155	Arenas y gravas, y derrames lávicos	U2a	19 a 57	Tobas arenosas y colada de basalto		
U3	U3 se acuñan hacia la malinche aquí no hay		U3	34 a 15	Tobas areno-arcillosas		
U4	931 a 2000	Calizas	U3a	66 a 69	Brecha volcánica		
			U4	150 a 400	Calizas		
		l	1				

Cuadro 2. Información los SEVs obtenidos del archivo técnico de CONAGUA

Estudio Cacalotepec		Pozos Atlixcayotl	Estudio C	acalotepec	pozos Atlixcayotl		
Sección B-B'			Sección D	Sección D-D'			
Unidad	Resistividad ohm-m	Material	Unidad	Unidad Resistividad ohm-m Material			
U1	6 a 30	Tobas areno-arcillosas	U1	?	?		
U2		Tobas arenosas	U1a	27 a 147	Tobas arenosas y colada de basalto		
U3	9 a 17	Tobas areno-arcillosas	U1b	8 a 27	Tobas arcillo-arenosas		
U3a	22 a 79	Brecha volcánica	U1c	198 a 207	Coladas de rocas volcánicas fracturadas		
			U2	18 a 73	Tobas arenosas y colada de basalto		
			U3	7 a 31	Tobas arcillo-arenosas		
			U4	66 a 387	Calizas		
Estudio Cacalotepec Pozos Atlixcayotl			Estudio Autopista VW				
Sección C-C			Sección A	Sección A-A'			
Unidad	Resistividad ohm-m	Material	Unidad	Resistividad ohm-m	Material		
U1	6 a 30	Tobas areno-arcillosas	U1	21 a 22	Tobas areno-arcillosas		
U2	25 a 834	Tobas arenosas y colada de basalto	U2	30 a 36	Arcillas		
U3	4 a 69	Tobas arcillo-arenosas	U3	6 a 17	Toba arcillosa o depósitos lacustres		
U4	165 a 480	Calizas	U4	51 a 81	Toba semicompacta		
	Reinterpretación de	e la sección A-A' de Geotecnolog	ía S. A. (1997	7) por Flores-Márquez et al,. (20	06) y Jiménez (2005)		
Sección A-A							
Unidad	Resistividad ohm-m	Material					
U1	40 a 140	Tobas, travertinos, paleosuelos, lahares y depósitos piroclásticos					
U2	40 a 141	Tobas, travertinos, paleosuelos, lahares y depósitos piroclásticos					
U3	40 a 142	Tobas, travertinos, paleosuelos, lahares y depósitos piroclásticos					
U4 3 a 20 Sedimentos lacustres y flujos de la			lavas fractur	avas fracturadas			
U5 100 a .300 Depósitos volcánicos							

Figura 12. Columnas estratigráficas elaboradas para el área de estudio a partir de los estudios geofísicos recopilados (elaboración propia).

CAPÍTULO 5. MATERIALES Y MÉTODOS

Para modelar el sistema de recursos hídricos subterráneos del Valle de Puebla se integraron los modelos SWAT (Soil and Water Assessment Tool) y MODFLOW. El primero ha sido ampliamente usado para simular la hidrología superficial de cuencas, mientras que el segundo es de uso generalizado para la evaluación de la hidrología subterránea. Esto permitió integrar un sistema de modelos para una evaluación integral del recurso hídrico, como diversos autores lo han planteado en los últimos años (Tillman *et al.*, 2013; Luo y Sophocleous, 2011; Chung *et al.*, 2010; Kim *et al.*, 2008; Domínguez *et al.*, 2005; Sophocleous y Perkins, 2000; etc.). En el trabajo se consideraron las siguientes etapas:

5.1 Recopilación y revisión de la información disponible sobre el sistema acuífero

Se obtuvo la información disponible de fuentes documentales como tesis publicadas, estudios y registros de la Comisión Nacional del Agua, así como la cartografía del Instituto Nacional de Estadística y Geografía (INEGI).

- Un Modelo de Elevación Digital (DEM) de la zona de estudio, obtenido de imagen ASTERGDEM (Figura 13).
- Imágenes LANDSAT 4, 5, 7 y 8, gratuitas y disponibles para el área de estudio.
- Se recopiló información de las cartas temáticas E14-B32, E14-B33, E14-B42 y E14-B43 de INEGI escala 1:50,000 (disponibles en el INEGI y en el acervo de la biblioteca del COLPOS-Puebla).
- Bibliografía especializada: Manual para evaluar recursos hidráulicos subterráneos (CONAGUA), FORTRAN, Handbook of Hydrology, Select Digital Computer Techniques for Groundwater Resource Evaluation, USDAHL-70 Model of Watershed Hydrology, y Documentation of a Computer Program (RES1).

- Hardware: Pc, impresora, cámara digital, Laptop y Tablet.
- Software: MODFLOW (PmWin v. 5.2), IDRISI v. SELVA, ERDAS v. 9.2, Kingsoft Office (Spreadsheets, Writer, Presentation), ArcGIS v. 10.1; ArcSWAT v. 2012 y Surfer V. 8.

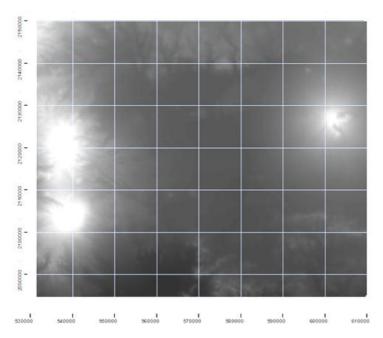


Figura 13. Imagen ASTERGDEM recortada del área de estudio (elaboración propia).

Se obtuvo información base requerida para el diseño del modelo conceptual del sistema acuífero sobre geología, geohidrología, geofísica, piezometría, precipitación y temperatura, censo histórico de pozos y población del área del sistema acuífero.

Con la información recopilada del archivo técnico de CONAGUA (Gerencia Puebla), así como de tesis doctorales y artículos científicos, disponibles y relacionados con el tema de investigación (Cuadro 3), se generaron las bases de datos que permitieron desarrollar el modelo conceptual del acuífero y finalmente, alimentarlo para la simulación de escenarios. Se consultaron 13 estudios del archivo técnico de la CONAGUA Gerencia Puebla con el propósito de conocer las características y comportamiento hidrodinámico del acuífero del Valle de Puebla. La información más relevante, puede consultarse en los Anexos A, B, C,

donde se presentan las tablas con los niveles estáticos que permiten reconstruir la evolución de la superficie piezométrica y que sirven como datos para calibrar el modelo de la simulación.

Cuadro 3. Estudios recopilados de la zona de estudio.

Estudio	Año	Autor
Estudio geohidrológico preliminar de los valles de Puebla (Alto Atoyac) y Zahuapan (Alto Atoyac) en el estado de Tlaxcala.		Agrogeología
Servicios de prospección y levantamientos geológicos y geofísicos en los estados de Puebla y Tlaxcala.	1975	Agrogeología
Estudio geohidrológico detallado de zonas secas, Valsequillo, Puebla Secretaria de Recursos Hidráulicos.	1976	Técnicas Modernas de Ingeniería S.A.
Actualización geohidrológico del Valle de Puebla.	1981	Perforaciones y Estudios Geológicos PEGSA
Estudio geohidrológico en la zona río Atoyac, estado de Puebla.	1982	SOAPAP
Estudio geohidrológico preliminar de la zona Atencingo-Atlixco Puebla.	1982	GEOCALLI S.A. Consultores
Estudio geohidrológico en la zona río Atoyac, estado de Puebla.	1982	LESSAR Y ASOCIADOS S.A.
Ampliación del estudio geofísico del Valle de Puebla.	1984	Investigaciones Técnicas del subsuelo S.A.
Estudio de exploración geofísica en la zona de Puebla, Pue. Secretaria De Agricultura Y Recursos Hidráulicos.	1989	LESSER Y ASOCIADOS S. A.
Estudio de actualización geohidrológica del acuífero del Valle de Puebla.	1990	EXYCO S.A.
Estudio geohidrológico básico del proyecto Nealtican.	1994	CONAGUA.
Estudio de caracterización hidrigeoquímica de seis de los principales acuíferos del país.	1994	EXYCO S.A.
Estudio geohidrológico del proyecto Nealtican Puebla Vol. SOAPAP.	1994	CALOMEL S.A. de CV.
Ampliación del estudio geohidrológico básico del proyecto Nealtican Puebla.	1994	CALOMEL S.A. de CV.
Estudio de migración de contaminantes hacia el acuífero regional derivados del riego con aguas residuales del Distrito de Riego Valsequillo, Puebla.	1995	Instituto de Geología UNAM.
Actualización del estudio geohidrológico de los acuíferos del Valle de Puebla.	1997	Geotecnología S. A.
Zonas de reserva de agua potable para la Ciudad de Puebla, Pue. Gerencia de Aguas Subterráneas, Subgerencia de Evaluación y Modelación Hidrogeológica.	2004	CONAGUA
Estudio hidrogeológico del acuífero del Valle de Puebla, Tesis Doctora, UNAM.	2005	Jiménez S. G.
Geochemical and Hydrodynamic characterization of the groundwater system of Puebla Valley, México. Northern Illinois University.	2007	Velázquez O. G.
Estudio de actualización geohidrológico del acuífero del Valle de Puebla.	2012	IGH S.C.

5.2 Elaboración del modelo conceptual

El modelo conceptual del sistema acuífero del Valle de Puebla-Alto Atoyac se definió a partir del análisis de la información disponible del archivo técnico de CONAGUA (delegación Puebla), las tesis doctorales de Velázquez (2007) y Jiménez (2005), y del reconocimiento geológico regional de campo. De esta información se seleccionaron los resultados tanto de los modelos de balance hídrico como de los modelos de flujo propuestos, para construir (considerando los criterios de Oropeza, 1989; Anderson y Woessner, 1992; Samper *et al.*, 2005; Sophocleous y Perkins, 2000; y Kim *et al.*, 2008) el modelo conceptual del acuífero bajo el siguiente esquema de trabajo:

- 1) Caracterización geométrica del sistema hidrogeológico.
- 2) Caracterización del sistema hidrogeológico y materiales que constituyen el acuífero.
- 3) Caracterización hidráulica e hidrodinámica del sistema hidrogeológico.
- 4) Caracterización climática del sistema hidrogeológico.
- 5) Caracterización espacial y temporal de las descargas de agua subterránea y de la recarga.

El acoplamiento de modelos para evaluar el comportamiento de la superficie piezométrica del acuífero del Valle de Puebla y el Alto Atoyac es mostrado en la Figura 5.

Se usó ArcSWAT V. 2012.10_1.15 para la generación de HRUs (Kim *et al.*, 2008; Chung *et al.*, 2010), para incorporar esta información a MODFLOW a través de celdas distribuidas. Se utilizó PMWin v. 5.2 como pre y post procesados de MODFLOW para construir y simular las condiciones del sistema acuífero del Valle de Puebla (Malik *et al.*, 2012), y conocer el comportamiento futuro de la superficie piezométrica. Debido a que la recarga (r) del agua subterránea y la evapotranspiración (EVT) dependen de la variabilidad espacial del tipo de suelo, uso del suelo, el clima y la topografía a escala regional Usando ArcSWAT, se usó las HRUs, los valores de recarga y evapotranspiración para las simulaciones con MODFLOW utilizando las subrutinas RCH y EVT (respectivamente).

Modelos acoplados

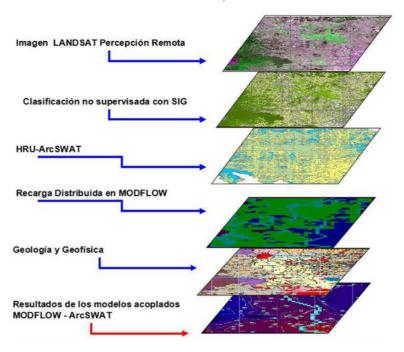


Figura 14. Integración de los modelos SWAT-MODFLOW (elaboración propia).

Se utilizaron los modelos SWAT-MODFLOW, a través de PMwin v. 5.2, y ArcSWAT 2012, para modelar los diferentes componentes hidrológicos evaluados y considerando el cambio de uso del suelo, mediante el uso de imágenes de satelitales (LANDSAT 4, 5, 7 y 8). También, se generaron escenarios simulados, mediante el modelo matemático MODFLOW y el desarrollo de series de tiempo, en flujo transiente de la superficie piezométrica para el año 2030.

5.3 Cambio de uso del suelo

Se obtuvieron mapas de uso del suelo del área de estudio para los años 1979, 1985, 1989 y 2014 a través de una clasificación no supervisada de suelo y vegetación de imágenes satelitales LANDSAT, utilizando la percepción remota y los sistemas de información geográfica en forma conjunta (Lencinas y Díaz, 2011; Hasmadi *et al.*, 2011; Alwis *et al.*, 2007; Samper *et al.*, 2005; Yang *et al.*, 2006; Xiao *et al.*, 2002). Se consideraron tres categorías de uso del suelo (forestal, agrícola y urbano-industrial), consideradas suficientes como variables determinantes de los cambios de la recarga del acuífero. La clasificación no

supervisada de vegetación y suelo general, a partir de imágenes satelitales LANDSAT 3, 4, 5, 7 y 8, consideró las siguientes actividades:

- 1) Obtención de las imágenes LANDSAT (en formato geotiff; http://glovis.usgs.gov/ImgViewer/ java2ImgViewer.html) disponibles para el área de estudio, del Servicio Geológico Norteamericano (USGS). Las imágenes obtenidas corresponden a los años de 1979, 1985, 1989, 1998 y 2014 (imágenes LANDSAT 3, 4, 5, 7 y 8, respectivamente), cuya resolución en pixel varia de 57.9 m por pixel a 15 m (cuando se tiene las bandas pancromática y térmica).
- 2) En las imágenes LANDSAT 5 y 7 se aplicó corrección atmosférica, utilizando el programa de CorAtmLandsat v. Beta (desarrollado por Palacios, 2007). En las imágenes 3, 4 y 8 se aplicó corrección atmosférica directamente en el programa IDRISI v. SELVA (Ronald, 2006). Después se abrieron en IDRISI v. SELVA (formato *.rst) donde se combinaron las bandas para obtener las imágenes en color verdadero (bandas 1 azul, 2 verde, 3 rojo) y Falso color (3 azul, 2 verde, 1 rojo). Una vez combinadas las bandas (composite), las imágenes se exportaron y guardaron en formato geotiff.
- 3) Las imágenes exportadas en formato geotiff fueron tratadas con Erdas v 9.2, para ser recortadas. En las imágenes más recientes (de 1989 en adelante), el área de interés se encontraba en dos imágenes distintas, por ello se realizó su unión en un Mosaico. Una vez obtenido el mosaico, se recortó el área de interés con una máscara (AOI). Conseguida el área deseada, la imagen se exportó y guardó en formato *.img (Figura 15).
- 4) En ArcGIS v. 10.1, se abrió el archivo *.img y se realizó una mejora sobre la imagen, aplicando la opción de Nearest Neighbor.

Finalmente se procedió a realizar la clasificación no supervisada de la siguiente manera: 1) ir ArcToolbox, 2) abrir Spatial Analyst Tools, 3) desplegar Multivariate, elegir dando click en

Iso Cluster (elegir la imagen de entrada, dar el nombre del archivo de salida a guardar en formato GSG, firma espectral), 4) indicar el número de clases y dar click en Ok, 5) dar click en Maximum Likelihood Classification y cargar nuestra imagen raster (nuevamente), cargar el archivo de firma espectral (GSG) y dar el nombre del archivo de salida (elegir la carpeta donde se guardara) y listo damos click en O.K. Para lograr este agrupamiento, el programa utiliza el procedimiento isocluster, el cual funciona con un máximo de 7 bandas espectrales. Este procedimiento ofrece la posibilidad de realizar una clasificación gruesa o general basada en los valores de frecuencia máxima, o bien una clasificación detallada o fina (utilizando también frecuencias secundarias (Palacios y Palacios, 2011; Farías y Nuñez, 2005).

El resultado de la clasificación no supervisada son clases obtenidas de la agrupación de pixeles alrededor de las más altas frecuencias (Palacios y Palacios, 2011). Estas características hacen que la clasificación no supervisada sea la elección lógica cuando hay un desconocimiento del uso del suelo, sea histórico o temporal, ya que facilita la obtención de clases como si se tratara de un rápido recorrido de campo, siendo usada en trabajos de escala regional durante un primer acercamiento (Alwis *et al.*, 2007; Yang *et al.*, 2006; etc.).

Las imágenes LANDSAT seleccionadas corresponden a los meses de febrero, marzo y abril, con el propósito de buscar una homogeneidad histórica de los datos. Se seleccionaron imágenes con 10% como máximo en contenido de nubes (Figura 15). Durante la clasificación no supervisada la porción de sombras, nubes o alteraciones por la fusión de imágenes fueron cuantificadas y descartadas para interpretación de resultados. Sin embargo, estas zonas de nubes, sombras o errores, no interfieren en más del 10% con el área de estudio a modelar (Figura 15).

5.4 Obtención de las unidades hidrológicas de repuesta del área de estudio

Los mapas de uso del suelo de los años 1979, 1985, 1989, 1998 y 2014 se usaron para la delimitación de la Unidades Hidrológicas de Respuesta (HRUs) del modelo Soil and

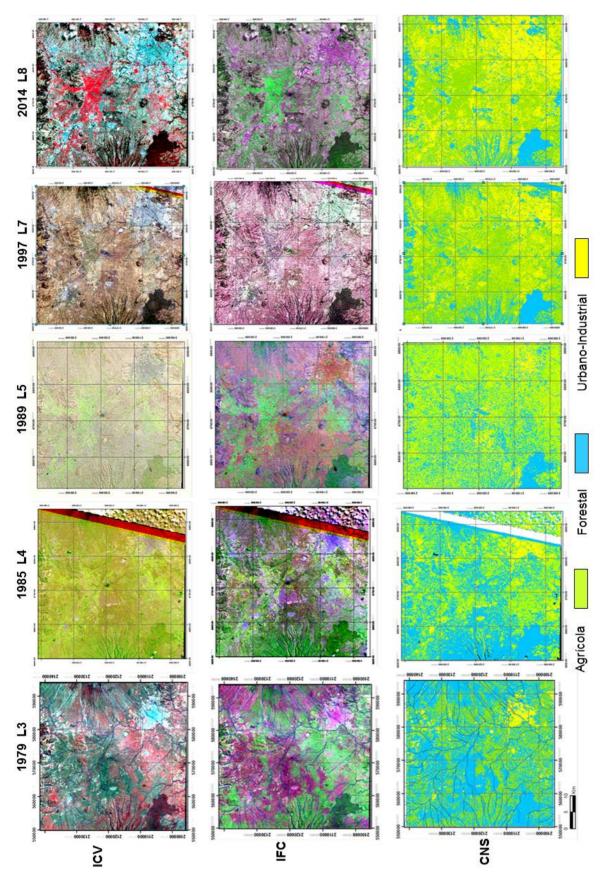


Figura 15. Imágenes LANDSAT (L) de los años 1979, 1985, 1989, 1997 y 2014, en color verdadero (ICV), falso color (IFC). Así como los mapas de uso del suelo, obtenidos a partir de la clasificación no supervisada (CNS; elaboración propia).

Water Assessment Tool (SWAT), versión ArcSWAT 2014. Las HRUs fueron la base para la distribución espacial del cálculo de la recarga del modelo MODFLOW. Para obtener las unidades de respuesta hidrológicas (HRUs) históricas de la cuenca a partir de la clasificación no supervisada de suelos, los pasos a seguir fueron los siguientes:

- 1) Con ArcSWAT, a partir de los archivos del DEM y ríos, se generaron las subcuencas del área de estudio.
- 2) Se generaron los archivos en formato ascii de tipo de suelos (CONABIO, 2012) y uso del suelo (obtenidos con la clasificación no supervisada). Se adoptaron las claves de identificación de la USDA Landcover (estas claves pueden consultarse en la página: cristal.isgs.uiuc.edu/webdoes/landcover/ nass07.html), asignando 92, AGRL (a la zona agrícola), 143, FRSD (a la zona forestal) y 82, URBN (a la zona urbano industrial).
- 3) Con ArcSWAT se calcularon las HRUs asociadas a la superficie agrícola, forestal y urbano-industrial (Figura 16; Anexo E).

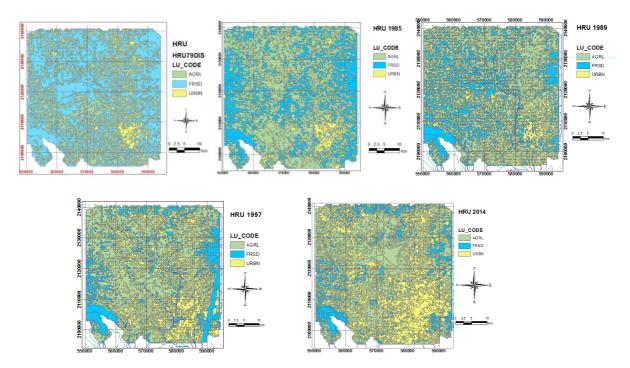


Figura 16. HRUs obtenidas en ArcSWAT para los años 1979, 1985, 1989, 1998 y 2014 (elaboración propia).

5.5 Cálculo de la evapotranspiración

En esta investigación solo se dispuso de datos de temperatura media anual y precipitación media anual (obtenidos de las estaciones meteorológicas, Anexo F; IGH S.C, 2012). Por lo tanto, se calculó la evapotranspiración real (ETR; ec. 10 y 11). La ETR, es la cantidad de agua que realmente retorna a la atmósfera como resultado de los procesos de evaporación y transpiración. Para calcular la ETR se utilizaron las siguientes fórmulas (Custodio y Llamas, 2001):

Fórmula de Turc:
$$ETR = \frac{P}{0.90 + (P/L)^2} \quad y \quad L = 300 + 25T + 0.05T^3 \quad ec. 10$$

Fórmula de Coutagne:
$$y$$
 $c = \frac{1}{0.8 + 0.14T}$ ec.11

Dónde: P= precipitación (en mm/año), T= temperatura (° Celsius) y ETR= evapotranspiración real (en mm/año).

Se utilizaron datos de precipitación (P en mm) y temperaturas (T en °C) para el periodo de 1982 a 2008, de 21 estaciones meteorológicas físicas registradas por CONAGUA (Anexo F). Se obtuvo el mapa de isoyetas e isotermas con el programa ArcGis con el método de interpolación de Kriging (Figuras 17 y 18).

5.6 Cálculo de la recarga

En esta investigación la recarga (r) se calculó a partir del balance hídrico (Lerner, 2002; Werner, 1996; Vélez y Vásquez, 2011), para cada una de las subcuencas asociadas a las HRUs obtenidas, a partir de la siguiente ecuación (ec.12):

$$r = P-Es-ET-\Delta S$$
 ec. 12

Dónde: r= recarga, P=precipitación, Es= escurrimiento, ET= evapotranspiración y ΔS=

cambio de almacenamiento.

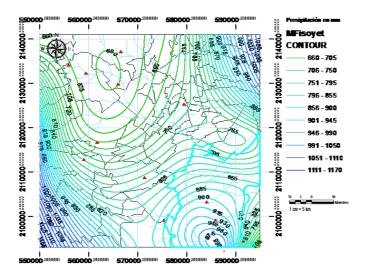


Figura 17. Mapa de Isoyetas del área de estudio (P mm/año; elaboración propia).

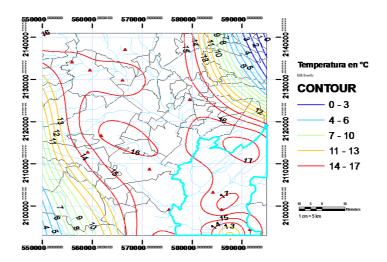


Figura 18. Mapa de Isotermas del área de estudio (T °C; elaboración propia).

Debido a que en la zona solo existe una estación hidrométrica (insuficiente para medir los escurrimientos de toda la cuenca) que afora las aportaciones del río Atoyac a la presa de Valsequillo, se calculó el escurrimiento medio anual (Es) utilizando el método de los coeficientes de escurrimiento específico (Ce, adimensional). El Ce está basado en la clasificación de tipos y uso de suelos (k, ec. 12 y 13; Cuadro 4). El Ce se calculó a partir de las siguientes expresiones (Pérez-Negrón):

Si k < 0.15 entonces
$$Ce = K\left(\frac{P - 250}{2000}\right)$$
; ec.13

Si k > 0.15 entonces
$$Ce = K \left(\frac{P - 250}{2000} \right) + \left(\frac{K - 0.15}{1.5} \right)$$
 ec.14

Donde k=está definida por el tipo de suelo, uso del suelo o cobertura vegetal, P=precipitación (en mm), Ce=coeficiente de escurrimiento (adimensional). Una vez obtenido el Ce, se calculó el escurrimiento medio anual (Es; ec.15) con la siguiente formula:

$$Es = Ce * P$$
 ec.15

Dónde: Es=escurrimiento medio anual (en mm), Ce=coeficiente de escurrimiento (adimensional), y P es la precipitación (en mm).

Los usos del suelo se obtuvieron a partir de los datos obtenidos de la clasificación no supervisada, clasificados como: AGR= área agrícola, FORST= forestal y URB= urbano-industrial. Así se obtuvo el valor K por el tipo de uso de suelo en cada una de las 24 subcuencas asociadas con las HRUs obtenidas en ArcSWAT para los años de 1979, 1985, 1989, 1998 y 2014.

Cuadro 4. Tabla de valores para el cálculo de K dependiendo el tipo y uso del suelo.

	Tipo de suelo			
Cubierta (o uso) del suelo	A	В	C	
Barbechos, áreas incultas y desnudas	0.26	0.28	0.3	
CULTIVOS:				
En hilera	0.24	0.27	0.3	
Legumbres o rotación de praderas	0.24	0.27	0.3	
Granos pequeños	0.24	0.27	0.3	
PASTIZAL				
% del suelo cubierto y pastoreo				
Más del 75% - Poco	0.14	0.2	0.28	
Del 50 al 75% - Regular	0.2	0.24	0.3	

Menos del 50% - Excesivo	0.24	0.28	0.3
BOSQUE			
Cubierto más del 75%	0.07	0.16	0.24
Cubierto del 50 al 75%	0.12	0.22	0.26
Cubierto del 25 al 50%	0.17	0.26	0.28
Cubierto menos del 25%	0.22	0.28	0.3
CASCOS y ZONAS CON EDIFICACIONES	0.26	0.29	0.32
CAMINOS, INCLUYENDO DERECHO DE VÍA	0.27	0.3	0.33
PRADERA PERMANENTE	0.18	0.24	0.3

La infiltración (I), se calculó de forma empírica (ec. 16), de la siguiente forma:

$$I = P - Es - ETR$$
 ec. 16

Donde P=precipitación (mm), Es=escurrimiento (mm), ETR=evapotranspiración (mm) I=infiltración (mm). Cuando se dispone de los recursos económicos y de tiempo, lo correcto es realizar estudios directos (*in situ*) para mejorar la calidad de estos parámetros.

Para el valor del cambio de almacenamiento (ΔS) se consideró para 1997 un ΔS =-112.5hm³ (Geotecnología S.A. 1997) y para el año 2014 se calculó un ΔS =-71.618 hm³ a partir de los trabajos de IGH S. C. (2012) y el aumento de la población. Estos valores también se estimaron para los años de 1989 y 1985 y 1979 considerando como promedio un ΔS =-31.516. hm³. Para el año de 2014 se consideró los datos de precipitación y temperatura promedio, para efectuar los cálculos. A partir de estos resultados se calculó la recarga para cada una de las HRUs obtenidas, para aplicarse de manera distribuida sobre MODFLOW.

5.7 Modelación del acuífero del Valle de Puebla

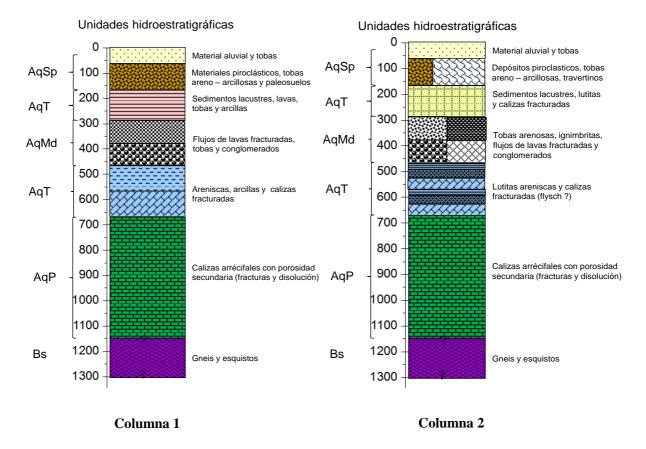
5.7.1 Parámetros e información de entrada del modelo MODFLOW

Para estimar el comportamiento futuro de los niveles estáticos (NEs) del sistema acuífero del Valle de Puebla-Alto Atoyac se simularon las condiciones de la superficie piezométrica. Se

usó la interface PMWin v. 5.2 como pre y post-procesador de MODFLOW. De acuerdo con la información consultada (Salcedo-Sánchez *et al.*, 2013; Gárfias *et al.*, 2010; Velásquez, 2007; Flores-Márquez *et al.*, 2006; Jiménez, 2005; Geotecnología S. A., 1997; CALOMEL S.A. de CV., 1994a; I.T.S. S.A., 1984; SOAPAP, 1982; T.M.I. S.A., 1976; PEGSA, 1981; Agrogeología S.A. 1975 y 1973), así como de recorridos de campo, se consideró inicialmente que el sistema acuífero del Valle de Puebla y el Alto Atoyac está compuesto por tres capas principales o unidades hidrogeológicas divididas como: acuífero superior, medio y profundo. Sin embargo, el modelo conceptual final consideró cinco capas, como lo consideraron otros autores (Velásquez, 2007; Flores-Márquez *et al.*, 2006, Jiménez, 2005; y Geotecnología S. A., 1997), debido a la presencia de dos acuitardos que subyacen al acuífero superior y medio (respectivamente), pero cuya distribución en la cuenca de Puebla es heterogénea. El modelo conceptual asumido en esta investigación consideró las siguientes unidades hidrogeológicas:

- ➤ Un acuífero libre o acuífero superior, formado por aluviones, depósitos de pie de monte, lahares, tobas, paleosuelos y vulcanitas del cuaternario que alcanza hasta ~200 m de espesor o más en las partes medias de la cuenca de Puebla. En la periferia del Valle de Puebla, el acuífero superior se encuentra interdigitado con rocas ígneas extrusivas de origen volcánico (basalto-andesita, andesita, dacita, pórfidos basálticos, andesíticos y dacíticos). Estas rocas en superficie están altamente fracturadas e interperizadas, lo cual ha alterado su color. Dependiendo su ubicación geográfica, algunas porciones descansan sobre arcillas lacustres de permeabilidad muy baja o bien pueden descansar directamente sobre vulcanitas (ambas del Terciario).
- ➤ Un acuitardo almacenado en sedimentos lacustres del Plioceno, de muy baja permeabilidad, con espesores bajo la ciudad de Puebla de 8 a 40 m compuesto por lavas y tobas areno arcillosas. En algunas partes al sur de la ciudad de Puebla se ha detectado intercalado con rocas carbonatadas, paleosuelos, algunas lavas, rocas ígneas fracturadas de baja porosidad y tobas. Presenta baja permeabilidad y su profundidad varía de los ~120 m a los ~200 m, alcanzando una profundidad máxima de ~215 m. El agua contenida es más dura que la del acuífero superior.

- ➤ Un acuífero medio, que se encuentra almacenado en depósitos de origen volcánico (lavas fracturadas, tobas e ignimbritas, del Terciario-Cuaternario). Las lavas presentan cierta permeabilidad asociada a un fracturamiento tectónico. Las tobas, por su edad y avanzada compactación (debido en parte a la presión litostática e hidrostática suprayacente), muestran baja permeabilidad primaria, aunque si se presenta cierta permeabilidad secundaria debido a su fracturamiento. El agua contenida es rica en sulfuros y nitratos, además de algunos minerales calcicoalcalinos, asociados a la génesis de las rocas. Este acuífero se presenta a una profundidad promedio de ~215 m a los ~270 m de profundidad, y alcanza un espesor máximo de ~180 m.
- ➤ Un **segundo acuitardo**, constituido por areniscas, arcillas y calizas fracturadas, intercaladas con algunas evaporitas y lutitas del Cretácico Superior, con un espesor de hasta ~200 m. Se encuentra alojado entre los ~250 m a los ~270 m, alcanzando una profundidad promedio de ~435 m.
- ➤ Un acuífero profundo, emplazado en rocas calizas arrecifales del Cretácico superior, con una profundidad estimada de hasta ~500 a ~700 m. Subyace al basamento cristalino formado por rocas metamórficas posiblemente del Paleozoico (complejo Acatlán (Ortega-Gutiérrez et al., 1992). En su mayor parte carece de permeabilidad primaria, dominando una permeabilidad secundaria, desarrollada por fracturamiento tectónico, o bien por disolución. Es posible que almacene volúmenes interesantes de agua; sin embargo, su calidad puede ser mala. Se estima que se encuentra alojado a partir de los ~435 a ~450 m de profundidad.


Esta distribución espacial del sistema acuífero varía dependiendo su historia geológica asociada y se relaciona con la geología estructural y la tectónica. Los datos geofísicos de estudios previos indican que las unidades estratigráficas a veces se encuentran desfasadas a profundidad, por lo tanto se han considerado dos columnas hidrogeológicas construidas con la información previamente descrita y los datos geofísicos disponibles presentados en el Capítulo 5 y el Anexo B (Cuadro 5, Figura 19).

Cuadro 5. Unidades hidrogeológicas propuestas para las columnas 1 y 2 del modelo del acuífero del valle de Puebla y el alto Atoyac.

Unidades Hidrogeológicas Columna 1		Prof. m	Materiales	K cualitativa	Fun. hidráulico
	Material aluvial y tobas	~55	Granulares	Alta	
	Depósitos piroclásticos, tobas areno – arcillosas y paleosuelos	~110±~180	Granulares	Alta	Acuífero Libre
AqSp			Fracturadas	Alta-Media	
AqT	Sedimentos lacustres, lavas, tobas y arcillas	~70±~120	Limo Arcillosa	Muy Baja	Acuitardo
AqMd	Flujos de lavas fracturadas, tobas y conglomerados	~180	Fracturadas	Media a Baja	Acuífero Confinado
AqT	Areniscas, arcillas y calizas fracturadas	~200	Lutitas, Margas y Calizas	Muy Baja	Acuitardo
	Calizas arrecifales con		Kársticas y Fracturadas	Secundaria	Acuífero Confinado
AqP	porosidad secundaria ~700 ± ~	Fracturadas y Selladas	Muy Baja	Frontera Inferior	
Bs	Gneis y esquistos				Basamento

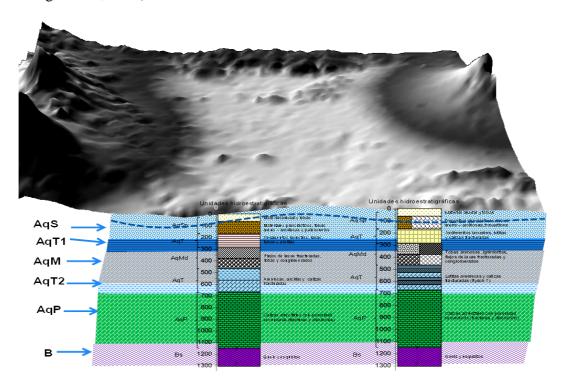
Unidades Hidrogeológicas	Columna 2	Prof. m	Materiales K cualitativa		Fun. hidráulico	
	Material aluvial y tobas	~40	Granulares	Alta		
AqSp	Depósitos piroclásticos, tobas areno – arcillosas,	~110±~180	Granulares	Alta	Acuífero Libre	
	travertinos		Fracturadas	Alta-Media		
AqT	Sedimentos lacustres, lutitas y calizas fracturadas	~70±~120	Limo Arcillosa	Muy Baja	Acuitardo	
AqMd	Tobas arenosas, ignimbritas, flujos de lavas fracturadas y conglomerados	~180	Fracturadas	Media a Baja	Acuífero Confinado	
AqT	Lutitas areniscas y calizas fracturadas (flysh ?)	~200	Lutitas, Margas y Calizas	Muy Baja	Acuitardo	
AqP	Calizas arrecifales con porosidad secundaria	~700 ± ~	Kársticas y Fracturadas	Secundaria	Acuífero Confinado	
1141	(fracturas y disolución)	500	Fracturadas y Selladas	Muy Baja	Frontera Inferior	
Bs	Gneis y esquistos				Basamento	

Simbología: AqSp= acuífero superior, AqT= acuitardo, AqMd= acuífero medio, AqP= acuífero profundo, Bs= basamento, Prof.= profundidad, k= conductividad hidráulica, Fun.= funcionamiento. Elaboración propia.

Figura 19. Columnas hidrogeológicas propuestas para el área de estudio (elaboración propia, a partir de datos de campo y estudios del archivo técnico de CONAGUA). La columna 1 tiene una mayor distribución en el área de estudio. La columna 2, tiene una distribución principal en la ciudad de Puebla y al sur del área de estudio.

Las características hidrodinámicas del sistema acuífero del Valle de Puebla-Alto Atoyac, asociadas con estas unidades hidrogeológicas se determinaron a partir de revisar estudios previos (*e. g.*, IGH S.C., 2012; Flores-Márquez *et al*, 2006; Jiménez 2005; y Geotecnología S.A., 1997). En esta investigación no se realizaron pruebas de bombeo, por el costo económico y tiempo que representan. Se asumió que los parámetros hidráulicos no tienen cambios importantes a través de tan corto tiempo geológico. Se adoptaron los parámetros de conductividad hidráulica (K_{x,y,z}) y coeficiente de almacenamiento específico (Ss) de los trabajos de Flores-Márquez *et al.*, (2006) y Jiménez (2005), a partir de los cuales se calcularon los parámetros: coeficiente de almacenamiento (S) y transmisibilidad (Tx, Ty) para el sistema acuífero del Valle de Puebla-Alto Atoyac (Cuadro 6).

Cuadro 6. Características hidrodinámicas del sistema acuífero del Valle de Puebla-Alto Atoyac.


Unidades Hidrogeológicas	Litología	Espesor m	Kx=Ky m/día	Kz m/día	Ss (m ⁻¹)	S	Tx=Ty m²/día	Porosidad Tp(%)
AqSp (Capa 1)								
Zona 1	Tobas lahares y depósitos piroclásticos	ZR	ZR	ZR	ZR	ZR	ZR	ZR
Zona 2	Depósitos de carbonatos y travertinos	110	0.009	2.592	0.05	5.500	0.950	0.200
Zona 3	Sedimentos lacustres	110	0.009	0.432	0.4	44.000	0.950	0.180
Zona 4	Sedimentos aluviales y lahares	110	0.432	0.259	0.5	55.000	47.520	0.300
Zona 5	Flujos de lava	110	0.043	0.043	0.005	0.550	4.752	0.180
Zona 6	Tobas fracturadas y depósitos piroclásticos	110	3.456	0.086	0.001	0.110	380.160	0.180
AqT (Capa 2)	Depósitos pliocenos lacustres, areniscas, lutitas y calizas silicatadas	120	0.605	0.346	0.00005	0.006	72.576	0.200
Zona 2	Depósitos de carbonatos y travertinos	120	0.864	2.592		0.000	103.680	
AqMd (Capa 3)	Rocas ígneas fracturadas	180	0.691	0.432	0.00005	0.009	124.416	0.200
Zona 2	Depósitos de carbonatos y travertinos	180	0.864	2.592		0.000	155.520	
AqT (Capa 4)	Rocas carbonatadas Mesozoicas	200	0.432	0.259	0.0001	0.020	86.400	0.250
AqP (Capa 5)	Rocas metamórficas: gneis y esquistos	700	0.009	0.009	0.000001	0.001	6.048	0.01-0.02
Fracturas	Líneas de alta permeabilidad		0.086	2.592				

Simbología: K= conductividad hidráulica; Ss= coeficiente almacenamiento específico; y S: coeficiente de almacenamiento adimensional; Tx, Ty= transmisibilidad (tomados y adaptados de Flores-Márquez *et al.*, 2006; y Jiménez, 2005). Nota: Zona= distribución espacial de la litología.

Para definir el área a modelar, las dimensiones de las celdas y asignar sus propiedades hidrodinámicas por zona, el medio continuo se discretizó en función de la geología existente. La construcción del grid (o malla) se realizó a partir de la información geológica y topográfica (usando las curvas de nivel obtenidas de la imagen ASTERZGDEM), usando ArcGIS v. 10.1. Las características iniciales del modelo conceptual del sistema acuífero (Figura 20) son las siguientes:

1.-Es un sistema acuífero formado por cinco capas.

- 2.- El acuífero superior, tiene un espesor máximo de 200 m.
- 3.- Los pozos de extracción tienen una profundidad promedio de 180 m.
- 4.-La extracción de pozos es de 316 hm³/año (Geotecnología, 1997), distribuida en 63 pozos.
- 5.-El área de interés a modelar comprende 2160 km² (correspondiente a la superficie del acuífero superior), con coordenadas X1=555000, Y1=2092000 y X2=595000, Y2=2140000 (UTM).
- 6.-Se estimó una recarga distribuida (r) de 2.53E-07/día en las HRUs agrícola, 4.30E-07/día en las HRUs forestal, y 2.24E-07/día en la HRUs urbano-industrial.
- 7.-La evapotranspiración real promedio se calculó en -7.73229E-07/día, aunque se aplicó en forma distribuida dentro del modelo.
- 8.-Las condiciones iniciales para el nivel estático de los pozos corresponden a los niveles estáticos de 63 pozos (Geotecnología S. A., 1997; Figura 21).
- 9.-Se incorporó el río (para efecto de la descarga de los ríos Atoyac y Zahuapan) considerando una conductancia=50 m²/día, con una altura del lecho del cauce de 2180 m a 2090 m (Geotecnología S. A., 1997).

Figura 20. Modelo conceptual del acuífero del valle de Puebla y el Alto Atoyac (elaboración propia). *Simbología:* AqS= acuífero superior; AqT= acuitardo; AqM= acuífero medio; AqP= acuífero profundo; B= basamento.

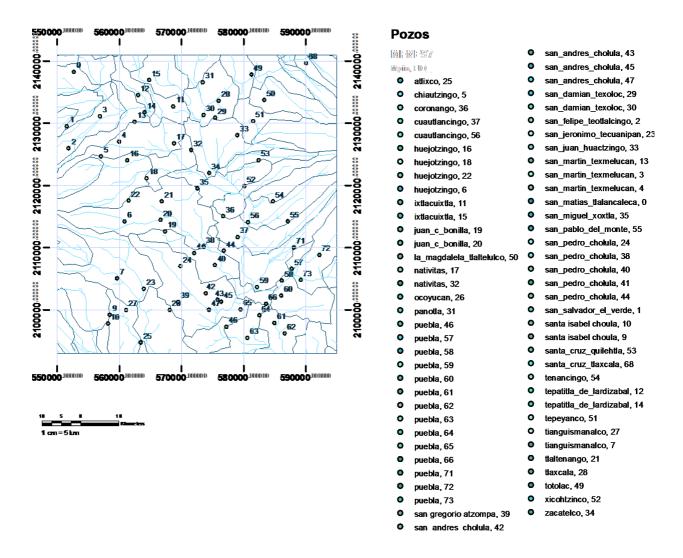
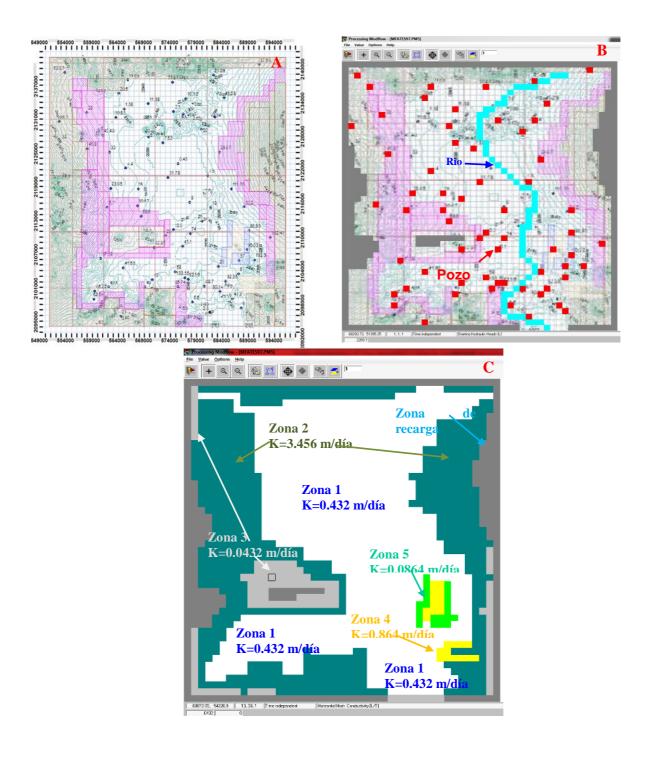



Figura 21. Mapa de subcuencas obtenidas con ArcSWAT y pozos utilizados en la simulación del modelo.

La malla generada (*grid*) tiene las siguientes características: 48 filas de 1000 m, 45 columnas de 1000 m, en total 2160 celdas (Figura 22-A). Las condiciones de borde corresponden a rocas ígneas extrusivas impermeables o fracturadas que actúan como zona de recarga (asociadas a los estratovolcanes, derrames y coladas de lava, cuerpos intrusivos, y calizas sanas o poco alteradas aflorantes en la región). No se utilizaron celdas de carga constante ya que en el área modelada no existen cuerpos de agua superficiales en contacto con el acuífero (*e. g.*, lagos) que alteren los niveles estáticos (Figura 22-B). Los parámetros de conductividad hidráulica (K_{x,y,z}), coeficiente de almacenamiento específico (Ss) coeficiente de almacenamiento (S) y transmisibilidad (Tx, Ty), se aplicaron en cada una de las cinco capas, de acuerdo a la distribución de cada zona (Figura 22-C).

Figura 22. Modelo elaborado en PMWin v. 5.2 del acuífero superior del Valle de Puebla-Alto Atoyac (elaboración propia).

Nota: A) La malla (grid) está formada por 45 columnas * 48 filas, cada celda mide 1 Km²;B). En azul celdas que corresponden al río, en rojo pozos de extracción usados en la simulación; C) Modelo de parámetros hidráulicos con conductividades hidráulicas (K) por zona. En esta misma distribución se aplicaron los datos de coeficiente de almacenamiento específico (Ss), coeficiente de almacenamiento (S) y transmisibilidad (Tx, Ty).

5.7.2 Ejecución del modelo MODLFOW

Una vez ingresados los parámetros (conductividad hidráulica, coeficiente almacenamiento específico, coeficiente de almacenamiento adimensional, y transmisibilidad) de la zona a simular se ingresan los datos correspondientes a evapotranspiración (ETR), recarga (r), pozos y río. En el menú Models, se eligió MODFLOW y se ingresaron los datos en cada una de las opciones correspondientes. Para configurar la simulación en flujo transiente, se ingresó en el menú Parameters, Time y se especificó el tiempo de simulación (en minutos, días, horas o años) y se seleccionó la simulación en flujo transiente (Figura 23).

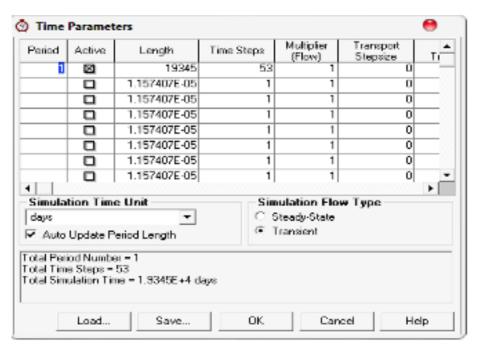
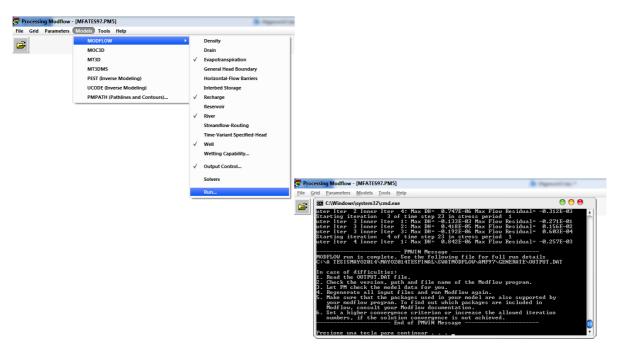
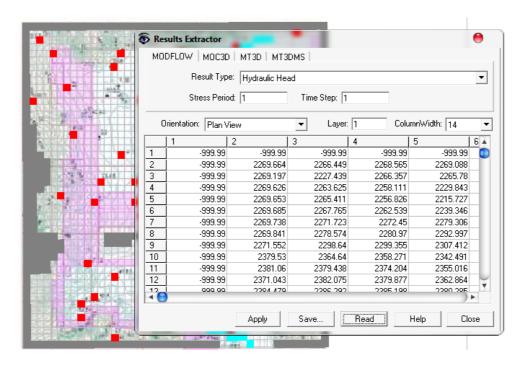




Figura 23. Módulo para configurar la simulación de tiempo del modelo (elaboración propia).

El método de solución del modelo se eligió en el menú Models, MODFLOW, opción Solvers, seleccionándose el método PCG2. Se eligió el método iterativo para solucionar el modelo (solución de la ecuación de flujo por diferencias finitas) y se corrió la simulación en el menú Models, MODFLOW, Run. La salida de la simulación aparece en una ventana en MS-DOS (Figura 24). Los resultados de la simulación se obtienen en menú Tools, en la opción "*Presentation*", para cada periodo de tiempo (Figura 25). Los resultados PMWin v 5.2 permiten desarrollar una secuencia animada para la serie de tiempo calculada en flujo transiente.

Figura 24. Menu Model, y cuadro de MODFLOW durante el proceso de solución del modelo simulado (elaboración propia).

Figura 25. Cuadro de la ventana *Presentation*, para cargar y presentar los datos calculados por MODFLOW (elaboración propia).

5.7.3 Simulación de escenarios

Se construyeron tres simulaciones en flujo transiente con PMWin v. 5.2. El primer escenario simuló la evolución de la superficie piezométrica, del año 1997 al 2017, con la configuración inicial (tendencia actual) de los niveles estáticos reportadas para 1997 (Geotecnología, 1997). El segundo escenario consideró una disminución en la extracción, para el periodo de 2014 al 2030, del 23 %. El escenario tres consideró, para el mismo periodo un incremento en la extracción del 30 %. Se utilizaron los valores de recarga distribuida y evapotranspiración real asociados a las HRUs delimitadas con ArcSWAT, para la simulación integrada de los modelos SWAT y MODFLOW.

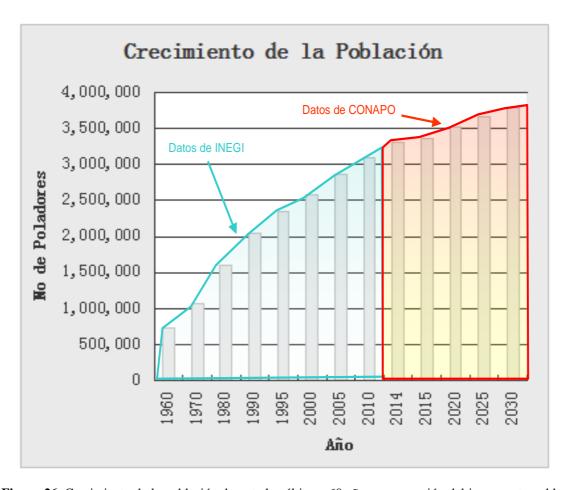
Escenario 1: En el primer escenario se simularon 20 años, de 1997–2017, con los niveles estáticos de 63 pozos reportados para 1997 (de los 217 pozos disponibles, se seleccionaron los pozos con mejor georrefenciación, disponibilidad de datos y la distribución dentro de la malla del modelo). Se consideró una extracción de 315.99 Mm³/año (Geotecnología S. A., 1997; ver censo de pozos completos en el Anexo C). Se incorporó la recarga distribuida (r) a partir de los datos derivados de la HRUs de 1997. Los resultados obtenidos de este primer escenario, de los niveles estáticos para el año 2014, sirvieron como el archivo base de los niveles estáticos iniciales (*initial heads*) para la simulación del año 2014 al año 2030.

Escenario 2: En el segundo escenario se simularon 17 años, del año 2014 al año 2030. La configuración inicial de los niveles estáticos (*initial heads*) de los 63 pozos, corresponden a los resultados del escenario 1 para el año 2014. Se incorporó la recarga distribuida a partir de los datos derivados de las HRUs de 2014.

En este segundo escenario simulado se incrementó un 30% más a la extracción de pozos (410.79 Mm³/año), considerando la actual tendencia de crecimiento poblacional, y las necesidades de demanda hídrica de los últimos 12 años dentro de la cuenca de Puebla (IGH S. C., 2012; Geotecnología S.A., 1997). Para obtener la tendencia de crecimiento de la población pasada, la población del área de estudio se obtuvo de los censos de población del archivo técnico de la CONAGUA para los años 1960, 1970, 1980 y 1990. La población de los años

1995, 2000, 2005 y 2010 se obtuvo de los anuarios de INEGI. La tendencia de crecimiento futura de la población, se obtuvo de la proyección de crecimiento de la CONAPO (2012) para los años 2014 al 2030. Se calculó el incremento en porcentaje de la población del 2014 al 2030 y este incremento se consideró para calcular el incremento en el porcentaje de extracción para el escenario futuro del modelo.

Escenario 3: El tercer escenario se relaciona con la posibilidad de un aprovechamiento del recurso hídrico que permita la recuperación parcial del acuífero superior. La configuración de los niveles estáticos iniciales (*initial heads*) también corresponde a los resultados obtenidos de la superficie piezométrica del año 2014 en el escenario 1. Con base en trabajos previos (Geotecnología S.A., 1997; IGH S.C., 2012; Salcedo-Sánchez *et al.*, 2013) se estableció una reducción en la extracción de los pozos regional del 23%. También se usó la recarga distribuida (r) de los datos calculados de las HRUs para el año 2014.


5.7.4 Proyección de los niveles estáticos de todos los pozos

Se tomó el nivel estático promedio obtenido de la simulación del escenario 2 para proyectar el comportamiento de la superficie piezométrica de los 76 pozos, bien georreferenciados, para el periodo 1997 al año 2030, para tener una perspectiva de la evolución regional del acuífero. Se utilizó el programa Surface para obtener la evolución espacial de la superficie piezométrica del acuífero superior, y la conducta de los frentes de avance de las isolíneas asociadas a la disminución progresiva de los niveles estáticos.

CAPÍTULO 6. RESULTADOS

6.1 Población y cambio de uso del suelo

En el Valle de Puebla, durante la última década la población pasó de 2'586,068 habitantes en el año 2000 a 3'096,984 habitantes en el 2010 (INEGI, 2010). La población del área de estudio se estimó en 3'315,375 habitantes en el año 2014. A partir de la proyección de CONAPO (2012) se calculó que para el año 2030 la población sería de 3'778,850 (Figura 26, Cuadro 7). De los 59 municipios que comprenden del área de estudio, solo 26 corresponden al estado de Puebla, y se estima que el municipio de Puebla alcanzará 1'785,694 habitantes en el año 2030.

Figura 26. Crecimiento de la población durante los últimos 60 años y proyección del incremento poblacional al 2030, de los municipios del área de estudio para los estados de Puebla y Tlaxcala (elaboración propia).

Cuadro 7. Crecimiento de la población calculado de 1960 a 2010, y proyección de su aumento al año 2030, del área de estudio.

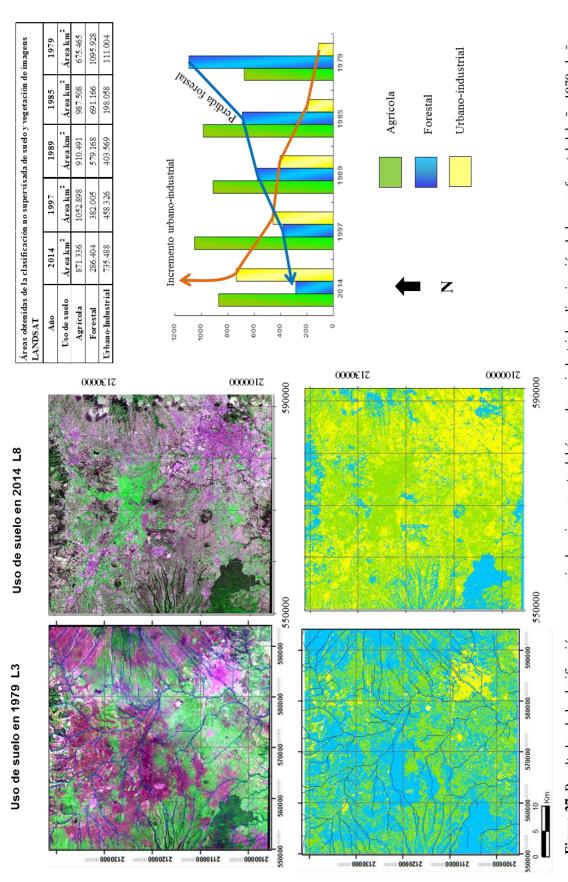
ID	NOM_ENT	NOM_MUN	1960	1970	1980	1990	1995	2000	2005
1	Puebla	Tlahuapan	11,203	15,282	19,415	24,028	29,644	31,665	33,831
2	Tlaxcala	Ixtacuixtla de Mariano Matamoros	14,780	18,114	20,582	30,663	28,794	30,301	32,574
3	Tlaxcala	Panotla	9,496	11,396	13,763	17,903	20,752	23,391	22,368
4	Puebla	San Matías Tlalancaleca	6,590	7,930	11,094	13,153	15,490	16,361	17,069
5	Tlaxcala	Santa Cruz Tlaxcala	5,553	6,093	7,912	10,522	11,678	12,824	15,193
6	Tlaxcala	Apetatitlan de Antonio Carvajal	3,875	3,707	6,072	8,000	10,895	11,795	12,268
7	Tlaxcala	Tlaxcala	16,194	21,805	35,384	50,492	61,514	73,230	83,748
8	Tlaxcala	Amaxac de Guerrero	3,143	4,837	4,725	6,192	7,133	7,679	7,878
9	Tlaxcala	Cuaxomulco	1,940	1,980	2,649	3,365	3,887	4,255	4,340
10	Tlaxcala	Totolac	4,970	7,498	9,041	15,200	16,801	16,682	19,606
11	Puebla	San Salvador el Verde	7,432	9,630	13,661	17,980	21,076	22,649	23,937
12	Tlaxcala	Contla de Juan Cuamatzi	9,443	11,909	17,065	22,380	26,744	28,842	32,341
13	Tlaxcala	Chiautempan	25,335	32,572	41,494	51,144	53,231	57,512	63,300
14	Puebla	San Martín Texmelucan	37,799	52,198	79,504	94,471	111,664	121,071	130,316
15	Tlaxcala	San Damian Texoloc	2,295	2,953	3,687	3,770	4,102	4,360	4,480
16	Tlaxcala	Tepetitla de Lardizabal	5,097	6,052	8,514	11,235	12,769	14,313	16,368
17	Tlaxcala	Santa Ana Nopalucan	2,280	2,739	3,219	4,820	5,302	5,851	6,074
18	Tlaxcala	La Magdalena Tlaltelulco	3,523	5,236	6,250	8,409	12,551	13,697	15,046
19	Tlaxcala	San Francisco Tetlanohcan	2,475	4,049	4,582	6,009	8,075	9,081	10,029
20	Tlaxcala	Nativitas	12,231	14,096	19,912	21,485	20,245	21,020	21,863
21	Tlaxcala	Santa Isabel Xiloxoxtla	1,314	1,614	1,899	2,764	3,395	3,184	4,118
22	Tlaxcala	Tetlatlahuca	8,413	10,208	12,586	15,801	10,230	10,803	11,474
23	Tlaxcala	Tepeyanco	7,295	9,096	11,311	16,942	8,672	9,006	9,176
24	Tlaxcala	Santa Apolonia Teacalco	1,991	2,110	2,614	2,944	3,707	3,676	3,860
25	Puebla	San Felipe Teotlalcingo	4,014	5,055	6,846	7,719	8,384	8,632	8,497
26	Tlaxcala	San Jeronimo Zacualpan	1,609	1,972	1,585	2,851	3,196	3,234	3,066
27	Tlaxcala	Teolocholco	5,794	7,353	8,552	13,593	15,846	17,067	19,435
28	Tlaxcala	San Juan Huactzinco	1,944	2,644	3,805	4,729	5,510	5,547	6,577
29	Puebla	Chiautzingo	7,899	9,132	13,286	15,483	16,945	17,788	17,167
30	Tlaxcala	Zacatelco	15,315	19,492	27,162	36,650	30,580	31,915	35,316
31	Puebla	Huejotzingo	17,306	22,303	31,997	41,792	47,308	50,868	59,822
32	Tlaxcala	Acuamanala de Miguel Hidalgo	2,893	3,830	5,463	6,980	4,257	4,357	5,081
33	Puebla Tlaxcala	Puebla San Lorenzo Axocomanitla	297,257 1,491	532,744 1,903	835,759 2,647	1,057,454 3,146	1,222,177 4,266	1,346,916 4,368	1,485,941 4,817
35	Tlaxcala	Santa Cruz Quilehtla	1,218	1,585	2,313	2,964	4,572	4,883	5,379
36	Tlaxcala	San Pablo del Monte	14,576	20,198	29,908	40,917	48,988	54,387	64,107
37	Tlaxcala	Santa Catarina Ayometla	2,521	3,472	5,094	6,176	6,998	6,997	7,306
38	Tlaxcala	Papalotla de Xicohtencatl	6,920	8,806	12,201	17,222	19,828	22,288	24,616
39	Puebla	Tlaltenango	2,478	2,771	3,674	4,338	5,081	5,370	5,676
40	Tlaxcala	Mazatecochco de J. M. Morelos	3,129	4,235	5,471	6,320	7,407	8,357	8,573
41	Tlaxcala	Xicohtzinco	4,060	502	7,673	8,563	9,486	10,226	10,732
42	Puebla	San Miguel Xoxtla	1,903	3,108	6,272	7,478	8,589	9,350	10,664
43	Puebla	Coronango	8,762	11,526	15,627	20,576	25,149	27,575	30,255
44	Tlaxcala	Tenancingo	4,635	5,734	6,227	9,749	9,597	10,142	10,632
45	Puebla	Cuautlancingo	12,044	11,452	18,768	29,047	39,509	46,729	55,456
46	Puebla	San Nicolás de los Ranchos	6,451	7,976	10,400	9,800	10,173	10,009	9,749
47	Puebla	Domingo Arenas	2,431	2,750	3,849	4,438	4,999	5,581	5,597
48	Puebla	Amozoc	14,191	14,184	23,406	34,738	54,717	64,315	78,452
49	Puebla	Calpan	8,413	8,192	11,114	11,967	12,625	13,571	13,319
50	Puebla	Juan C. Bonilla	5,135	7,017	10,399	11,495	13,824	14,483	14,814
51	Puebla	San Pedro Cholula	26,625	36,226	57,498	78,177	89,797	99,794	113,436
52	Puebla	San Jerónimo Tecuanipan	2,552	3,110	3,727	4,496	4,819	5,267	5,226
53	Puebla	Nealtican	3,054	4,522	6,850	8,380	9,555	10,644	10,513
54	Puebla	San Andrés Cholula	14,072	19,221	26,032	37,788	45,816	56,066	80,118
55	Puebla	Tianguismanalco	6,757	6,511	7,364	8,264	9,130	9,640	9,689
56	Puebla	San Gregorio Atzompa	2,918	3,662	4,548	5,593	6,408	6,934	6,981
57	Puebla	Cuautinchan	2,665	3,091	3,813	4,947	6,319	7,086	7,720
58	Puebla	Santa Isabel Cholula	3,334	4,400	5,526	7,256	8,186	8,815	9,192

59	Puebla	Ocoyucan	7,938	10,383	13,783	17,708	19,959	23,619	21,185
		Σ	728,971	1,074,166	1,595,574	2,048,466	2,348,351	2,586,068	2,866,363

Explicación: 1960 a 2010, información elaborada a partir de los censos de población de INEGI; 2014 a 2030 datos obtenidos de CONAPO (2012) para la proyección del crecimiento poblacional al año 2030.

Cuadro 7 (**continuación**). Crecimiento de la población calculado de 1960 a 2010, y proyección de su aumento al año 2030, del área de estudio.

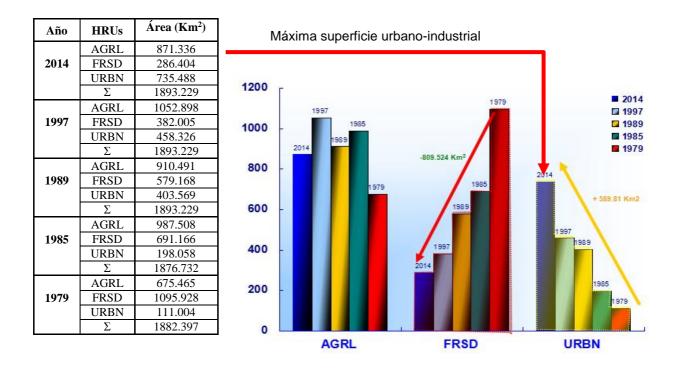
ID	NOM_ENT	NOM_MUN	2010	2014	2015	2020	2025	2030
1	Puebla	Tlahuapan	36,518	38,724	39,122	41,016	42,742	44,283
2	Tlaxcala	Ixtacuixtla de Mariano Matamoros	35,162	37,713	38,212	40,627	42,870	44,925
3	Tlaxcala	Panotla	25,128	27,233	27,607	29,303	30,831	32,237
4	Puebla	San Matías Tlalancaleca	19,310	20,978	21,246	22,364	23,256	23,989
5	Tlaxcala	Santa Cruz Tlaxcala	17,968	19,884	20,216	21,648	22,879	23,995
6	Tlaxcala	Apetatitlan de Antonio Carvajal	13,361	14,411	14,606	15,501	16,279	16,969
7	Tlaxcala	Tlaxcala	89,795	96,488	97,793	103,837	109,007	113,396
8	Tlaxcala	Amaxac de Guerrero	9,875	11,232	11,455	12,350	13,058	13,668
9	Tlaxcala	Cuaxomulco	5,066	5,576	5,665	6,056	6,405	6,728
10	Tlaxcala	Totolac	20,625	21,966	22,235	23,544	24,734	25,806
11	Puebla	San Salvador el Verde	28,419	31,456	31,946	33,955	35,564	36,919
12	Tlaxcala	Contla de Juan Cuamatzi	35,084	37,699	38,216	40,709	43,011	45,108
13	Tlaxcala	Chiautempan	66,149	70,045	70,879	75,136	79,180	82,873
14	Puebla	San Martín Texmelucan	141,112	150,601	152,262	159,658	165,790	170,854
15	Tlaxcala	San Damian Texoloc	5,064	5,504	5,578	5,890	6,159	6,402
16	Tlaxcala	Tepetitla de Lardizabal	18,725	20,583	20,931	22,526	23,953	25,239
17	Tlaxcala	Santa Ana Nopalucan	6,857	7,490	7,602	8,095	8,517	8,896
18	Tlaxcala	La Magdalena Tlaltelulco	16,834	18,226	18,501	19,877	21,263	22,616
19	Tlaxcala	San Francisco Tetlanohcan	9,880	10,233	10,328	10,900	11,497	12,042
20	Tlaxcala	Nativitas	23,621	25,358	25,705	27,435	29,092	30,592
21	Tlaxcala	Santa Isabel Xiloxoxtla	4,436	4,731	4,793	5,111	5 27	5,729
22	Tlaxcala	Tetlatlahuca	12,410	13,321	13,496	14,330	15,104	15,807
23	Tlaxcala	Tepeyanco	11,048	12,361	12,588	13,538	14,316	15,002
24	Tlaxcala	Santa Apolonia Teacalco	4,349	4,761	4,838	5,198	5,533	5,839
25	Puebla	San Felipe Teotlalcingo	9,426	10,102	10,214	10,698	11,099	11,433
26	Tlaxcala	San Jeronimo Zacualpan	3,581	3,983	4,051	4,341	4,575	4,772
27	Tlaxcala	Teolocholco	21,671	23,549	23,920	25,708	27,398	28,979
28	Tlaxcala	San Juan Huactzinco	6,821	7,230	7,322	7,810	8,285	8,719
29	Puebla	Chiautzingo	18,762	20,046	20,267	21,274	22,164	22,935
30	Tlaxcala	Zacatelco	38,654	41,690	42,278	45,080	47,657	49,991
31	Puebla	Huejotzingo	63,457	66,844	67,491	70,677	73,636	76,246
32	Tlaxcala	Acuamanala de Miguel Hidalgo	5,711	6,200	6,296	6,753	7,178	7,575
33	Puebla	Puebla	1,539,819	1,619,833	1,634,141	1,698,517	1,748,555	1,785,694
34	Tlaxcala	San Lorenzo Axocomanitla	5,045	5,358	5,423	5,750	6,047	6,307
35	Tlaxcala	Santa Cruz Quilehtla	6,296	6,921	7,035	7,565	8,059	8,515
36	Tlaxcala	San Pablo del Monte	69,615	74,667	75,759	81,456	87,197	92,634
37	Tlaxcala	Santa Catarina Ayometla	7,992	8,594	8,711	9,267	9,773	10,218
38	Tlaxcala	Papalotla de Xicohtencatl	26,997	29,070	29,471	31,426	33,298	35,045


Explicación: 1960 a 2010, información elaborada a partir de los censos de población de INEGI; 2014 a 2030 datos obtenidos de CONAPO (2012) para la proyección del crecimiento poblacional al año 2030.

Cuadro 7 (continuación). Crecimiento de la población calculado de 1960 a 2010, y proyección de su aumento al año 2030, del área de estudio.

ID	NOM_ENT	NOM_MUN	2010	2014	2015	2020	2025	2030
39	Puebla	Tlaltenango	6,269	6,666	6,732	7,034	7,312	7,570
40	Tlaxcala	Mazatecochco de Jose Maria Morelos	9,740	10,680	10,852	11,647	12,367	13,033
41	Tlaxcala	Xicohtzinco	12,255	13,403	13,603	14,455	15,162	15,776
42	Puebla	San Miguel Xoxtla	11,598	12,324	12,450	13,031	13,546	14,008
43	Puebla	Coronango	34,596	37,798	38,333	40,591	42,416	43,941
44	Tlaxcala	Tenancingo	11,763	12,612	12,769	13,511	14,217	14,894
45	Puebla	Cuautlancingo	79,153	94,476	96,787	104,663	109,578	113,379
46	Puebla	San Nicolás De Los Ranchos	10,777	11,447	11,552	12,022	12,440	12,816
47	Puebla	Domingo Arenas	6,946	7,773	7,905	8,449	8,917	9,329
48	Puebla	Amozoc	100,964	115,109	117,375	126,122	132,725	138,214
49	Puebla	Calpan	13,730	14,193	14,280	14,748	15,218	15,628
50	Puebla	Juan C. Bonilla	18,540	20,885	21,249	22,656	23,714	24,592
51	Puebla	San Pedro Cholula	120,459	127,601	128,880	134,644	139,305	142,921
52	Puebla	San Jerónimo Tecuanipan	5,826	6,267	6,342	6,681	6,991	7,264
53	Puebla	Nealtican	12,011	12,996	13,170	13,972	14,709	15,367
54	Puebla	San Andrés Cholula	100,439	114,197	116,347	124,241	129,564	133,513
55	Puebla	Tianguismanalco	9,807	10,135	10,202	10,578	10,952	11,278
56	Puebla	San Gregorio Atzompa	8,170	9,012	9,142	9,649	10,020	10,315
57	Puebla	Cuautinchan	9,538	10,648	10,827	11,569	12,193	12,752
58	Puebla	Santa Isabel Cholula	8,040	7,817	7,820	8,031	8,347	8,646
59	Puebla	Ocoyucan	25,720	28,675	29,169	31,268	33,063	34,637
		Σ	3,098,994	3,317,389	3,356,000	3,526,508	3,660,742	3,780,880

Explicación: 1960 a 2010, información elaborada a partir de los censos de población de INEGI; 2014 a 2030 datos obtenidos de CONAPO (2012) para la proyección del crecimiento poblacional al año 2030.


Este incremento en la población en los últimos 45 años genero una disminución en la cubierta forestal por el cambio de uso del suelo forestal—agrícola a uso urbano-industrial. Se estimó que de 1979 al año 2014 se perdió una superficie forestal de ~809.524 km². En cambio, la superficie urbano-industrial aumentó de ~117.963 km² en 1979 a ~707.77 km² en 2014 (Figura 27).

Nota: En la imagen se puede observar un continuo crecimiento de la zona urbano-industrial. Para el año 2014 la zona urbano-industrial tiene casi la Figura 27. Resultados de la clasificación no supervisada, e incremento del área urbano-industrial y disminución de la zona forestal del año 1979 al año 2014 (elaboración propia).

misma área que la zona agrícola.

En las Unidades Hidrológicas de Respuesta (HRUs) para el periodo 1979 - 2014, se estimó un incremento de la zona urbano – industrial en un 662.5% (589.81 km²; Figura 28). En cambio, la superficie identificada como HRUs agrícola, de 1997 a 2014 disminuyó ~181.562 km² para el año 2014 (Figura 28). La superficie agrícola en 1985 fue de ~987.508 km², de ~1052.898 km² en 1997 y ~871.336 km² en 2014.

Figura 28. Resumen de resultados obtenidos de las HRUs, asociados con la superficie agrícola (AGRL), forestal (FRSD) y urbano-industrial (URBN).

Nota: Se observa una clara reducción del área forestal (FRSD) en los últimos 45 años y continua expansión de la superficie urbana (URBN). Nótese que la superficie agrícola (AGRL) no mantiene una tendencia de aumento o disminución en contraste con las otras dos HRUs.

6.2 Evapotranspiración, escurrimiento y recarga para el acuífero del Valle de Puebla-Alto Atoyac

En el Cuadro 8 se presentan, para las HRUs (agrícola, forestal y urbano-industrial) de las 24 subcuencas delimitadas con Arc-SWAT, los datos de evapotranspiración real (ETR), escurrimiento (Esc) y recarga distribuida (r, las tablas de los resultados completos se presentan en el Anexo G). Los datos del año 1997 fueron la base para la simulación con MODFLOW

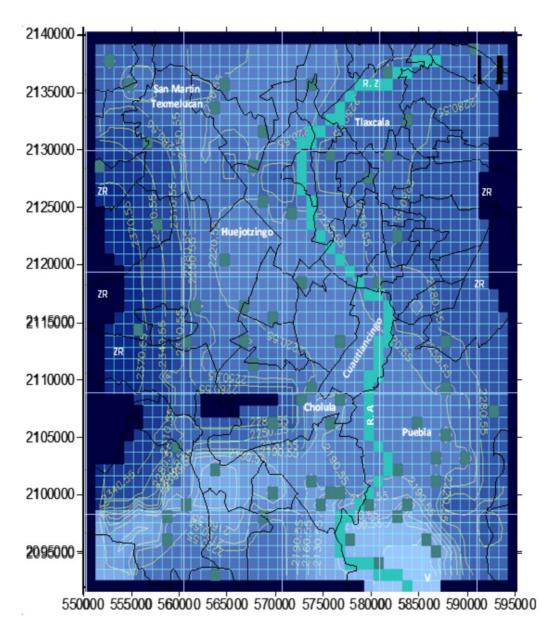
para conocer la configuración de la superficie piezométrica en 2014. Los datos de 2014 fueron la base para la simulación de los años 2015, 2020, 2015 y 2030.

Cuadro 8. Resultados resumidos de recarga, evapotranspiración y escurrimiento calculados en cada una de las HRUs.

Año	HRUs	Esc (mm)	ETR C (mm)	ETR T (mm)	r (mm/año)	Área (Km²)	r hm³/año
	AGRL	197.855	593.780	609.651	131.616	871.336	114.682
2014	FRSD	154.421	593.780	609.651	178.262	286.404	51.055
	URBN	211.034	593.780	609.651	120.214	735.488	88.416
	Σ	187.770	593.780	609.651	141.456	1893.229	267.809
	AGRL	197.878	610.756	635.200	92.339	1052.898	97.224
1997	FRSD	136.098	610.756	635.200	156.983	382.005	59.968
	URBN	210.992	610.756	635.200	81.734	458.326	37.461
	Σ	181.656	610.756	635.200	110.352	1893.229	208.922
	AGRL	221.895	591.990	599.142	118.070	910.491	107.502
1989	FRSD	140.663	591.990	599.142	199.302	579.168	115.429
	URBN	236.049	591.990	599.142	103.916	403.569	41.937
	Σ	199.536	591.990	599.142	140.429	1893.229	265.864
	AGRL	225.819	584.350	591.341	145.282	987.508	143.467
1985	FRSD	141.413	584.350	591.341	229.688	691.166	158.752
	URBN	247.660	584.350	591.341	123.441	198.058	24.449
	Σ	204.964	584.350	591.341	166.137	1876.732	311.795
	AGRL	212.915	588.080	599.866	130.789	675.465	88.343
1979	FRSD	137.627	588.080	599.866	206.078	1095.928	225.846
	URBN	227.336	588.080	599.866	116.368	111.004	12.917
	Σ	192.626	588.080	599.866	150.011	1882.397	282.380

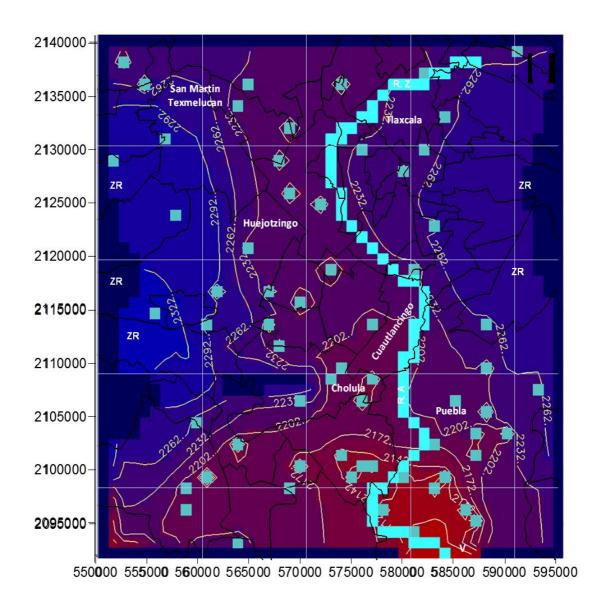
Simbología: Esc=escurrimiento; ETR C=evapotranspiración por formula de Coutagne; ETR T=evapotranspiración por formula de Turc; r= recarga.

6.3 Dinámica del acuífero de acuerdo a la simulación de escenarios con MODFLOW


Escenario 1: Los resultados obtenidos, de este primer escenario, respecto los niveles estáticos para el año 2014 se muestran en el Cuadro 9 y la Figura 29.

Cuadro 9. Resultados de los niveles estáticos (NEs en m) calculados de los 63 pozos simulados para el periodo de 1997 al año 2017.

2 5 5 2172.69 2161.08 2159.46 -0.63 35 38 31 2182.93 2169.17 2166.77 3 44 2 2255.88 2253.38 2251.90 -0.19 36 43 33 2283.96 2253.51 2250.3 4 32 4 2244.03 2210.43 2208.18 -1.71 37 20 34 2256.03 2240.65 2237.81 5 24 5 2166.28 2157.77 2156.60 -0.46 38 26 34 2151.37 2150.60 2146.01 6 15 5 2266.14 2197.15 2197.08 -0.43 39 35 34 2218.80 2203.67 2201.00 7 14 7 2203.49 2200.33 2200.72 -0.13 40 10 36 2274.21 2247.41 2243.51 8 19 9 2201.62 2180.13 2177.91 -1.13 41	No.	Col.	Reg.	Stp 1 1997 NEs m	Stp 18 2014 NEs m	Stp 21 2017 NEs m	Ds NEs m/año	No.	Col.	Reg.	Stp 1 1997 NEs m	Stp 18 2014 NEs m	Stp 21 2017 NEs m	
3 41 2 2255.88 2253.38 2251.90 -0.19 36 43 33 2283.96 2253.51 2250.3 4 32 4 2244.03 2210.43 2208.18 -1.71 37 20 34 2256.03 2240.65 2237.81 5 24 5 2166.28 2157.77 2156.60 -0.46 38 26 34 2151.37 2150.60 2146.01 6 15 5 2206.14 2197.15 2197.08 -0.43 39 35 34 2218.80 2203.67 2201.07 7 14 7 2203.49 2200.33 2200.72 -0.13 40 10 36 2274.21 2247.41 2243.51 8 19 9 2201.62 2180.13 2217.79 -1.13 41 38 35 2128.86 2115.27 2112.88 9 34 8 2237.58 2233.23 2230.34 -0.34 42	1	3	3	2233.61	2217.55	2215.25	-0.87	34	27	32	2160.62	2152.62	2148.25	
4 32 4 2244.03 2210.43 2208.18 -1.71 37 20 34 2256.03 2240.65 2237.85 5 24 5 2166.28 2157.77 2156.60 -0.46 38 26 34 2151.37 2150.60 2146.01 6 15 5 2206.14 2197.15 2197.08 -0.43 39 35 34 2218.80 2203.67 2201.07 7 14 7 2203.49 2200.33 2200.72 -0.13 40 10 36 2274.21 2247.41 2243.51 8 19 9 2201.62 2180.13 2177.91 -1.13 41 38 35 2128.86 2115.27 2112.88 9 34 8 2237.58 2233.23 2230.34 -0.34 42 40 37 2157.92 2145.32 2139.21 10 7 10 2316.23 2296.09 2293.79 -1.07 43 37 37 2162.80 2148.01 2144.31 11 26 11 2259.33 2240.11 2236.68 -1.08 44 33 38 2193.89 2176.43 2168.2 12 32 11 2233.31 2228.46 2225.11 -0.39 45 24 39 2134.96 2118.49 2114.7 13 2 12 2353.14 2323.40 2318.93 -1.63 46 14 38 2076.03 2073.34 2075.01 14 18 12 2200.69 2183.67 2181.09 -0.93 47 37 39 2171.49 2158.61 2153.41 15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2106.13 2094.14 2088.0 18 8 17 2334.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.7 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.0 24 17 24 2199.44 2185.52 2185.44 -0.33 57 33 42 2070.42 2060.89 2056.27 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2	2	5	5	2172.69	2161.08	2159.46	-0.63	35	38	31	2182.93	2169.17	2166.76	
5 24 5 2166.28 2157.77 2156.60 -0.46 38 26 34 2151.37 215.60 2146.00 6 15 5 2206.14 2197.15 2197.08 -0.43 39 35 34 2218.80 2203.67 2201.01 7 14 7 2203.49 2200.33 2200.72 -0.13 40 10 36 2274.21 2247.41 2243.54 8 19 9 2201.62 2180.13 2177.91 -1.13 41 38 35 2128.86 2115.27 2112.88 9 34 8 2237.58 2233.23 2230.44 -0.34 42 40 37 215.92 2145.32 2199.12 10 7 10 2316.23 2296.09 2293.79 -1.07 43 37 37 2162.80 2148.01 2144.31 11 26 11 2233.31 2222.66 2225.11 -0.39 45 <td>3</td> <td>41</td> <td>2</td> <td>2255.88</td> <td>2253.38</td> <td>2251.90</td> <td>-0.19</td> <td>36</td> <td>43</td> <td>33</td> <td>2283.96</td> <td>2253.51</td> <td>2250.31</td>	3	41	2	2255.88	2253.38	2251.90	-0.19	36	43	33	2283.96	2253.51	2250.31	
6	4	32	4	2244.03	2210.43	2208.18	-1.71	37	20	34	2256.03	2240.65	2237.83	
7	5	24	5	2166.28	2157.77	2156.60	-0.46	38	26	34	2151.37	2150.60	2146.03	
8 19 9 2201.62 2180.13 2177.91 -1.13 41 38 35 2128.86 2115.27 2112.89 9 34 8 2237.58 2233.23 2230.34 -0.34 42 40 37 2157.92 2145.32 2139.21 10 7 10 2316.23 2296.09 2293.79 -1.07 43 37 37 2162.80 2148.01 2144.33 11 26 11 2259.33 2240.11 2236.68 -1.08 44 33 38 2193.89 2176.43 2168.21 12 32 11 2235.31 2228.46 2225.11 -0.39 45 24 39 2134.96 2118.49 2114.73 13 2 12 2353.14 2323.40 2318.93 -1.63 46 14 38 2076.03 2073.34 2075.03 14 18 12 2200.69 2183.67 2181.09 -0.93 <td< td=""><td>6</td><td>15</td><td>5</td><td>2206.14</td><td>2197.15</td><td>2197.08</td><td>-0.43</td><td>39</td><td>35</td><td>34</td><td>2218.80</td><td>2203.67</td><td>2201.03</td></td<>	6	15	5	2206.14	2197.15	2197.08	-0.43	39	35	34	2218.80	2203.67	2201.03	
9 34 8 2237.58 2233.23 2230.34 -0.34 42 40 37 2157.92 2145.32 2139.23 10 7 10 2316.23 2296.09 2293.79 -1.07 43 37 37 2162.80 2148.01 2144.33 11 26 11 2259.33 2240.11 2236.68 -1.08 44 33 38 2193.89 2176.43 2168.24 12 32 11 2233.31 2228.46 2225.11 -0.39 45 24 39 2134.96 2118.49 2114.74 13 2 12 2353.14 2323.40 2318.93 -1.63 46 14 38 2076.03 2073.34 2075.03 14 18 12 2200.69 2183.67 2181.09 -0.93 47 37 39 2171.49 2158.61 2153.43 15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2120.35 2098.66 2094.47 17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.04 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.72 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.42 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.27 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2070.42 2060.89 2058.27 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.01 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.22 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.56 31 18 29 2230.50 2201.55 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9	7	14	7	2203.49	2200.33	2200.72	-0.13	40	10	36	2274.21	2247.41	2243.50	
10	8	19	9	2201.62	2180.13	2177.91	-1.13	41	38	35	2128.86	2115.27	2112.89	
11 26	9	34	8	2237.58	2233.23	2230.34	-0.34	42	40	37	2157.92	2145.32	2139.28	
12 32 11 2233.31 2228.46 2225.11 -0.39 45 24 39 2134.96 2118.49 2114.7-13 2 12 2353.14 2323.40 2318.93 -1.63 46 14 38 2076.03 2073.34 2075.03 14 18 12 2200.69 2183.67 2181.09 -0.93 47 37 39 2171.49 2158.61 2153.43 15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2103.55 2098.66 2094.47 17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.04 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.75 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.27 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.15 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.86 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.25 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.55 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.83 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.93 224 31 2203.67 2163.07 2162.19 -1.98 2200.15 2206.85 -1.63	10	7	10	2316.23	2296.09	2293.79	-1.07	43	37	37	2162.80	2148.01	2144.32	
13 2 12 2353.14 2323.40 2318.93 -1.63 46 14 38 2076.03 2073.34 2075.03 14 18 12 2200.69 2183.67 2181.09 -0.93 47 37 39 2171.49 2158.61 2153.43 15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2120.35 2098.66 2094.43 17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.0 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.73 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.03 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.43 22 23 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 225 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 225 22 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.15 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.15 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.85 227 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.55 20 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.55 20 24 31 2203.67 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 22 24 31 2203.67 2167.02 2162.19 -1.98 2162.19 -1.98 2203.67 2167.02 2162.19 -1.98 2203.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 2200.15 2200	11	26	11	2259.33	2240.11	2236.68	-1.08	44	33	38	2193.89	2176.43	2168.24	
14 18 12 2200.69 2183.67 2181.09 -0.93 47 37 39 2171.49 2158.61 2153.43 15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2103.35 2098.66 2094.4° 17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.0 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.7 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.0 21	12	32	11	2233.31	2228.46	2225.11	-0.39	45	24	39	2134.96	2118.49	2114.74	
15 30 13 2243.91 2222.30 2219.12 -1.18 48 20 40 2098.03 2080.18 2079.0 16 19 15 2210.67 2182.49 2179.83 -1.47 49 26 40 2120.35 2098.66 2094.4° 17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.0 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.7 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.0° 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.4 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.7° 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2° 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.15 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.85 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.0° 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.25 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.50 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.81 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9	13	2	12	2353.14	2323.40	2318.93	-1.63	46	14	38	2076.03	2073.34	2075.02	
16	14	18	12	2200.69	2183.67	2181.09	-0.93	47	37	39	2171.49	2158.61	2153.42	
17 22 16 2209.83 2184.66 2182.01 -1.32 50 27 40 2106.13 2094.14 2089.04 18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.72 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.42 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.27 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.56 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.89 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.90 32 24 31 2203.67 2167.02 2162.19 -1.98	15	30	13	2243.91	2222.30	2219.12	-1.18	48	20	40	2098.03	2080.18	2079.01	
18 8 17 2324.52 2306.39 2303.31 -1.01 51 11 41 2136.28 2021.91 2011.4 19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.73 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.43 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33	16	19	15	2210.67	2182.49	2179.83	-1.47	49 26 40 2120.35 2098.66 20						
19 33 18 2274.09 2254.39 2251.65 -1.07 52 25 41 2066.60 2065.27 2060.73 20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.07 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2087.49 2056.91 2056.43 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.27 25 20 25 2207.17 2180.47 2178.01 -1.39	17	22	16	2209.83	2184.66	2182.01	-1.32	50 27 40 2106.13 2094.14 20						
20 15 20 2212.60 2211.62 2211.56 -0.05 53 30 41 2089.55 2087.79 2083.0 21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.41 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 <t< td=""><td>18</td><td>8</td><td>17</td><td>2324.52</td><td>2306.39</td><td>2303.31</td><td>-1.01</td><td>51</td><td>11</td><td>41</td><td>2136.28</td><td>2021.91</td><td>2011.41</td></t<>	18	8	17	2324.52	2306.39	2303.31	-1.01	51	11	41	2136.28	2021.91	2011.41	
21 23 22 2191.38 2177.90 2176.13 -0.73 54 34 41 2057.49 2056.91 2056.43 22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 <	19	33	18	2274.09	2254.39	2251.65	-1.07	52	25	41	2066.60	2065.27	2060.73	
22 31 22 2241.04 2209.85 2207.93 -1.58 55 9 42 2170.16 2165.77 2165.77 23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2° 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33	20	15	20	2212.60	2211.62	2211.56	-0.05	53	30	41	2089.55	2087.79	2083.07	
23 12 24 2195.41 2195.19 2194.96 -0.02 56 19 42 2209.72 2188.94 2186.00 24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2' 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.2: 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.50 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.89 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.99 32 24 31 2203.67 2167.02 2162.19 -1.98	21	23	22	2191.38	2177.90	2176.13	-0.73	54	34	41	2057.49	2056.91	2056.45	
24 17 24 2190.44 2183.52 2183.44 -0.33 57 33 42 2070.42 2060.89 2058.2 25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.23 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.50 30 38 27 2236.96 2219.88 2217.42 -0.93	22	31	22	2241.04	2209.85	2207.93	-1.58	55	9	42	2170.16	2165.77	2165.77	
25 20 25 2207.17 2180.47 2178.01 -1.39 58 9 44 2197.02 2182.37 2182.19 26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.23 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.56 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.88 31 18 29 2230.50 2200.15 2196.25 -1.63	23	12	24	2195.41	2195.19	2194.96	-0.02	56	19	42	2209.72	2188.94	2186.00	
26 6 26 2381.49 2337.47 2331.41 -2.38 59 28 44 2079.23 2037.61 2032.89 27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.23 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.50 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.89 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	24	17	24	2190.44	2183.52	2183.44	-0.33	57	33	42	2070.42	2060.89	2058.27	
27 11 27 2283.13 2255.60 2252.31 -1.47 60 36 44 2040.55 2033.61 2033.00 28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.23 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.50 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.80 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	25	20	25	2207.17	2180.47	2178.01	-1.39	58	9	44	2197.02	2182.37	2182.19	
28 17 27 2199.05 2194.95 2192.19 -0.33 61 37 45 2082.35 2074.33 2074.23 29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.56 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.83 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	26	6	26	2381.49	2337.47	2331.41	-2.38	59	28	44	2079.23	2037.61	2032.89	
29 27 27 2202.98 2172.12 2168.75 -1.63 62 31 46 2085.68 2072.10 2070.56 30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.88 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	27	11	27	2283.13	2255.60	2252.31	-1.47	60	36	44	2040.55	2033.61	2033.06	
30 38 27 2236.96 2219.88 2217.42 -0.93 63 14 47 2228.71 2210.06 2206.88 31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	28	17	27	2199.05	2194.95	2192.19	-0.33	61	37	45	2082.35	2074.33	2074.25	
31 18 29 2230.50 2200.15 2196.25 -1.63 Descenso promedio del nivel estático por año (m/año) = -0.9 32 24 31 2203.67 2167.02 2162.19 -1.98	29	27	27	2202.98	2172.12	2168.75	-1.63	62	31	46	2085.68	2072.10	2070.56	
32 24 31 2203.67 2167.02 2162.19 -1.98	30	38	27	2236.96	2219.88	2217.42	-0.93	63	14	47	2228.71	2210.06	2206.88	
	31	18	29	2230.50	2200.15	2196.25	-1.63	Desce	nso pro	medio d	el nivel estático	por año (m/año)	= -0.99	
33 23 32 2223.71 2182.86 2178.33 -2.16	32	24	31	2203.67	2167.02	2162.19	-1.98							
	33	23	32	2223.71	2182.86	2178.33	-2.16							


Simbología: No.=numero; Col.=columna; Reg.=renglón; Stp=etapa de simulación, NEs=nivel estático.

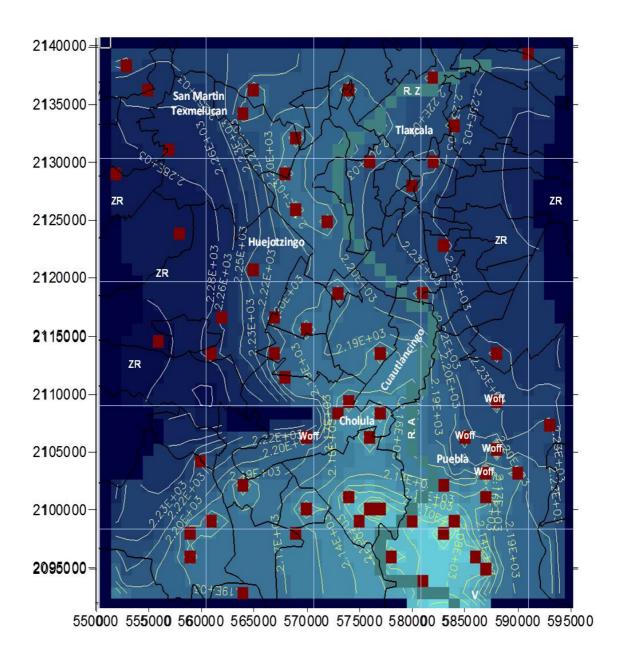
Bajo estas condiciones, los resultados del primer escenario revelan un descenso promedio en los niveles estáticos (NEs) de -0.99 m/año. Lo que es equivalente a un abatimiento promedio de ~20.79 m en 21 años, calculando para el año 2014 un descenso promedio de ~17.82 m en los niveles estáticos (Figuras 29 y 30).

Figura 29. Configuración de los niveles estáticos en 1997 para el primer escenario simulado con PMWin v. 5.2 (elaboración propia).

Nota: El degradado en azul obscuro del modelo indica las zonas con menor efecto de abatimiento, las zonas con mayor abatimiento aparecen en azul claro. *Simbología:* ZR=zonas de recarga; R. Z=río Zahuapan; R. A=río Atoyac; V=presa Valsequillo.

Figura 30. Resultados del modelo obtenido con la simulación de los niveles estáticos para el año 2014 con PMWin v. 5.2 (elaboración propia).

Nota: La configuración de la superficie piezométrica indica que las zonas con menor o casi nulo abatimiento se encuentran en degradado azul, y en rojo se indican las zonas con mayor abatimiento. *Simbología:* ZR=zonas de recarga; R. Z=río Zahuapan; R. A=río Atoyac; V=presa Valsequillo.


Escenario 2: Con MODFLOW, considerando un incrementó del 30 % en la extracción de pozos (410.79 Mm³/año), de acuerdo a la actual tendencia de crecimiento poblacional, y las necesidades de demanda hídrica de los últimos 12 años dentro de la cuenca de Puebla, se estimó un descenso promedio de los niveles estáticos de -1.37 m/año para el año 2030. El abatimiento de la superficie piezométrica fue de 41.1 m. Los resultados obtenidos ante tal

explotación simulada, genera la pérdida de 5 pozos del acuífero superior (No. 35, 37, 39, 41 y 43; ver Cuadro 10 y Figura 31).

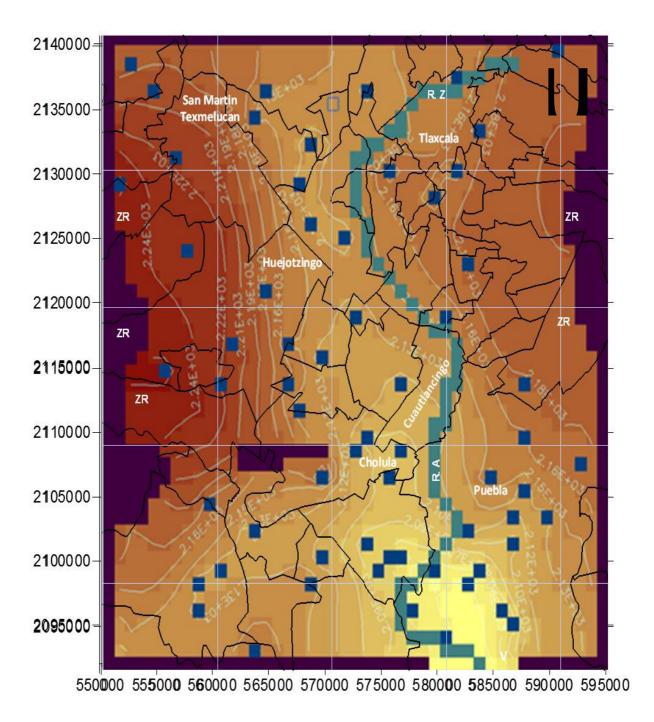
Cuadro 10. Resultados de las profundidades de los niveles estáticos (NEs, en m) calculados en los 63 pozos simulados, para el periodo del año 2014 al año 2030.

No.	Col.	Reg.	Stp 1 2014 NEs m	Stp 17 2030 NEs m	Ds NEs m/año	No.	Col.	Reg.	Stp 1 2014 NEs m	Stp 17 2030 NEs m	Ds NEs m/año
1	3	3	2219.64	2217.28	-0.13	33	23	32	2179.00	2148.16	-1.71
2	5	5	2251.53	2185.86	-3.65	34	27	32	2146.92	2106.17	-2.26
3	41	2	2251.03	2236.47	-0.81	35	38	31	2161.24	Under AqS	0.00
4	32	4	2205.78	2185.25	-1.14	36	43	33	2251.10	2230.20	-1.16
5	24	5	2168.18	2166.01	-0.12	37	20	34	2209.44	Under AqS	0.00
6	15	5	2193.13	2181.88	-0.62	38	26	34	2144.73	2103.59	-2.29
7	14	7	2196.48	2184.00	-0.69	39	35	34	2170.21	Under AqS	0.00
8	19	9	2175.27	2153.06	-1.23	40	10	36	2242.71	2214.89	-1.55
9	34	8	2228.50	2204.24	-1.35	41	38	35	2083.69	Under AqS	0.00
10	7	10	2293.20	2272.23	-1.17	42	40	37	2166.67	2165.53	-0.06
11	26	11	2219.90	2156.88	-3.50	43	37	37	2114.67	Under AqS	0.00
12	32	11	2223.52	2194.99	-1.59	44	33	38	2158.53	2089.35	-3.84
13	2	12	2321.83	2296.69	-1.40	45	24	39	2112.60	2075.79	-2.04
14	18	12	2178.67	2155.88	-1.27	46	14	38	2110.08	2076.20	-1.88
15	30	13	2217.37	2188.43	-1.61	47	37	39	2153.08	2117.17	-2.00
16	19	15	2177.46	2154.42	-1.28	48	20	2104.78	-0.68		
17	22	16	2179.68	2155.62	-1.34	49	26	40	2090.04	2044.97	-2.50
18	8	17	2304.39	2279.64	-1.38	50	27	40	2086.53	2033.51	-2.95
19	33	18	2250.46	2231.79	-1.04	51	11	41	2157.77	2138.20	-1.09
20	15	20	2209.38	2201.36	-0.45	52	25	41	2113.02	2100.91	-0.67
21	23	22	2173.20	2153.66	-1.09	53	30	41	2081.27	2033.28	-2.67
22	31	22	2205.30	2185.43	-1.10	54	34	41	2066.21	2036.72	-1.64
23	12	24	2247.76	2245.81	-0.11	55	9	42	2164.25	2144.40	-1.10
24	17	24	2190.19	2175.95	-0.79	56	19	42	2175.84	2140.32	-1.97
25	20	25	2175.51	2150.49	-1.39	57	33	42	2054.32	2004.90	-2.75
26	6	26	2321.70	2277.00	-2.48	58	9	44	2174.63	2151.91	-1.26
27	11	27	2295.75	2259.83	-2.00	59	28	44	2076.11	2044.71	-1.74
28	17	27	2225.70	2206.68	-1.06	60	36	44	2050.21	2036.96	-0.74
29	27	27	2166.83	2137.54	-1.63	61 37 45 2088.47 2088.23					-0.01
30	38	27	2231.04	2224.85	-0.34	62	31	46	2056.89	2000.40	-3.14
31	18	29	2199.41	2183.07	-0.91	63	14	47	2191.72	2151.67	-2.23
32	24	31	2161.24	2124.42	-2.05	Desce	nso pron	nedio del 1	nivel estático po	r año (m/año) =	-1.37

Simbología: No.=numero; Col.=columna; Reg.=renglón; Stp=etapa de simulación, NEs=nivel estático; Under AqS=pozo perdido en el acuífero superior.

Figura 31. Configuración de la superficie piezométrica de los resultados obtenidos con el modelo simulación del escenario 2 con PMWin v. 5.2.

Nota: reproduce las posibles profundidades de los niveles estáticos para el año 2030 (considerando un aumento del 30% de la extracción actual). En la imagen generada, el degradado en azul marino del modelo indica las zonas con un menor efecto de abatimiento. En cambio, las zonas con azul claro presentan el mayor abatimiento. A escala regional, se produce un descenso promedio de -1.37 m/año en los niveles estáticos. *Simbología:* ZR=zonas de recarga; R. Z=río Zahuapan; R. A=río Atoyac; V=presa Valsequillo; Woff=pozo perdido (por debajo del acuífero superior).


Escenario 3: Se estimó que la disminución del 23 % en la extracción regional (~243.32 Mm³/año) a partir del año 2014 permite una recuperación de 0.297 m/año en la profundidad de

los niveles estáticos (Cuadro 11, Figura 32). En la imagen, el degradado del modelo en rojo, representa las zonas menos abatidas, mientras que en amarillo corresponde a los niveles estáticos más abatidos.

Cuadro 11. Niveles estáticos calculados de los 63 pozos simulados (2014-2030).

No.	Col.	Reg.	Stp 1 2014 NEs m	Stp 17 2030 NEs m	Ds NEs m/año	No.	Col.	Reg.	Stp 1 2014 NEs m	Stp 17 2030 NEs m	Ds NEs m/año
1	3	3	2147.035	2182.171	2.067	33	23	32	2114.842	2107.861	-0.411
2	5	5	2171.381	2202.279	1.818	34	27	32	2088.316	2083.745	-0.269
3	41	2	2185.360	2177.157	-0.483	35	38	31	2166.199	2157.899	-0.488
4	32	4	2144.361	2141.851	-0.148	36	43	33	2164.538	2165.274	0.043
5	24	5	2059.897	2125.690	3.870	37	20	34	2236.986	2212.719	-1.427
6	15	5	2129.927	2139.614	0.570	38	26	34	2085.838	2081.146	-0.276
7	14	7	2134.994	2145.000	0.589	39	35	34	2199.769	2179.270	-1.206
8	19	9	2114.999	2118.584	0.211	40	10	36	2174.221	2169.210	-0.295
9	34	8	2165.337	2159.325	-0.354	41	38	35	2112.959	2111.924	-0.061
10	7	10	2224.613	2219.147	-0.322	42	40	37	2072.119	2124.533	3.083
11	26	11	2234.238	2197.031	-2.189	43	37	37	2138.110	2110.275	-1.637
12	32	11	2160.700	2155.538	-0.304	44	33	38	2168.921	2129.139	-2.340
13	2	12	2314.885	2261.551	-3.137	45	24	39	2055.184	2069.692	0.853
14	18	12	2118.141	2122.393	0.250	46	14	38	2068.977	2108.657	2.334
15	30	13	2154.990	2152.743	-0.132	47	37	39	2094.804	2094.594	-0.012
16	19	15	2116.963	2121.322	0.256	48	20	40	2016.370	2103.400	5.119
17	22	16	2119.061	2120.580	0.089	49	26	40	1911.324	2070.413	9.358
18	8	17	2234.583	2229.935	-0.273	50	27	40	2023.921	2046.908	1.352
19	33	18	2182.102	2172.646	-0.556	51	11	41	2098.359	2119.022	1.215
20	15	20	2192.703	2166.850	-1.521	52	25	41	2037.547	2078.543	2.412
21	23	22	2113.049	2115.850	0.165	53	30	41	2026.433	2035.355	0.525
22	31	22	2143.701	2141.421	-0.134	54	34	41	2054.281	2052.164	-0.125
23	12	24	2189.672	2211.242	1.269	55	9	42	2148.081	2124.584	-1.382
24	17	24	2167.731	2147.995	-1.161	56	19	42	2182.280	2144.649	-2.214
25	20	25	2115.163	2120.656	0.323	57	33	42	2004.112	2029.061	1.468
26	6	26	2325.962	2262.964	-3.706	58	9	44	2060.132	2126.215	3.887
27	11	27	2226.783	2221.650	-0.302	59	28	44	2021.463	2041.016	1.150
28	17	27	2148.438	2162.670	0.837	60	36	44	2025.932	2044.052	1.066
29	27	27	2106.936	2103.353	-0.211	61	37	45	2064.226	2063.101	-0.066
30	38	27	2125.889	2167.261	2.434	4 62 31 46 2067.679 2048.792				-1.111	
31	18	29	2131.699	2139.571	0.463	63 63 14 47 2204.584 2170.541					-2.003
32	24	31	2098.470	2096.654	-0.107	De	scenso	promeo	lio del nivel est	ático por año (m/año) =	0.297

Simbología: No.=numero; Col.=columna; Reg.=renglón; Stp=etapa de simulación; NEs=nivel estático

Figura 32 Elevación de la superficie piezométrica al año 2030, resultante del modelo de la simulación en el escenario 3(elaboración propia).

6.4 Proyección de la variación de los niveles estáticos de los pozos con Surface

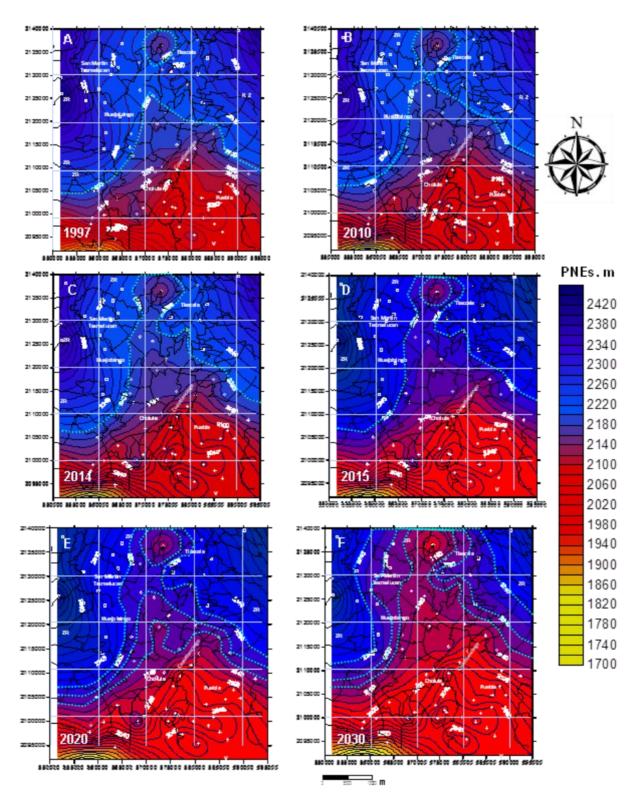
La evolución espacial regional del acuífero, para el periodo 1997 al año 2030, indican una disminución progresiva de los niveles estáticos del acuífero superior (Figura 33, Cuadro 12). En al Figura 33, las imágenes A, B y C corresponden al periodo de 1997 al año 2014 con un descenso de -0.99 m/año. D, E, F es la tendencia de abatimiento con una pérdida de -1.37 m/año al año 2030. Las líneas punteadas en las imágenes representan los frentes de avance en el abatimiento de la superficie piezométrica.

Cuadro 12. Descenso de en los niveles estáticos de 76 pozos, para el periodo 1997 al año 2030.

FID	Iden	Municipio	X UTM	Y UTM	Elev m	ElevMD m	NEs_m	NEs(m) 1997	NEs(m) 2000	NEs(m) 2010	NEs(m) 2014	NEs(m) 2015	NEs(m) 2020	NEs(m) 2030
0	B2-1	San Matías Tlalancaleca	552733	2138185	2387.41	2405.41	50.87	2354.54	2351.57	2341.67	2337.71	2339.08	2345.96	2359.71
1	B3-6	San Salvador El Verde	551609	2129418	2389.92	2407.92	38.20	2369.72	2366.75	2356.85	2352.89	2354.26	2361.14	2374.89
2	B4-1	San Felipe Teotlalcingo	551891	2125903	2452.53	2470.53	32.00	2438.53	2435.56	2425.66	2421.70	2423.07	2429.95	2443.70
3	C3-13	San Martin Texmelucan	556943	2131027	2284.85	2302.85	28.00	2274.85	2271.88	2261.98	2258.02	2259.39	2266.27	2280.02
4	C3-2	San Martin Texmelucan	560036	2126947	2267.36	2285.36	45.48	2239.88	2236.91	2227.01	2223.05	2224.42	2231.30	2245.04
5	C4-22	Chiautzingo	557090	2124600	2341.79	2359.79	45.80	2313.99	2311.02	2301.12	2297.16	2298.53	2305.41	2319.16
6	C5-2	Huejotzingo	560909	2114135	2270.73	2288.73	6.70	2282.03	2279.06	2269.16	2265.20	2266.57	2273.45	2287.20
7	C6-8	Tianguismanalco	559671	2104969	2213.12	2231.12	37.58	2193.54	2190.57	2180.67	2176.71	2178.08	2184.96	2198.71
8	C7-11	Atlixco	558034	2090414	1852.96	1870.96	121.90	1749.06	1746.09	1736.19	1732.23	1733.60	1740.48	1754.23
9	C7-16	Santa Isabel Cholula	558522	2099123	2164.04	2182.04	46.72	2135.32	2132.35	2122.45	2118.49	2119.86	2126.74	2140.49
10 C7-9 Santa Isabel Cholula 558269 2097703 2154.53 2172.53 53.54 2118.99 2116.02 2106.12 2102.16 2103.53											2110.41	2124.16		
11 D3-10 Ixtlacuixtla 568740 2132612 2216.23 2234.23 11.38 2222.85 2219.88 2209.98 2206.02 2207.39												2207.39	2214.27	2228.02
12	D3-14	Tepatitla De Lardizabal	563078	2134459	2242.03	2260.03	20.50	2239.53	2236.56	2226.66	2222.70	2224.07	2230.95	2244.70
13	D3-19	San Martin Texmelucan	562530	2130140	2234.32	2252.32	10.55	2241.77	2238.80	2228.90	2224.94	2226.31	2233.19	2246.94
14	D3-20	Tepatitla De Lardizabal	564120	2131687	2218.42	2236.42	1.58	2234.84	2231.87	2221.97	2218.01	2219.38	2226.26	2240.01
15	D3-3	Ixtlacuixtla	564873	2136864	2233.75	2251.75	14.69	2237.06	2234.09	2224.19	2220.23	2221.60	2228.48	2242.23
16	D4-12	Huejotzingo	561349	2123958	2255.82	2273.82	30.00	2243.82	2240.85	2230.95	2226.99	2228.36	2235.24	2248.99
17	D4-17	Nativitas	568880	2126689	2199.16	2217.16	8.00	2209.16	2206.19	2196.29	2192.33	2193.70	2200.58	2214.33
18	D4-5	Huejotzingo	564459	2121061	2226.62	2244.62	4.40	2240.22	2237.25	2227.35	2223.39	2224.76	2231.64	2245.39
19	D5-10	Juan C. Bonilla	567420	2112540	2215.76	2233.76	38.80	2194.96	2191.99	2182.09	2178.13	2179.50	2186.38	2200.13
											人			J
									$\overline{}$				$\overline{}$	
									A				В	

Simbología: FID=clave de control; Iden=clave de los pozos; X, Y=georreferencia en UTM; Elev=elevación real; ElevMD=elevación en el modelo digital (con un factor de corrección de -18 m con respecto a la elevación real); NEs=niveles estáticos; A=periodo con una reducción de -0.99 m/año; B=periodo con una reducción de -1.37 m/año.

FID	Iden	Municipio	X UTM	Y UTM	Elev m	ElevMD m	NEs_m	NEs(m) 1997	NEs(m) 2000	NEs(m) 2010	NEs(m) 2014	NEs(m) 2015	NEs(m) 2020	NEs(m) 2030
20	D5-13	Juan C. Bonilla	566711	2114392	2218.55	2236.55	30.67	2205.88	2202.91	2193.01	2189.05	2190.42	2197.30	2211.05
21	D5-17	Tlaltenango	566893	2117373	2222.83	2240.83	28.00	2212.83	2209.86	2199.96	2196.00	2197.37	2204.25	2218.00
22	D5-4	Huejotzingo	561570	2117483	2277.25	2295.25	23.05	2272.20	2269.23	2259.33	2255.37	2256.74	2263.62	2277.37
23	D6-12	San Jerónimo Tecuanipan	564006	2103288	2145.07	2163.07	41.68	2121.39	2118.42	2108.52	2104.56	2105.93	2112.81	2126.56
24	D6-56	San Pedro Cholula	569894	2106923	2157.43	2175.43	32.87	2142.56	2139.59	2129.69	2125.73	2127.10	2133.98	2147.73
25	D7-1	Atlixco	563499	2094642	1958.23	1976.23	21.00	1955.23	1952.26	1942.36	1938.40	1939.77	1946.65	1960.40
26	D7-3	Ocoyucan	568166	2099888	2197.26	2215.26	40.00	2175.26	2172.29	2162.39	2158.43	2159.80	2166.68	2180.43
27	D7-5	Tianguismanalco	561127	2099862	2135.75	2153.75	45.10	2108.65	2105.68	2095.78	2091.82	2093.19	2100.07	2113.82
28	E3-11	Tlaxcala	576074	2133529	2213.71	2231.71	10.12	2221.59	2218.62	2208.72	2204.76	2206.13	2213.01	2226.76
29	E3-16	San Damián Texoloc	575489	2130804	2260.88	2278.88	9.80	2269.08	2266.11	2256.21	2252.25	2253.62	2260.50	2274.25
30	E3-18	San Damián Texoloc	573613	2131243	2200.88	2218.88	2.10	2216.78	2213.81	2203.91	2199.95	2201.32	2208.20	2221.95
31	E3-6	Panotla	573486	2136478	2212.73	2230.73	77.87	2152.86	2149.89	2139.99	2136.03	2137.40	2144.28	2158.03
32	E4-14	Nativitas	571610	2125628	2188.26	2206.26	7.52	2198.74	2195.77	2185.87	2181.91	2183.28	2190.16	2203.91
33	E4-22	San Juan Huactzingo	579079	2128007	2223.20	2241.20	30.00	2211.20	2208.23	2198.33	2194.37	2195.74	2202.62	2216.37
34	E4-5	Zacatelco	574535	2121927	2181.00	2199.00	0.45	2198.55	2195.58	2185.68	2181.72	2183.09	2189.97	2203.72
35	E5-10	San Miguel Xoxtla	572610	2119451	2188.54	2206.54	31.78	2174.76	2171.79	2161.89	2157.93	2159.30	2166.18	2179.93
36	E5-14	Coronango	576779	2114981	2185.07	2203.07	8.00	2195.07	2192.10	2182.20	2178.24	2179.61	2186.49	2200.24
37	E5-15	Cuautlancingo	579122	2111616	2131.98	2149.98	25.00	2124.98	2122.01	2112.11	2108.15	2109.52	2116.40	2130.15
38	E5-6	San Pedro Cholula	573613	2110081	2152.79	2170.79	10.50	2160.29	2157.32	2147.42	2143.46	2144.83	2151.71	2165.46
39	E6-14	San Gregorio Atzompa	569554	2101177	2145.30	2163.30	40.00	2123.30	2120.33	2110.43	2106.47	2107.84	2114.72	2128.47
40	E6-17	San Pedro Cholula	575462	2107116	2121.48	2139.48	41.10	2098.38	2095.41	2085.51	2081.55	2082.92	2089.80	2103.55
41	E6-36	San Pedro Cholula	572099	2109021	2151.98	2169.98	23.00	2146.98	2144.01	2134.11	2130.15	2131.52	2138.40	2152.15
42	E6-51	San Andrés Cholula	573985	2102570	2130.91	2148.91	58.00	2090.91	2087.94	2078.04	2074.08	2075.45	2082.33	2096.08
43	E6-52	San Andrés Cholula	575879	2101544	2119.79	2137.79	133.55	2004.24	2001.27	1991.37	1987.41	1988.78	1995.66	2009.41
44	E6-6	San Pedro Cholula	576889	2109414	2123.42	2141.42	74.00	2067.42	2064.45	2054.55	2050.59	2051.96	2058.84	2072.59
45	E7-14	San Andrés Cholula	576475	2101220	2110.14	2128.14	82.56	2045.58	2042.61	2032.71	2028.75	2030.12	2037.00	2050.75
46	E7-4	Puebla	577291	2097178	2088.54	2106.54	5.60	2100.94	2097.97	2088.07	2084.11	2085.48	2092.36	2106.11
47	E7-9	San Andrés Cholula	574491	2099913	2095.16	2113.16	85.74	2027.42	2024.45	2014.55	2010.59	2011.96	2018.84	2032.59
48	F2-1	Yauhquemecan	584449	2145276	2423.45	2441.45	65.00	2376.45	2373.48	2363.58	2359.62	2360.99	2367.87	2381.62
49	F3-1	Totolac	581323	2137749	2235.13	2253.13	21.09	2232.04	2229.07	2219.17	2215.21	2216.58	2223.46	2237.21
50	F3-10	La Magdalena Tlaltelulco	583382	2133670	2281.05	2299.05	45.28	2253.77	2250.80	2240.90	2236.94	2238.31	2245.19	2258.94
51	F3-16	Tepeyanco	581607	2130249	2291.89	2309.89	54.00	2255.89	2252.92	2243.02	2239.06	2240.43	2247.31	2261.06
52	F4-2	Xicohtzinco	580202	2119805	2185.82	2203.82	7.50	2196.32	2193.35	2183.45	2179.49	2180.86	2187.74	2201.49
53	F4-50	Santa Cruz Quilehtla	582490	2123976	2254.76	2272.76	29.87	2242.89	2239.92	2230.02	2226.06	2227.43	2234.31	2248.06
54	F5-25	Tenancingo	584793	2117364	2270.52	2288.52	111.25	2177.27	2174.30	2164.40	2160.44	2161.81	2168.69	2182.44
55	F5-33	San Pablo Del Monte	587198	2114161	2285.86	2303.86	98.20	2205.66	2202.69	2192.79	2188.83	2190.20	2197.08	2210.83
56	F5-37	Cuautlancingo	580800	2114009	2138.59	2156.59	10.00	2146.59	2143.62	2133.72	2129.76	2131.13	2138.01	2151.76
									Á				В	


Simbología: FID=clave de control; Iden=clave de los pozos; X, Y=georreferencia en UTM; Elev=elevación real; ElevMD=elevación en el modelo digital (con un factor de corrección de -18 m con respecto a la elevación real); NEs=niveles estáticos; A= periodo con una reducción de -0.99 m/año; B=periodo con una reducción de -1.37 m/año.

FID	Iden	Municipio	X UTM	Y UTM	Elev m	ElevMD m	NEs_m	NEs(m) 1997	NEs(m) 2000	NEs(m) 2010	NEs(m) 2014	NEs(m) 2015	NEs(m) 2020	NEs(m) 2030
57	F6-13	Puebla	587813	2106519	2161.95	2179.95	90.03	2089.92	2086.95	2077.05	2073.09	2074.46	2081.34	2095.09
58	F6-21	Puebla	586219	2104623	2144.25	2162.25	57.00	2105.25	2102.28	2092.38	2088.42	2089.79	2096.67	2110.42
59	F6-35	Puebla	582233	2103561	2104.40	2122.40	25.00	2097.40	2094.43	2084.53	2080.57	2081.94	2088.82	2102.57
60	F6-38	Puebla	586132	2102205	2119.26	2137.26	81.00	2056.26	2053.29	2043.39	2039.43	2040.80	2047.68	2061.43
61	F7-20	Puebla	585031	2097786	2075.31	2093.31	47.30	2046.01	2043.04	2033.14	2029.18	2030.55	2037.43	2051.18
62	F7-4	Puebla	586674	2096119	2052.50	2070.50	4.00	2066.50	2063.53	2053.63	2049.67	2051.04	2057.92	2071.67
63	F7-57	Puebla	580669	2095406	2096.59	2114.59	2.80	2111.79	2108.82	2098.92	2094.96	2096.33	2103.21	2116.96
64	F7-80	Puebla	582618	2099036	2110.23	2128.23	95.14	2033.09	2030.12	2020.22	2016.26	2017.63	2024.51	2038.26
65	F7-85	Puebla	579597	2099994	2107.36	2125.36	88.70	2036.66	2033.69	2023.79	2019.83	2021.20	2028.08	2041.83
66	F7-88	Puebla	583703	2100869	2119.77	2137.77	92.35	2045.42	2042.45	2032.55	2028.59	2029.96	2036.84	2050.59
67	G2-12	Tzonpantepec	594860	2142945	2427.26	2445.26	49.10	2396.16	2393.19	2383.29	2379.33	2380.70	2387.58	2401.33
68	G2-18	Santa Cruz Tlaxcala	590117	2139608	2344.03	2362.03	37.68	2324.35	2321.38	2311.48	2307.52	2308.89	2315.77	2329.52
69	G2-4	Apizaco	595078	2146709	2414.00	2432.00	150.00	2282.00	2279.03	2269.13	2265.17	2266.54	2273.42	2287.17
70	G2-7	Apizaco	591199	2145131	2412.63	2430.63	19.83	2410.80	2407.83	2397.93	2393.97	2395.34	2402.22	2415.97
71	G6-1	Puebla	588160	2109938	2228.63	2246.63	85.95	2160.68	2157.71	2147.81	2143.85	2145.22	2152.10	2165.85
72	G6-10	Puebla	592293	2108743	2261.01	2279.01	102.41	2176.60	2173.63	2163.73	2159.77	2161.14	2168.02	2181.77
73	G6-35	Puebla	589267	2104714	2181.83	2199.83	103.30	2096.53	2093.56	2083.66	2079.70	2081.07	2087.95	2101.70
74	H2-2	Tzompantepec	597683	2143747	2467.71	2485.71	88.00	2397.71	2394.74	2384.84	2380.88	2382.25	2389.13	2402.88
75	H2-7	Cuaxomulco	598077	2139890	2547.27	2565.27	135.47	2429.80	2426.83	2416.93	2412.97	2414.34	2421.22	2434.97
76	H2-9	Xaloztoc	600152	2147054	2470.43	2488.43	60.23	2428.20	2425.23	2415.33	2411.37	2412.74	2419.62	2433.37

Simbología: FID=clave de control; Iden=clave de los pozos; Mpio=municipio; X, Y=georeferencia en UTM; Elev=elevación real; ElevMD=elevación en el modelo digital (con un factor de corrección de -18 m con respecto a la elevación real); NEs= niveles estáticos; A=periodo con una reducción de -0.99 m/año; B=periodo con una reducción de -1.37 m/año.

Α

В

Figura 33. Evolución de los niveles estáticos de 1997 al año 2030 (elaboración propia). *Simbologia:* PNEs=niveles estáticos promedio.

CAPÍTULO7. DISCUSIÓN DE RESULTADOS

7.1 Efectos del cambio del uso de suelo sobre la recarga del acuífero

Al comparar la evolución histórica de la recarga en las HRUs agrícola, forestal y urbano-industrial, se observa que el efecto en la reducción de la superficie forestal generó una pérdida de ~148.257 hm³/año de 1979 al año 2014. En cambio, aunque el área urbano-industrial incrementó en ~662.5%, durante el mismo periodo de tiempo, la recarga calculada a este crecimiento solo se incrementó en ~39.663 hm³/año. De la información obtenida en la clasificación no supervisada, se calcula que la superficie agrícola presenta la recarga más alta sobre la cuenca y es la superficie que cubre la mayor extensión del área modelada desde 1989. En las HRUs forestales, se observa que las superficies agrícolas tampoco han sufrido cambios drásticos en su expansión o decremento durante este periodo de tiempo. Al ser las HRUs agrícolas las de mayor superficie, en esta área se cuantificó el mayor aporte de recarga dentro del área de estudio, ~67.169 hm³/año para el 2014.

Análogamente a dicha expansión urbana, se ha experimentado un incremento en la demanda de agua, para satisfacer los requerimientos del vital líquido por parte del sector urbano – industrial, derivando en la perforación de más pozos y por ende incrementando la extracción sobre el acuífero superior (*e.g.*, proyecto Nealtícan, Xoxtla–Barranca Honda, proyecto Angelópolis). En la última década, entre algunos académicos y autoridades, se ha señalado al sector agrícola y rural de la cuenca de Puebla, como el principal depredador del sistema acuífero Valle de Puebla-Alto Atoyac, propiciando la pérdida de zonas de recarga. Sin embargo, los resultados obtenidos de la presente investigación de las HRUs no coinciden con estos señalamientos. La superficie de recarga natural actualmente con mayor impacto sobre el sistema acuífero superior del Valle de Puebla-Alto Atoyac, se encuentra a partir de ~3516 msnm y se asocia directamente con la zona forestal, pero también se ha documentado que el nivel freático esta al menos 1000 m por debajo de esta altura (Salcedo-Sánchez *et al.*, 2013; IGH S. A., 2012; Gárfias *et al.*, 2009; Velázquez, 2007; Flores-Márquez *et al.*, 2006; Jiménez, 2005; Geotecnología S. A., 1997).

En virtud de lo anterior es válido asumir, razonablemente, que la principal causa en la disminución de las zonas de recarga natural al interior de la cuenca, del acuífero superior del Valle de Puebla-Alto Atoyac proviene principalmente del cambio del uso de suelo de agrícola o forestal a uso urbano-industrial. Ligado a la progresiva, desordenada y mal planificada expansión urbana (experimentada durante los últimos 20 años), siendo la principal causante en la pérdida de zonas forestales. Esto ha obligado a las zonas agrícolas a desplazarse a terrenos de laderas volcánicas cada vez más altos, o bien ha reemplazado directamente la superficie forestal por área urbano-industrial.

7.2 Evolución de los niveles estáticos a partir de la simulación hidrológica

La profundidad de los niveles estáticos y dinámicos histórica obtenida de los trabajos del archivo técnico de CONAGUA (1979, 1982, 1989, 1991, 1994, 1997, y 2012; Anexo C), permite observar claramente un abatimiento progresivo de la superficie piezométrica y una sobre-explotación del acuífero superior cada vez más intensa sobre el sistema acuífero del Valle de Puebla-Alto Atoyac. De acuerdo con Flores-Márquez *et al.* (2006) de 1973 al año 2002 el acuífero superior tuvo una pérdida de -80 m, y estimaron del año 2002 al 2010 un descenso de -15 m más. Los resultados obtenidos en esta investigación en la simulación planteada en el escenario 1, permiten calcular un abatimiento de -13.86 m al año 2010, lo cual es congruente con lo estimado por Flores-Márquez *et al.* (2006). Bajo esta tendencia, en el escenario 1, se calcula que para el año 2017 se tendría una disminución promedio de -0.99 m/año en los niveles estáticos, equivalente a un descenso, de -17.82 m para el año 2014 y de -20.79 m para el año 2017.

Sin embargo, la empresa IGH S. C. (2012) estimó un abatimiento acumulado de -3.44 m en 8 años para el periodo del 2002 al año 2010. Calculando una disminución promedio de los niveles estáticos de - 0.43 m/año. Este trabajo verificó 1200 pozos que georreferenció de manera clara, además de integrar la información disponible del SIAP del año 2000. La diferencia en los resultados obtenidos en esta investigación y otras anteriores (Salcedo-Sánchez *et al.*, 2013; Flores-Márquez *et al.*, 2006) puede deberse principalmente a que la empresa IGH S.C. (2012 solo evaluó el acuífero del Valle de Puebla en una superficie

de 1445.5 Km²; sin embargo, en palabras textuales del mismo informe menciona que: "es deseable que este acuífero se estudie y maneje de manera conjunta con el acuífero Alto Atoyac por ser un mismo sistema, así como las acciones a implementar para su control y manejo se hagan de forma conjunta". Una segunda explicación posible es que la empresa consideró precipitaciones hipotéticas asociadas a las zonas altas de la sierra nevada, que alcanzan los 1,350 mm/año. La tercera explicación podría estar fundamentada en que IGH S.C. calculó el abatimiento de los niveles estáticos a partir de un balance hidroclimático y su balance hídrico, pero no utilizó ningún modelo de simulación, como en el presente trabajo.

Por lo tanto se asume, razonablemente, que los resultados obtenidos en esta investigación para la simulación del escenario 1 son congruentes para poder evaluar posibles escenarios futuros (escenarios 2 y 3).

7.3 Simulación de escenarios futuros

En el escenario 2, aumentando la extracción un 30 % a partir del año 2014 al año 2030, se obtuvo un abatimiento de 41.1 m sobre la superficie piezométrica. Al aplicar sobre los niveles estáticos de 76 pozos (63 de ellos simulados en este escenario) un descenso promedio de -0.99 m /año (para el periodo de 1997 al año 2014), y después acentuándose la disminución a -1.37 m /año (del año 2014 al año 2030), el comportamiento de las isolineas en el sistema acuífero del Valle de Puebla-Alto Atoyac, revelan claramente tendencia de abatimiento, que avanza de la zona urbano-industrial (con mayor población) a las zonas agrícolas y forestales, es decir, de la porción sur - sureste del área de estudio hacia el nor- noreste (Cuadro 12 y Figura 33). Bajo estas condiciones simuladas, el nivel de sobreexplotación sobre el sistema el acuífero del Valle de Puebla-Alto Atoyac es aún más severo que el registrado hasta el momento en la documentación técnica de CONAGUA durante el último censo de pozos (2010). Ante estas condiciones de abatimiento es inevitable la invasión más severa de aguas sulfurosas, ricas en sulfato y CO₂, sobre el acuífero superior (Flores-Márquez *et al.*, 2006), causando su pérdida parcial como abastecedor de agua de buena calidad en forma progresiva hasta contaminarse totalmente, impidiendo su uso sin un tratamiento previo.

Por otra parte, al comparar los resultados entre las simulaciones de los escenarios 1 y 3, aplicando una reducción a escala regional del 23 % en la extracción por bombeo (equivalente a una extracción de ~243.32 Mm³.) a partir del año 2014 al año 2030, genera un aumento promedio de 0.297 m /año en los niveles estáticos del acuífero superior, que logra una recuperación gradual de 5.049 m en los niveles estáticos para el año 2030. Bajo esta tendencia de extracción simulada, se obtiene una contracción en el abatimiento de la superficie piezométrica, que avanza de las zonas menos pobladas (ubicadas al nor-noreste del área de estudio), pero con efectos mínimos hacia la zona urbano-industrial (al sur sureste del área de estudio). Sin embargo, tal escenario genera la posibilidad de una recuperación parcial de los niveles estáticos a escala regional en el sistema acuífero del Valle de Puebla-Alto Atoyac.

Salcedo-Sánchez *et al.* (2013) proponen aplicar el 30% de la disminución en la extracción en pozos dentro del polígono del municipio de la ciudad de Puebla, a fin de favorecer la recuperación parcial de esa zona en el acuífero y mitigar el ascenso de aguas sulfurosas. Los resultados obtenidos en el escenario 3 simulado son congruentes, con la tendencia de recuperación planteada por Salcedo-Sánchez *et al.* (2013). Sin embargo el sistema acuífero del Valle de Puebla-Alto Atoyac presenta características geológicas heterogéneas (aún motivo de estudio y discusión) en su distribución espacial tanto superficialmente como a profundidad, por lo tanto el adoptar solo como medida mitigante y de recuperación la disminución en la extracción por bombeo, representaría una recuperación parcial de la superficie piezométrica regionalmente.

La sobrexplotación existente y futura simulada en los escenarios de esta investigación, y presentada en otros trabajos (Salcedo-Sánchez *et al.*, 2013; Flores-Márquez *et al.*, 2006; Geotecnología S.A., 1997), debe frenarse con alternativas que permitan favorecer el manejo sustentable del sistema acuífero Valle de Puebla-Alto Atoyac. Para ello no bastará con implementar las clásicas soluciones de tratamiento y reutilización de aguas, que por lo general tienen como objetivo principal centrarse en las áreas de producción agrícola. Si bien hoy en día es motivo de debate entre legisladores, científicos y sociedad civil, el determinar cuál es la política que debe adoptarse para el manejo sustentable del agua subterránea del sistema acuífero del Valle de Puebla-Alto Atoyac, antes de emprender la toma de decisiones

relacionadas con la gestión sustentable del acuífero, éstas deben apoyarse en estudios más profundos del funcionamiento del acuífero (en todas sus dimensiones). Por otra parte, deben evitarse tomarse decisiones que eviten favorecer a las zonas agrícolas dentro del sistema acuífero del Valle de Puebla-Alto Atoyac, o condene su desarrollo (sobre todo cuando se habla tanto de sustentabilidad como de seguridad alimentaria).

De acuerdo con Zentina *et al.* (2013), considerando que el principal uso del agua en México es agrícola (FAO, 2006), el problema radica en que la mayoría de esfuerzos de productores, gobierno y científicos, está enfocada en promover el uso eficiente del agua de riego, sin fomentar el uso óptimo en zonas donde hay escases e implementar tecnologías alternativas sustentables. Si se consideran los resultados de la simulación de escenarios obtenidos en esta investigación (escenarios 1, 2 y 3), es clara la urgencia de explorar de manera inmediata los desarrollos tecnológicos y adaptaciones estructurales alternativos dentro de las unidades de producción, bajo el desarrollo de una estrategia que considere tecnologías de gran visión a escala local y regional al interior de la cuenca de Puebla. Ya que la variable incremento de la población y necesidad alimentaria es variable y dinámica en espacio-tiempo (Turrent y Cortes, 2004; Turrent y Moreno, 1998), pero que en el área de estudio del sistema acuífero del Valle de Puebla-Alto Atoyac, tanto la zona urbano-industrial como su población presentan una clara tendencia de crecimiento.

De emprender un aumento en la extracción similar al escenario 2, el acuífero difícilmente, en condiciones reales, soportará esta sobrexplotación hasta el año 2030. Si se considera el escenario 3, (o cualquier otra reducción propuesta en la extracción) sin acciones complementarias, no se puede garantizar una verdadera recuperación del sistema acuífero. Ante estas condiciones de manejo y sobreexplotación del acuífero superior se requiere en el contexto social adoptar una verdadera cultura-ambiental, ya que el hecho de que un recurso se agote o no (sea renovable o no renovable) no es una condición de la naturaleza, sino de las acciones antropogénicas sobre él (Mastrangelo, 2009). Ante estos posibles escenarios futuros, se debe adquirir una visión integral en donde es crucial construir una visión compartida del problema, donde la dimensión humana es el actor principal (Pahl-Wostl, 2007). Pero cuya gestión en la toma de decisiones relacionadas con la sustentabilidad no merme otros aspectos

de la naturaleza, y menos aún genere más conflictos sociales.

CAPITULO 8. CONCLUSIONES Y RECOMENDACIONES

8.1 Conclusiones

La evaluación del recurso hídrico, combinando los modelos SWAT-MODFLOW, permitió incorporar el efecto del cambio de uso del suelo espacio temporal, de agrícola o forestal a uso urbano-industrial, sobre el sistema acuífero del Valle de Puebla-Alto Atoyac. A partir del análisis de cambio de uso del suelo, la delimitación de unidades hidrológicas de respuesta (HRUs) y de la estimación de recargas se concluye que:

- 1) La superficie forestal se redujo severamente durante las últimas dos décadas a ~286.404 km² en marzo de 2014, afectando la recarga natural del acuífero superior.
- 2) La superficie urbano-industrial se incrementó drásticamente de 1979 al año 2014. Esto es paralelo al aumento de la población al interior de la cuenca de Puebla, así como al continuo descenso de la superficie piezométrica.
- 3) Las unidades hidrológicas (HRUs) con cubierta forestal contribuyen de manera importante en la recarga del sistema acuífero del Valle de Puebla–Alto Atoyac.

De la evaluación de la superficie piezométrica en los escenarios simulados con MODFLOW-PMWin v. 5.2, en flujo transiente, considerando las recargas distribuidas obtenidas de las HRUs (con Arc-SWAT), se concluyó que:

- 1) La tendencia de explotación del acuífero de los últimos 30 años indica un descenso continuo en los niveles estáticos del sistema acuífero del Valle de Puebla-Alto Atoyac, con un descenso promedio en los niveles estáticos de -0.99 m/año.
- 2) Un manejo del acuífero basado en la satisfacción de la demanda creciente de agua de la población del Valle de Puebla, con un incremento del 30 % en la extracción de pozos, causará que los niveles estáticos desciendan -23.29 m para el año de 2030. Generando un abatimiento

definitivo de al menos 5 de los 63 pozos simulados.

3) Un manejo del acuífero que considere una disminución del 23% en la extracción, para la recuperación del acuífero, generaría una recuperación progresiva en el acuífero superior de ~0.297 m/año, equivalente a 5.049 m para el año 2030.

8.2 Recomendaciones

Para realizar la adecuada validación y calibración del modelo se requiere aumentar la calidad (resolución) de las imágenes satelitales para la construcción de las HRUs, refinar ampliamente las dimensiones del *grid*, e incorporar el efecto del sistema de fallas en el modelo de forma más precisa.

En futuros trabajos al evaluar el sistema acuífero del Valle de Puebla-Alto Atoyac se sugiere considerar los modelos de flujo turbulento, flujo en medio fracturado y de flujo turbulento en medio fracturado, considerando las variaciones del gradiente geotérmico existente, la presencia de aguas sulfurosas documentadas por Flores-Márquez *et al.* (2006) y Jiménez (2005), y la interacción de las 9 clases de aguas determinadas por Velázquez (2007).

En futuras investigaciones que se busque evaluar algún acuífero subterráneo se recomienda el uso de modelos integrados, ya sea SWAT-MODFLOW u otros. Ya que son una poderosa herramienta para la evaluación del recurso agua dentro de una cuenca al interactuar con las técnicas de percepción remota y los sistemas de información geográfica, que hoy permiten un diagnóstico más eficiente, cuantitativo y real.

Se sugiere a las autoridades correspondientes, vigilar y documentar detalladamente la perforación de pozos, el monitoreo y medición de los niveles estáticos y dinámicos. Así como evitar drásticamente el cambio en la nomenclatura de los pozos en la documentación técnica. También es necesario mantener el monitoreo de los niveles estáticos y dinámicos al menos una vez por año, y rescatar la información histórica digitalmente para consultas futuras.

Es crucial mejorar ampliamente el conocimiento de la geología estructural, así como de asignar formalmente la estratigrafía correspondiente a escala local. Ya que el conocer y mejorar el conocimiento de la recarga distribuida en las HRUs, no es suficiente para determinar fehacientemente la adecuada tasa de recarga en el agua subterránea. De no conocerse las características geológicas estructurales en forma más detallada, y su relación a profundidad con el acuífero superior y medio, es muy difícil que cualquier escenario planteado para disminuir el abatimiento del acuífero superior del sistema acuífero del Valle de Puebla-Alto Atoyac sea 100 % eficiente.

Se recomienda que se considere promover el establecimiento del sistema de milpa intercalada con árboles frutales (MIAF) en las áreas de uso agrícola para el mantenimiento del servicio ambiental de recarga hídrica.

CAPÍTULO 9. LITERATURA CITADA

Agrogeología S.A. 1973. Estudio geohidrológico preliminar de los Valles de Puebla (Alto Atoyac) y Zahuapan (Alto Atoyac) en el estado de Tlaxcala.

Agrogeología S.A. 1975. Servicios de prospección y levantamientos geológicos y geofísicos en los estados de Puebla y Tlaxcala.

Alaniz-Álvarez, S. A. y A. F. Nieto-Samaniego. 2005. El sistema de fallas Taxco-San Miguel de Allende y la Faja Volcánica Transmexicana, dos fronteras tectónicas del centro de México activas durante el Cenozoico. Boletín de la Sociedad Geológica Mexicana LVII(1): 65-82.

Ali, S., N. C. Ghosh, R. Singh, and B. K. Sethy. 2013. Generalized explicit models for estimation of wetting front length and potential recharge. Water Resour Manage 27: 2429-2445.

Alwis, D. A., Z. M. Easton, H. E. Dahlke, W. D. Philpot, and T. S. Steenhuis. 2007. Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol. Earth System. Sci. 11: 1609-1620.

Anderson, M.P. and W.W. Woessner. 1992. Applied Groundwater Modeling—Simulation of Flow and Advective Transport. Academic Press, San Diego. 381 p.

Arnold, J. G., M. D. Bircket, J. R. Williams, W. F. Smith, and H. N. McGill. 1987. Modeling the effects of urbanization on basin water yield and reservoir sedimentation. Water Resources Bulletin 23(6): 1101-1107.

Barona Díaz, E. 2006. Tecnologías de construcción de vivienda en Puebla. Secretaria de Desarrollo Urbano y Obras Públicas de Puebla. 283 p.

Barnett, B., L. R. Townley, V. Post, R.E. Evans, R. J. Hunt, L. Peeters, S. Richardson, A. D. Werner, A. Knapton, and A. Boronkay. 2012. Australian groundwater modelling guidelines. Waterlines report, National Water Commission, Canberra. 191 p.

Birdie, T.R., J.B. Blainey, D.A. Munch, J. Davis, P. Burger and C. Huang. 2010. Computer model

simulations to predict impacts of groundwater withdrawal in 2011 and 2030 Flagler County, Florida. Special Publication SJ2010-SP7. 206 p.

Biswa, D., D. Willis, and K. Rainwater. 2013. An interdisciplinary regional groundwater model: a study of the Ogallala in the Texas High Plain. Regional Science Policy and Practice 5(1): 113-133.

Bokar, H., A. Mariko, F. Bamba, D. Diallo, B. Kamagaté, A. Dao, O. Soumare, and P. Kassogue. 2012. Impact of climate variability on groundwater resources in Kolondieba catchment basin, sudanese climate zone in Mali. International Journal of Engineering Research and Applications 2(5):1201-1210.

Brunner, P., C. T. Simmons, P. G. Cook, and R. Therrien. 2010. Modeling surface water-groundwater interaction with MODFLOW: some considerations. Ground Water 48(2): 174-180.

CALOMEL S.A. de CV. 1994a. Estudio geohidrológico del proyecto Nealtican Puebla. SOAPAP. Puebla, México.

CALOMEL S.A.DE C.V. 1994b. SOAPAP. Ampliación del estudio geohidrológico básico del proyecto Nealtican Puebla.

Campa, M.F. and P. J. Coney. 1983, Tectonostratigraphic terranes and mineral resource distribution in Mexico. Canadian Journal of Earth Sciences 20: 1040-1051.

Cherkauer, D.S. and S. A. Ansari. 2005. Estimating ground water recharge from topography, hydrogeology and land cover. Ground Water 43(1): 102-112.

CONABIO. 2014. Cartas temáticas de tipo de suelos, ríos, cuencas y climas. http://www.conabio.gob.mx/informacion/gis/ Consultado: julio de 2014

CONAGUA. 1994. Estudio geohidrológico básico del proyecto Nealtican. Puebla, México.

CONAGUA 1994. Manual para evaluar recursos hidráulicos subterráneos. Impreso por Hidrolegro S. C.; México D. F.

CONAGUA. 2004. Zonas de reserva de agua potable para la Ciudad de Puebla, Puebla. Gerencia de

Aguas Subterráneas, Subgerencia de Evaluación y Modelación Hidrogeológica.

CONAGUA. 2010. Sistema nacional de información sobre cantidad, calidad, usos y conservación del agua (SINA). Comisión Nacional del Agua. México.

CONAPO. 2012. Estimaciones y proyecciones de la población por entidad federativa. http://www.conapo.gob.mx/es/CONAPO/Proyecciones Datos Consultado: enero de 2014.

Conrad J. J., Nel Jaco, and J. Wentzel. 2004. The challenges and implications of assessing groundwater recharge: a case study – northern Sandveld, Western Cape, South Africa. Water SA 30(5): 75-81.

Cotler, H. 2004. El manejo integral de cuencas en México: estudios y reflexiones para orientar la política ambiental. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología. 264 p.

Custodio, E., y M. R. Llamas. 1983. Hidrología Subterránea. Tomo II. Ed. Omega. Barcelona España. 2359 p.

Custodio, E. y M. R. Llamas. 2001. Hidrología Subterránea, Ediciones Omega. 2ª edición. Barcelona, España. 556 p.

Chávez, G. R. 1987. Geohidrología. Departamento de Irrigación, Universidad Autónoma Chapingo. Chapingo, México. 170 p.

Cho, J., V. A. Barone, and S. Mostaghimi. 2009. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agricultural Water Management 9(6): 1-11.

Chung, I.-M., N.-W. Kim, J. Lee, and M. Sophocleous. 2010. Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeology Journal 18: 1253-1264.

Di Luzio, M., R. Srinivasan, J. G. Arnold, and S. L. Neitsch. 2002. ArcView interface for SWAT 2000. User's Guide. 345 p.

Domínguez A., A., J.L. Oropeza M., E. Palacios V. y J. Garfias S. 2005. Estudio de respuesta hidrodinámica simulada en el acuífero del valle de Acambay. Agrociencia 39(3): 247-258.

Eguiluz de A., S., M. Aranda G. y R. Marrett. 2000. Tectónica de la Sierra Madre Oriental. Boletín de la Sociedad Geológica Mexicana LIII: 1-26.

Estrada R., O. A. 2009. Modelación acoplada de aguas superficiales y subterráneas para la gestión conjunta del recurso hídrico. Tesis de Maestría, Escuela de Geociencias y Medio Ambiente. Facultad de Minas Universidad Nacional de Colombia, Sede Medellín. 83 p.

EXYCO, S.A. 1990. Estudio de actualización geohidrológica del Acuífero del Valle de Puebla.

EXYCO, S.A. 1994. Estudio de caracterización hidrogeoquimica de seis de los principales acuíferos del país.

FAO. 2006. Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. No. 56, Roma. ftp://ftp.fao.org/agl/aglw/docs/idp56s.pdf

Farías S., M. y R. Núñez C. 2005. Manual Laboratorio de Percepción Remota Software Idrisi. Universidad Católica de Chile. 42 p.

Fenseke, J. P., S.A. Lake, and D.E. Prudic. 1996. Documentation of a computer program (RES 1) to simulate leakage from reservoirs using modular finite difference ground-water flow model (MODFLOW). U. S. Geological Survey. Tucson Arizona. 51 p.

Ferrari, L., M. Valencia-Moreno y S. Bryan S. 2005. Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica. Boletín de la Sociedad Geológica Mexicana. 57(3): 343-378.

Ferrari, L., T. Tagami, M. Eguchi, M. T. Orozco-Esquivel, C. M. Petrone, J. Jacobo-Albarrán, and M. López-Martínez. 2005. Geology, geochronology and tectonic setting of late Cenozoic volcanism along the Southwestern Gulf of Mexico: The eastern alkaline province revised. Journal of Volcanology and Geothermal Research 146: 284-306.

Ferrari, L., Mena, M., López-Martínez, M., Jacobo-Albarrán, J., Silva Romo, G., Mendoza-Rosales, C. C., González-Cervantes, N. 2002. Estratigrafía y tectónica de la cuenca de la Ciudad de México y áreas colindantes. Geos 22(2): 150.

Feyen, J. 2011, Modelación de la respuesta hidrológica al cambio climático y uso del suelo: avances y desafíos. X Congreso Nacional de Hidráulica y II de Manejo de Recursos Hídricos. Loja, Ecuador, 15 de noviembre de 2011.

Flores-Márquez, E. L., G. Jiménez-Suárez, R. G. Martínez-Serrano, R. E. Chávez, and D. Silva-Pérez. 2006. Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeology Journal 14: 1216-1230.

Fretz T. A., D. R. Keeney, and S. B. Sterret. 1993. Sustainability: defining the new paradigm. Hort Tecnology 3(2): 118-126.

Garduño-Monroy, V. H, R. Pérez-López, I. Israde-Alcantara I, M. A. Rodríguez-Pascua, E. Szynkaruk, V. M. Hernández-Madrigal, M. L. García-Zepeda, P. Corona-Chávez, M. Ostroumov, V. H. Medina-Vega, G. García-Estrada, O. Carranza, and E. López-Granados. 2009. Paleoseismology of the southwestern Morelia-Acambay fault system, central Mexico. Geofísica Internacional 48 (3): 319-335.

Gárfias, J., N. Arroyo, and R. Aravena. 2010. Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, México. Environ Earth Sci. 59: 1789-1805.

GEOCALLI S.A. 1982. 1982. Estudio geohidrológico preliminar de la zona Atencingo-Atlixco Puebla. Secretaria de Agricultura y Recursos Hidráulicos.

Geotecnología S. A. 1997. Actualización del estudio geohidrológico de los acuíferos del Valle de Puebla.

GIDAHATARI. 2012. Manual de Modelamiento Numérico con MODFLOW. Gestión de los recursos hídricos. 113 p.

Gómez-Tuena, A., M. T. Orozco-Esquive y L. Ferrari. 2005. Petrogénesis ígnea de la Faja Volcánica Transmexicana. Boletín de la Sociedad Geológica Mexicana LVII(3): 227-283.

Hanson, R. T., W. Schmid, C. C. Faunt, and B. Lockwood. 2010. Simulation and analysis of conjunctive use with MODFLOW's farm process. Ground Water 48(5): 674–689.

Harrie-Jan, H. F. 2009. The impact of climate change on groundwater resources. International Journal of Climate Change Strategies and Management 3: 241-254.

Hasmadi I. M., H.Z. Pakhriazad, and M. F. Shahrin. 2009. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Malaysian Journal of Society and Space 5(1): 1-10.

Hecox, G. R., D. O. Whittemore, R. W. Buddemeier, and B. B. Wilson. 2002. Best estimates of aquifer eecharge: magnitude and spatial distribution, Kansas. Geological Survey Open File Report 2002-25B. 23 p.

Hernández, E. y J. López. 1972. Conceptos sobre manejo de cuencas montañosas. Revista Forestal Venezolana XV (22): 53-81.

Hilger, W. 1973. Observaciones respecto a la geología de la región de Puebla-Tlaxcala. Comunicaciones 7: 3-3. Fundación Alemana para la Investigación Científica. Puebla, Puebla.

Henry, C. D. y J. J. Aranda-G6mez. 1992. The real southern Basin and Range: mid-to late Cenozoic extension in Mexico. Geology 2: 701-704.

Huang T. and Z. Pang. 2013. Groundwater recharge and dynamics in northern China: implications for sustainable utilization of groundwater. Procedia Earth and Planetary Science: 369-372.

Hufschmidt. M. M., D. E. James, A. D. Meister, B. T. Bower, and J. A. Dixon. 1983. Environment Natural Systems and Development: An Economic Valuation Guide. Johns Hopkins University Press. Baltimore. 356 p.

IGH S.C. 2012. Estudio de actualización geohidrológico del Acuífero del Valle de Puebla. 232p.

INEGI. 1983. Carta geológica Heroica Puebla de Zaragoza E14-43 escala 1:50,000.

INEGI. 1985. Carta geológica Tlaxcala E14-B33 escala 1:50,000.

INEGI. 2010. Censo de población y vivienda 2010. Instituto Nacional de Estadística, Geografía e Informática. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/Default.aspx Consultado: mayo de 2014

ITS S.A. 1984. Ampliación del estudio geofísico del Valle de Puebla. Investigaciones Técnicas del Subsuelo S.A. Puebla, Puebla.

Instituto de Geología UNAM. 1995. Estudio de migración de contaminantes hacia el acuífero regional derivados del riego con aguas residuales del Distrito de Riego Valsequillo, Puebla. 125 p.

Jiménez S. G. 2005. Modelo de flujo y transporte del Acuífero del Valle de Puebla. Tesis Doctoral. Posgrado en Ciencias de la Tierra, opción exploración, IGEF. UNAM. 145p.

Joh, H. K., J. W. Lee, M. J. Park, H. J. Shin, J. E. Yi, G. S. Kim, R. Srinivasan, and S. J. Kim. 2011. Assessing climate change impact on hydrological components of a small forest watershed through SWAT calibration of evapotranspiration and soil moisture. Transactions of the ASABE 54 (5): 1773-1781.

Karstensen, K. A., K. L. Warner, and A. Kuhn. 2010. Using land-cover change as dynamic variables in surface-water and water-quality models. U.S. Geological Survey General Information Product 110, 1 p.

Kim, N. W., I. M. Chung, Y. S. Won, and J. G. Arnold. 2008. Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology: 356: 1-16.

Konikow, L. F. and J. D. Bredehoeft. 1992. Ground-water models cannot be validated. Advances in Water Resources 15: 75-83.

Kouamé, K. J., J. P. Jourda, M. B. Saley, S. K. Deh, A. T. Anani, Y. Leblanc, V. Cloutier, and m. J. Bié. 2013. Modeling of groundwater flow and drawdown evolution simulation of Abidjan Aquifer (Côte D'ivoire). Journal of Asian Scientific Research 3(4): 344-364.

Kushwaha. R. K., M. K.Pandit, and R. Goyal. 2009. MODFLOW Based groundwater resource evaluation and prediction in Mendha Sub-Basin, NE Rajasthan. Journal Geological Society of India 74: 449-458.

Lencinas J. D. y G. Maduro D. 2011. Incidencia de los modelos digitales de elevación en la corrección geométrica de datos satelitales Quickbird: caso del SRTM-C, SRTM-XY. GeoFocus 11: 431-454.

Lermo-Samaniego. J. e I. Bernal-Esquia. 2006. Zonificación sísmica del estado de Tlaxcala, México. Boletín de la Sociedad Geológica Mexicana LVIII (2): 215-221.

Lerner, D.N. 2002. Identitying and quantifying urban recharge: a review. Journal of Hydrology (10): 143-152.

LESSAR Y ASOCIADOS S.A. 1982. Estudio geohidrológico en la zona Rio Atoyac, estado de Puebla.

LESSER Y ASOCIADOS, S. A. 1989. Estudio de exploración geofísica en la zona de Puebla, Pue. Secretaria De Agricultura y Recursos Hidráulicos.

Luo Yi. and M. Sophocleous. 2011. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. Journal of Arid Land 3(3): 164-173.

Martínez, R., E. Santana C. y S. Graf M. 2002. Una visión del manejo integrado de cuencas. Curso Manejo Integrado de Ecosistemas. Colegio de Posgraduados. México. 26p.

Malik, V. S., R. K. Singh, and S. K. Singh. 2012. Groundwater modeling with processing MODFLOW for windows, (PMWin) for the water balance study and suitable recharge site: Case of Gurgaon district, Haryana. International Journal of Application or Innovation in Engineering & Management 1(1): 72-84.

Mastrangelo, A. V, 2009. Análisis del concepto de recursos naturales en dos estudios de caso en Argentina. Ambiente & Sociedad VXII(2): 341-355.

McDonald, M. G. and A. W. Harbaugh. 1988. A modular three-dimensional finite difference

ground-water flow model. U.S.G.S. Open file report: 83-875. 273 p.

Mikko I, Sykes Jon F., Normani Stefano D. 2002. Recharge estimation for transient ground water modeling. Ground Water 40(6): 638-648.

Morán-Zenteno, D. J., M. Cerca y J. Duncan Keppie D. 2005. La evolución tectónica y magmática cenozoica del suroeste de México: avances y problemas de interpretación. Boletín de la Sociedad Geológica Mexicana LVII(3): 319-341.

Mooser, F., A. Montiel y A. Zúñiga. 1996, Nuevo mapa geológico de las cuencas de México, Toluca y Puebla: estratigrafía, tectónica regional y aspectos geotérmicos. Subdirección de Construcción, Comisión Federal de Electricidad México, D.F.

Mooser, F. 1972. The Mexican Volcanic Belt: structure and tectonics. Geofísica Interacional 12: 55-70.

Müller-Wohlfeil, D. I. and S. Mielby. 2008. Modelling to support the assessment of interlinkages between groundwater and surface water in the context of the EU Water Framework Directive. Calibration and Reliability in Groundwater Modelling: Credibility of Modelling (Proceedings of Model CARE 2007 Conference, held in Denmark, September 2007) 320: 124-128.

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R Williams. 2011. Soil and Water Assessment Tool Theoretical Documentation v. 2009. Texas Water Resources Institute. 618 p.

Oropeza M., J. L. 1989. Determinación de las características físicas de las cuencas hidrológicas. Notas del curso de manejo de cuencas. Colegio de Postgraduados. Montecillo, Edo. de México. 75-109 p.

Ortega-Gutiérrez, F., L. M. Mitre-Salazar, J. Roldán-Quintana, J. Aranda-Gómez, D. Morán-Zentano, y S. Alaniz-Álvarez y A. Nieto Samaniego. 1992, Carta geológica de la República Mexicana (1:2,000.000): Universidad Nacional Autónoma de México. Instituto de Geología. Secretaría de Energía, Minas e Industria Paraestatal, Consejo de Recursos Minerales.

Padilla y Sánchez, R. J. 2007. Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Boletín de la Sociedad Geológica Mexicana LIX(1): 19-42.

Palacios V., E. y J. E. Palacios S. 2011. Introducción a los sensores remotos y a los sistemas de información geográfica. 1a. Edición. 176 p.

Palacios S., L. A. 2007. Corrector atmosférico en imágenes Landsat. Tesis Doctoral. Colegio de Postgraduados, Montecillos, Estado de México. 92 p.

Pahl-Wostl, C. 2007. The implication of complexity for integrated resource management. Environmental Modeling & Software. 22: 561-569.

PEGSA. 1981. Actualización geohidrológico del Valle de Puebla. Perforaciones y Estudios Geológicos.

Perkins, S. P. and M. Sophocleou. 1999. Development of a comprehensive watershed model applied to study stream yield under drought conditions. Groundwater 37: 418-426.

Pimentel, B. L. 1993. El manejo de las cuencas hidrográficas en México. Universidad Autónoma de Chapingo. División de Ciencias Forestales. Dasociensia 1(1): 26-40.

Pradeep K., G. N. and P. Anil K. 2014. Development of groundwater flow model using Visual MODFLOW. International Journal of Advanced Research 2(6): 649-656.

Prickett, T. A. and C. G. Lonnquist. 1971. Select digital computer techniques for the groundwater resource evaluation. State of Illinois. Bulletin 55. 62 p.

Purjenaie, A., M. Moradi, A. Noruzi, and A. Majidi. 2012. Prediction of aquifer drawdown using MODFLOW mathematical model (Case Study: Sarze Rezvan Plain, Iran). Geosciences 2(5): 112-116.

Rappo, A.E. y R. Vázquez. 2012. Disputas por el agua en la zona metropolitana de Puebla, México. Memorias del 20 congreso internacional Pre-ALASRU, diversidad y contraste de los procesos rurales en el centro de México. Cuernavaca, Morelos, México, 5 al 7 de septiembre de 2012.

Roth, J. L and P. D. Capel. 2012. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics a unit field modeling approach. Scientific Investigations Report 2012–5203. U.S. Geological Survey. 42 p.

Ronald, J. Eastman. 2006. IDRISI Andes Guía para SIG y Procesamiento de Imágenes. Clark University, Clark Labs. 303 p.

Rusinga, F. and A. E. Taigbenu. 2005. Groundwater resource evaluation of urban Bulawayo aquifer. Water S A 31(1): 23 - 34.

Salcedo-Sánchez, E. R., M. V. Esteller, S. F. Garrido H., and M. Martínez-Morales. 2013. Groundwater optimization model for sustainable management of the Valley of Puebla aquifer, Mexico. Environ Earth Sci. 70: 337-351.

Sanford, W. 2002. Recharge and groundwater models: an overview. Hydrogeology Journal 10(1): 110-120.

Santoyo-Villa, E., E. Ovando-Shelley, F. Mosser y E. León. 2005. Síntesis geotécnica de la cuenca del Valle de México. TGC geotecnia S.A. de C.V. México, D.F. 171 p.

Samper, J., M. A García V., B. Pisani, D. Alvares, J. Espinha M., A. Varela, and J. A. Losada. 2005. Hydrologic models and Geographic Information Systems for water resources evaluation: application of GIS-BALAN to Atlantic basins in Spain and Portugal. The Fourth inter-Celtic Colloquium on Hydrology and Management of Water Resources, Guimaraes, Portugal, July 11-14, 2005. 12 p.

Scanlon, B. R., R.W. Healy, and P. G. Cook. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10: 18-39.

Scibek, J. and D. M. Allen. 2005. Modeled climate change impacts in the Abbotsford-Sumas Aquifer, Central Fraser Lowland of BC, Canada and Washington State, US. Proceedings of the 2005 Puget Sound Georgia Basin Research Conference. 8p.

SOAPAP. 1982. Estudio geohidrológico en la zona Rio Atoyac, estado de Puebla.

SGM. Servicio Geológico Mexicano, 2002. Carta geológico-minera Ciudad de México E14-2_GM.

SGM. Servicio Geológico Mexicano, 2006. Carta geológico-minera estados de Puebla y Tlaxcala.

Sophocleous, M. A., J. K. Koelliker, R. S. Govindaraju, T. Birdie, S. R Ramireddygari, S. P. Perkins. 1999. Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. Hydrogeology Journal 214: 179-196.

Sophocleous, M. and S. P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Hydrogeology Journal 236: 185-201.

Sophocleous, M. 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10: 52-67.

Spanoudaki, K., A. Nanou, A. I. Stamou, G. Cristodoulou, T. Sparks, B. Bockelmann, and R. A. Falconer. 2005. Integrated surface water-groundwater modelling. Global NEST Journal 7(3): 281-295.

Suter M., M. López M., O. Quintero L., and M. Carrillo M. 2001. Quaternary Structure of an extensional Intra-Arc-Rift the Central Trans-Mexican Volcanic Belt. Geological Society of America Bulletin 113: 693-703.

Suter M., O. Quintero-Legorreta, M. López-Martínez, G. Aguirre-Díaz, and E. Farrar. 1995. The Acambay graben: Active intraarc extensión in the trans-Mexican volcanic belt, Mexico. Tectonics 14: 1245-1262.

Suter M., O. Quintero, and C. A. Johnson. 1992. Active faults and state of stress in the central part of the Trans-Mexican volcanic belt, Mexico. The Venta de Bravo fault. Journal of Geophysical Research. 97: 11983-11993.

Turrent F., A. y J. I. Cortes F. 2004. Ciencia y tecnología en la agricultura mexicana: producción y sostenibilidad. Terra Latinoamericana. 23: 265-272.

Turrent F., A. y R. Moreno D. 1998. Producción sostenible alimentos de origen vegetal. Terra 16(2): 93-111.

TMI S.A. 1976. Estudio geohidrológico detallado de zonas secas, Valsequillo, Puebla. Técnicas Modernas de Ingeniería, S.A. Secretaria de Recursos Hidráulicos.

Tillman, F. D., B. D. Garner, and M. Truini. 2013. Preliminary Groundwater flow-Model of the Basin-Fill Aquifers in Detrital, Hualapai, and Sacramento Valleys, Mohave County, Northwestern Arizona. Scientific Investigations Report. U. S. Geological Survey. 53 p.

Torres B., E., E. Mejía S., J. Cortés B., E. Palacios V. y A. Exebio G. 2005. Adaptación de un modelo de simulación hidrológica a la cuenca del Río Laja, Guanajuato, México. Agrociencia 39: 481-490.

Torres B., E. 2000. Comparación de los modelos de simulación hidrológica SWRB y SWAT en la cuenca "El Tejocote" Atlacomulco, Edo de México. Tesis de Maestría, Colegio de Postgraduados, Montecillos, México. 251 p.

Uribe, N. 2010. Conceptos básicos y guía rápida para el usuario, SWAT 2005. CIAT. 47 p.

Valerio, A., H. Rajaram, and E. Zagona. 2010. Incorporating groundwater-surface water interaction into river management models. Ground Water 5(48): 661-673.

Velázquez O., G. 2007. Geochemical and Hydrodynamic characterization of the groundwater system of Puebla Valley, México. Northern Illinois University. 442 p.

Vélez Otálvaro y Vásquez Ariza. 2011. Métodos para determinar la recarga en acuíferos. Posgrado en Aprovechamiento de recursos Hidráulicos. Universidad Nacional de Medellín. 20 p.

Verwey, A. 1995 introducción a los modelos. In: Curso nacional de drenaje agrícola y control de inundaciones a nivel de Postgrado. Guatemala, Universidad de San Carlos de Guatemala. Facultad de agronomía.

Walton, W. C. 1971. Groundwater Resource Evaluation. Mc Graw Hill, New York. EU. 664 p.

Wang, S., J. Shao, X. Song, Y. Zhang, Z. Huo, and X. Zhou. 2008. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ Geol 55: 1449-1462.

Werner, J. 1996. Introducción a la hidrogeología. Facultad de Ciencias de la Tierra. Universidad

Autónoma de Nuevo León. México. 174 p.

William, J. R., A. D. Nicks, and J. G. Arnold.1985. Simulation for the watershed resources in rural basins. Journal of Hydraulic Engineering 111(6): 970-986.

Woods, J., D. Jakovovic, G. Green, D. Alcoe, A. Werner, and N. Fleming. 2013. Reconciling surface and groundwater models in a climate change context. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1(6): 2534-2540.

Xiao, X., S. Boles, J. Y. Liu, D. F. Zhuang, and M. L. Liu. 2002. Characterization of forest types in Northeastern China, using multitemporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82: 335-348.

Xu Xu, G. Huang, H. Zhan, Z. Qu, and Q. Huang. 2012. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. Journal of Hydrology 412–413: 170-181.

Yang, J. P., Y. J. Ding, and R. S. Chen. 2006. Spatial and temporal of variations of alpine vegetation cover in the source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ. Geol. 50 (3): 313-322.

Zarriello, P.J. and G. C. Bent. 2004. A precipitation runoff model for the analysis of the effects of water withdrawals and land-use change on streamflow in the Usquepaug–Queen River Basin, Rhode Island. U.S. Geological Survey Scientific Investigations Report 2004-5139. 75 p.

Zuñiga, F.R., J. F. Pacheco, M. Guzmán S., G. J. Aguirre D., V. H. Espindola, and E. Nava. 2003. The Sanfandila earthquake sequence of 1998, Queretaro, Mexico: activation of an undocumented fault in the northern edge of central Trans-Mexican Volcanic Belt. Tectonophysics 361: 229-238.

ANEXO A. Recopilación del archivo técnico de CONAGUA (Gerencia Puebla) de los principales estudios hidrogeológicos del sistema acuífero del Valle de Puebla.

A continuación se describe la información recopilada del archivo técnico de CONAGUA Puebla más relevante al respecto.

- 1973, Estudio Geohidrológico Preliminar de los Valles de Puebla (Alto Atoyac) y Zahuapan (Alto Atoyac) en el Estado de Tlaxcala, elaborado por Agrogeología S. A.: en este trabajo el objetivo fue reconocer la potencialidad y capacidad del acuífero subterráneo para apoyar el desarrollo del corredor industrial de Puebla. Se censaron 949 aprovechamientos de los cuales 679 eran norias (n), 234 pozos profundos (pz), 32 manantiales (mn) y 4 galerías filtrantes (gf). El estudio del archivo técnico presenta los planos de ubicación geo referenciada de la distribución de estos pozos, pero en las tablas de información se carece de su geo posicionamiento.
- 1975, Servicios de Prospección y Levantamientos Geológicos y Geofísicos En los Estados de Puebla y Tlaxcala, elaborado por Agrogeología S. A.: fue un estudio de carácter regional, donde se determinó que el acuífero está formado por arenas lacustres (con distintas gradaciones), tobas del cuaternario (de distinto grado de consolidación) y rocas ígneas extorsivas (basaltos y andesitas). El estudio abarcó una región de 40,000 Km² y se observó la comunicación de la red hidrogeológica entre las distintas subcuencas abarcadas con este estudio.
- 1981, Actualización Geohidrológico del Valle de Puebla, elaborado por Perforaciones y Estudios Geológicos PEGSA: se buscó definir las posibles condiciones de explotación del acuífero para poder realzar la extracción de 4m³/s adicionales. Para ello se censaron 1026 aprovechamientos de aguas subterráneas de los cuales 641 (pz), 371(n) y 14 (mn). Sin embargo se dejaron de lado los pozos cuyas bombas tenían diámetros inferiores a 4" de descarga. También se emplearon 35 SEVs

(Sondeos Eléctricos Verticales) para caracterizar la estratigrafía presente y determinar la viabilidad de perforar pozos de extracción en estos sitios.

- 1982, Estudio Geohidrológico Preliminar De La Zona Atencingo-Atlixco Puebla, elaborado por GEOCALLI S.A. Consultores para SRH: se enfocó en caracterizar con secciones geológicas las unidades estratigráficas de la región, también se identificaron los posibles puntos de perforación de pozos.
- 1982, Estudio Geohidrológico En La Zona Rio Atoyac, Estado De Puebla, elaborado por LESSAR Y ASOCIADOS S.A. para la SOAPAP: en este estudio se determinó la existencia de dos sistemas acuíferos dentro del Valle de Puebla. El primero con espesores de ~100 a ~200m de espesor, con agua de buena calidad, distribuido al nororiente en toda el área estudiada excepto en las márgenes del rio Atoyac. El segundo acuífero es de tipo termal, situado por debajo del primero, presenta características fisicoquímicas con altas concentraciones de gas sulfhídrico y altas concentraciones de sales, identificado principalmente en la parte occidental de la ciudad de Puebla.
- 1984, Ampliación Del Estudio Geofísico Del Valle de Puebla, elaborado por Investigaciones Técnicas del subsuelo S.A.: debido a la creciente necesidad de aumentar la extracción de aguas subterráneas para abastecer las distintas demandas sociales, se buscó conocer con mayor detalle la distribución de las distintas unidades estratigráficas. Por lo cual en este trabajo se realizaron 127 SEVs, los cuales en combinación con los realizados en trabajos anteriores se reinterpretaron, buscando identificar posibles zonas de extracción.
- 1989, Estudio De Exploración Geofísica En La Zona De Puebla, Pue., elaborado por LESSER Y ASOCIADOS, S. A. para SARH: este es el único estudio en la región hasta el momento aplicando el método de prospección gravimétrica, centrado en reconocer las características geológicas, geohidrológicas y estructurales existentes en el Valle de Puebla, pero principalmente su basamento. En este trabajo se menciona la

presencia de sistemas de fallas que dan origen a estructuras tipo graven. Este trabajo se complementó con 10 SEVs para determinar los espesores de los sedimentos lacustres y materiales piroclásticos asociados, así como la distribución, morfología y profundidad de las rocas carbonatadas presentes en la región. Finalmente se buscó señalar las áreas que presentaban las mejores condiciones geohidrológicas de la ciudad de Puebla y sus alrededores para ubicar pozos de exploración y de explotación. Sin embargo en la memoria técnica, el documento original tiene muchas observaciones y no cumplió con los objetivos requeridos.

- 1990-1992, Estudio de Actualización Geohidrológica del Acuífero del Valle de Puebla, elaborado por Exyco, S.A.: este es uno de los trabajos más completos, incluye aspectos climáticos, geológicos, piezométricos (en tres periodos), geofísicos, geoquímicos y geohidrológicos, además de realizar 26 pruebas de bombeo. Esta información se utilizó para hacer un balance geohidrológico y un modelo hidrogeológico. Dentro de los objetivos principales de este trabajo fue determinar las estructuras que controlan el almacenamiento y flujo del agua subterránea en el Valle Puebla-Tlaxcala, y redefinir áreas favorables para exploración y explotación de las aguas subterráneas para cubrir el futuro abastecimiento de la ciudad de Puebla.
- 1994a, Estudio Geohidrológico Básico del Proyecto Nealtican, elaborado por CALOMEL S.A. de C.V para la SOAPAP: en dicho estudio se elaboró un modelo matemático preliminar para comprender los escenarios posibles ante determinados manejos de explotación en la región comprendida entre Nealtican y San Pedro Cholula. Para identificar las zonas factibles para extraer 500 l/s adicionales de aguas subterráneas, y así complementar el abastecimiento de la ciudad de Puebla (ya desde entonces insuficiente). En este trabajo se realizaron 35 SEVs a 300 m de profundidad.
- 1994b, Ampliación Del Estudio Geohidrológico Básico Del Proyecto Nealtícan Puebla, elaborado por CALOMEL S.A. DE C.V 1994-SOAPAP: el estudio comprendió el censo de captaciones de aguas subterráneas y los volúmenes que se

extraen regionalmente. Se hicieron tres pruebas de bombeo, se realizó el análisis de la calidad del agua y se incorporó el balance de aguas.

- 1994, Estudio de Caracterización Hidrigeoquímica de Seis de los Principales Acuíferos del País, elaborado por EXYCO S.A.: el estudio es de carácter regional y busca conocer de manera detallada las condiciones y propiedades fisicoquímicas de las aguas subterráneas, en este caso del Valle de Puebla. Describe las condiciones geohidrológicas en forma general y proporciona información cuantitativa referente a la salinidad y calidad del acuífero del Valle de Puebla.
- 1997, Actualización Del Estudio Geohidrológico De Los Acuíferos Del Valle De Puebla, elaborado por Geotecnología S. A.: es el trabajo técnico más completo realizado hasta el momento, comprende estudios de geología de campo, recopilación geofísica, geoquímica, pruebas de bombeo, balance hídrico, clima, temperatura, precipitación y presenta un modelo matemático con VisualMODFLOW para la simulación de escenarios de 5 años. Se recomendaron a partir de los resultados opciones de manejo del acuífero, se actualizo el conocimiento del uso y disponibilidad del agua subterránea. Su censo de pozos es el primero en estar bien geo referenciado. Estimaron una extracción de 316 hm³/año, siendo el uso público-urbano el más importante con el 52% de la extracción total, cuya información es la base principal para la elaboración del modelo conceptual en este trabajo.
- 2012, Estudio de Actualización Geohidrológico del Acuífero del Valle de Puebla, elaborado por IGH S.C.: el estudio tuvo como objetivo definir el funcionamiento hidrogeológico únicamente del acuífero del Valle de Puebla con una extensión de 1308 Km², actualizar su balance hidrogeológico y calcular la disponibilidad media anual de agua subterránea. Pese a ser un trabajo muy completo retoma textualmente el marco geológico y fisiográfico presentado en el estudio elaborado por Geotecnología S. A. (1997) sin indagar más. También retoman información climática, hídrica, etc., de trabajos anteriores. Este trabajo se realizó en 20 semanas donde se recopilo la información de censos de niveles piezométricos, de superficies históricas sembradas y

de población. Se censaron 1300 pozos (que actualmente tiene identificados CONAGUA de forma oficial) realizando su geo posicionamiento. Se efectuó la medición del nivel estático de los 72 pozos de la red piezométrica existente en el acuífero del Valle de Puebla. También se realizaron 15 pruebas de bombeo para determinar los parámetros físicos. En lo general es un trabajo completo y el último realizado para CONAGUA de su tipo. Sin embargo, durante el censo de pozos se les acuño una clave diferente a la codificación que se manejó desde 1973 hasta 1997 para los pozos.

ANEXO B. Síntesis de los estudios geofísicos disponible en el archivo técnico de CONAGUA (Gerencia Puebla) de los principales estudios hidrogeológicos del sistema acuífero del Valle de Puebla y Alto Atoyac

A continuación se describe la información recopilada del archivo técnico de CONAGUA Puebla más relevante al respecto.

Prospección gravimétrica de 1989.

• Fue un estudio de gran visión efectuado por la compañía Lesser y Asociados S.A. de S.V., para la gerencia de aguas subterráneas de la Comisión Nacional del Agua. Cubrió un área de 546 km², conformada por una cuadrícula de 400 estaciones equidistantes a 500 m. En Cacalotepec se manifiesta una estructura geológica compleja, que se relaciona con dislocaciones producidas por un sistema de fallas, de origen tectónico, que permiten inferir una geometría de escalonamiento (graben–semigraben). Se asocia que el basamento hidrogeológico, detectado, corresponde a rocas calizas del Cretácico a profundidades de ~1.5 y ~3 km. Los resultados de esta prospección sugieren la presencia de fallas normales que forman estructuras de tipo graven y horst. Estas estructuras están sepultadas en el Valle de Puebla y Tlaxcala por las tobas de origen volcánico y los materiales aluviales.

Prospecciones geoeléctricas de 1981, 1982,1984, 1989 y 1990.

• Las campañas de prospección eléctrica se enfocaron en realizar la identificación de las unidades litológicas mediante sondeos eléctricos verticales (SEVs). Las exploraciones de 1981 y 1982, reportan la existencia de algunas fallas normales y la existencia de 3 unidades litológicas. En la exploración resistiva de 1989 se realizaron 10 SEVs, con el propósito de complementar la campaña de prospección gravimétrica. La investigación se concentró en comprender la geología de los alrededores de las poblaciones de

Coronango y Concepción La Cruz (esta última destinada a convertirse en la batería de pozos Atlixcayotl). El resultado de estos SEVs, permiten identificar en el subsuelo 4 unidades en función de su respuesta geoeléctrica. Sin embargo no se realizó la correlación entre la respuesta geoeléctrica de estas unidades y los materiales rocosos existentes. En cambio este estudio intento complementar el conocimiento geológico estructural a partir del estudio gravimétrico emprendido. De la interpretación de esta información, se observan la presencia de estructuras tipo graven y horse, sepultados en el Valle de Puebla y Tlaxcala.

- En 1990 la compañía EXYCO realizo la recopilación, reprocesamiento y reinterpretación de todos los estudios de SEVs disponibles hasta ese momento. Dentro de esta recopilación se retoma el estudio de 1984 efectuado por la empresa Investigaciones Técnicas del Subsuelo S.A de S.V., (que puede ser el estudio más completo hasta el momento en lo referente a SEVs, ya que se efectuaron 127 SEVs). EXYCO integró esta información para apoyar interpretación de 67 sondeos que dicha empresa realizó durante esta campaña. El objetivo principal de este trabajo fue ampliar el conocimiento de la geometría del subsuelo (geología estructural), que no alcanzo a cumplir lo esperado.
- En 1991 (por conducto de SOAPAP) se efectuaron 8 SEVs en la autopista Puebla-Atlixco (Km 2+000 al 9+000) alcanzado 200m de investigación a profundidad. Durante el año de 1994, se efectuaron diversos estudios de carácter local (estudio geohidrológico de la zona de Santo Tomas Chautla; estudio geohidrológico de la zona de Cacalotepec, Puebla; estudio geohidrológico básico del proyecto Nealtícan, Puebla) con el propósito de aportar información para la evaluación de perforación de pozos.
- En 1996 el Sistema Operador de los Servicios de Agua y Potable Alcantarillado del Municipio de Puebla (SOAPAP, actualmente privatizado y concesionado a aguas integrales de México), contrato a la empresa de Geotecnología S.A., para efectuar el proyecto denominado: estudio Geohidrológico de los acuíferos del Valle de Puebla (entregado en octubre de 1997).

 A partir de estas investigaciones se pueden identificar cinco unidades geoléctricas, denominadas como U1, U2, U3, U4 Y U5. A continuación se presentan en forma resumida la descripción de estas unidades geoeléctricas.

Unidad I

Material aluvial y tobas alteradas (de distinta composición) con resistividades entre 1 hasta 308 ohm-m (en la sección C-C'), con un espesor que varía de 1 a ~40 m (en la sección B-B'), está presente a lo largo de todos los perfiles geoeléctricos.

Unidad II

Corresponde a resistividades que varían entre 13 hasta 99 ohm-m, con profundidades variables que alcanzan espesores de hasta ~400 m (sección G-G'). Se ha correlacionado con rocas tobaceas y materiales de relleno arenoso-limoso (con distintos grados de compactación). Debido a que subyace a la unidad 1, presenta mínima o nula alteración (por efectos de meteorización). Se encontró dispuesta en todas las secciones investigadas, con excepción de la E-E'. En la secciona A-A' subyace en forma intercalada con la unidad 3.

Unidad III

Presenta resistividades entre 1-19 ohm-m (bajas), en la sección A-A' (bajo los SEV 37-39) subyace a la unidad 1 y subrayase a la unidad 2 (con la que se interdigita), alcanzado ~230 m de espesor. En la sección B-B' (en los SEVs 18 y 19) se encuentra separada por la unidad IV (mas resistiva) alcanzando profundidades de hasta ~450m. En las secciones E-E' y F-F' el espesor es indefinido bajo los SEV 51-53 y 46 (localizados en la colonia Tres Cerritos, ciudad de Puebla). Este paquete geoeléctrico se asocia con materiales arcillo-arenosos, que en ocasiones contienen agua de mala calidad.

Unidad IV

En respuesta a sus marcadas resistividades, se ha dividido en tres subunidades: IVa, IVb y IVc.

- La subunidad IVa tiene resistividades entre15-58 ohm-m (medias; intercalada con la unidad IVb entre los SEV 31 y 33), llega a alcanza un espesor de ~ ±500m (SEV 29). En San Bernardino Tlaxcalancingo se detecta una discontinuidad en la secuencia y la Unidad IVa se ve desplazada hacia abajo (por la probable presencia de una falla normal). Se asocia con materiales piroclásticos y tobas areno-arcillosas gradadas (cuya granulometría es de media fina a media). También suele presentan algunos fragmentos de dacita-andesita.
- La subunidad IVb tiene resistividades de 33-88 ohm-m (medias-altas) con espesores de ~250 m, en las secciones B-B' y F-F' el espesor indefinido. Se asocia con la presencia tobas areno-arcillosas (con granulometría media a fina, gradada) y la presencia de con algunos derrames lávicos.
- La subunidad IVc presenta resistividades de 5-14 ohm-m (bajas), su espesor es indefinido. Se asocia con materiales limo-arcilloso.

Unidad V

La unidad V se divide en las subunidades Va y Vb con las siguientes características.

- La subunidad Va, presenta resistividades de 108- 376 ohm-m (moderadamente altas).
 Se asocia con brechas, derrames volcánicos lávicos o con la presencia de calizas permeables con cierto grado de fracturamiento. Su espesor no es definido, excepto en las secciones C-C' y E-E' donde se presentan espesores de 60 a 350m.
- La subunidad Vb, presenta resistividades de150-2880 ohm (altas), definir el espesor en ninguna de las secciones (aunque tampoco se detecta en todas). Se considera como el

posible basamento hidrogeológico del acuífero. Por sus altos valores resistivos se asocia con rocas calizas del Cretácico, con diferentes grados de fracturamiento.

ANEXO C. Niveles estáticos históricos. Censos históricos de pozos

Niveles estáticos de 1973

Net Net
No. P. P. P. P. P. P. P.
No. 2155.339 0.5 2128.839 5.95 2129.389 4.15 2131.180 4.52 2130.819 4.04 2131.299 4.19333333333333333333333333333333333333
N11 2136.516 6.5 2130.016 4.98 2131.536 5.43 2131.086 5.65 2130.866 5.4 2131.116 5.49 2131.026 5.575 N13 2144.253 6.4 2137.853 5.82 2138.433 4.16 2140.093 4.07 2140.183 3.55 2140.703 4.43 2139.823 4.738333333 N15 2181.173 20.5 2160.673 20.25 2160.923 19.83 2161.343 22.32 2158.853 20 2161.173 19.76 2161.413 20.4333333 P17 2148.174 7.81 2140.337 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.325 2137.582 1.326 2138.33333 N20 2152.498 20 2132.498 12.26 2140.238 19.45 2133.048 12.5 2139.998 13.96 2138.538 17.25 2135.248 15.90333333 N20 2152.498 20 2132.498 12.26 2140.882 13.388 2140.682 13.63 2140.932 14.91 2139.652 11.62833333 N20 2153.5914 42.7 2113.214 14.32 2141.594 12.1 2143.814 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.52 11.54 11.52 11.54 11.54 11.54 11.54 11.54 11.55 11.54 11.55 11.5
N13 2144.253 6.4 2137.853 5.82 2138.433 4.16 2140.093 4.07 2140.183 3.55 2140.703 4.43 2139.823 4.788333333 N15 2181.173 20.5 2160.673 20.25 2160.923 19.83 2161.343 22.32 2158.853 20 2161.173 19.76 2161.413 20.44333333 P17 2148.147 7.81 2140.338 7.82 2152.498 20 2132.498 12.26 2140.238 19.45 2133.048 12.5 2139.998 13.96 2138.538 17.25 2135.248 15.9033333 N25 2154.562 13.67 2140.892 13.68 2140.882 7.83 2140.682 13.63 2140.932 14.91 2139.652 11.6283333 N25 2154.562 13.67 2143.244 7.82 2141.594 7.82 2141.594 7.83 2158.296 18.39 2158.276 19.05 2157.616 18.0483333 N31 2176.666 17.88 2158.786 17.87 2158.796 17.73 2158.936 17.37 2159.296 18.39 2158.276 19.05 2157.616 18.04833333 N31 2176.666 17.88 2158.786 17.87 2158.696 11.54 2152.825 14.35 2160.105 14.56 2149.805 6.741666667 N46 2173.513 6.45 2167.063 11.54 2152.825 14.35 2160.105 14.56 2149.805 6.74166667 N46 2177.038 11.43 2165.608 13.41 2163.628 13.5 2163.538 13.79 2152.638 14.71 2151.648 11.94833333 N72 2183.854 16.78 2167.074 16.67 2167.184 16.84 2167.074 17.2 2166.654 17.15 2166.704 18.02 2165.834 17.11 17.4 2189.64 2.09.5 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 2171.61 20.39833333 N90 2221.891 21.44 2200.451 18.92 2202.955 15.02 2209.455 15.02 2209.455 15.02 2209.455 15.02 2209.455 15.02 2209.455 15.02 2204.455 15.02 2204.
N15 2181.173 20.5 2160.673 20.25 2160.923 19.83 2161.343 22.32 2158.853 20 2161.173 19.76 2161.413 20.4433333333333333333333333333333333333
P17 2148.147
P18 2150.832
P19
N20 2152.498 20 2132.498 12.26 2140.238 19.45 2133.048 12.5 2139.998 13.96 2138.538 17.25 2135.248 15.90333333 N25 2154.562 13.67 2140.892 13.68 2140.882
N25
N26 2155.914 42.7 2113.214 14.32 2141.594 12.1 2143.814 1 11.52 N28 2151.204 8 2143.204 1 1 2158.936 17.37 2159.296 18.39 2158.276 19.05 2157.616 18.04833333333333333333333333333333333333
N28 2151.204 8 2143.204
N31 2176.666 17.88 2158.786 17.87 2158.796 17.73 2158.936 17.37 2159.296 18.39 2158.276 19.05 2157.616 18.04833333
N40 2164.365 6.45 2167.063 11.54 2152.825 14.35 2150.015 14.56 2149.805 6.741666667 N46 2173.513 6.45 2167.063 11.35 2162.163 11.78 2161.733 4.93 N58 2166.358 15.58 2150.778 13.66 2152.698 14.02 2152.338 13.72 2152.638 14.71 2151.648 11.94833333 N64 2177.038 11.43 2165.608 13.41 2163.628 13.5 2163.538 13.86 2163.448 14.57 2162.468 13.39333333 N72 2183.854 16.78 2167.074 16.67 2167.184 16.84 2167.014 17.2 2166.654 17.15 2166.704 18.02 2165.834 17.11 P74 2189.64 20.95 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 217.161 20.39833333 N90 22218.991 21.44 2200.
N46 2173.513 6.45 2167.063 11.35 2162.163 11.78 2161.733 4.93 N58 2166.358 15.58 2150.778 13.66 2152.698 14.02 2152.338 13.72 2152.638 14.71 2151.648 11.94833333 N64 2177.038 11.43 2165.608 13.41 2163.628 13.5 2163.538 13.86 2163.178 13.59 2163.448 14.57 2162.468 13.39333333 N72 2183.854 16.78 2167.074 16.67 2167.184 16.84 2167.014 17.2 2166.654 17.15 2166.704 18.02 2165.834 17.11 P74 2189.64 20.95 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 2171.61 20.39833333 N90 2221.891 21.44 2200.451 18.92 2202.971 18.98 2202.911 19.35 2202.541 19.34 2202.551 16.338
N58 2166.358 15.58 2150.778 13.66 2152.698 14.02 2152.338 13.72 2152.638 14.71 2151.648 11.94833333 N64 2177.038 11.43 2165.608 13.41 2163.628 13.5 2163.538 13.86 2163.178 13.59 2163.448 14.77 2162.468 13.39333333 N72 2183.854 16.78 2167.074 16.67 2167.184 16.84 2167.014 17.2 2166.654 17.15 2166.704 18.02 2165.834 17.11 P74 2189.64 20.95 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 2171.61 20.39833333 N90 2221.891 21.44 2200.451 18.92 2202.971 18.98 2202.911 19.35 2202.541 19.34 2202.551 16.33833333 N97 2216.48 12.48 2204 12.76 2203.72 13.09 2203.39 6.388
N64 2177.038 11.43 2165.608 13.41 2163.628 13.5 2163.538 13.86 2163.178 13.59 2163.448 14.57 2162.468 13.393333333333333333333333333333333333
N72 2183.854 16.78 2167.074 16.67 2167.184 16.84 2167.014 17.2 2166.654 17.15 2166.704 18.02 2165.834 17.11 P74 2189.64 20.95 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 2171.61 20.39833333 N90 2221.891 21.44 2200.451 18.92 2202.971 18.98 2202.911 19.35 2202.541 19.34 2202.551 16.33833333 P92 2224.455 15.2 2209.255 15.02 2209.435 12.76 2203.72 13.09 2203.39 6.388333333 N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68
P74 2189.64 20.95 2168.69 20.72 2168.92 20.92 2168.72 20.87 2168.77 20.9 2168.74 18.03 2171.61 20.39833333 N90 2221.891 21.44 2200.451 18.92 2202.971 18.98 2202.911 19.35 2202.541 19.34 2202.551 16.33833333 P92 2224.455 15.2 2209.255 15.02 2209.435 5.036666667 N95 2216.48 12.48 2204 12.76 2203.72 13.09 2203.39 6.388333333 N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28
N90 2221.891 21.44 2200.451 18.92 2202.971 18.98 2202.911 19.35 2202.541 19.34 2202.551 16.33833333 P92 2224.455 15.2 2209.255 15.02 2209.435 5.036666667 N95 2216.48 12.48 2204 12.76 2203.72 13.09 2203.39 6.38833333 N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02
P92 2224.455 15.2 2209.255 15.02 2209.435 5.036666667 N95 2216.48 12.48 2204 12.76 2203.72 13.09 2203.39 6.388333333 N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42
N95 2216.48 12.48 2204 12.76 2203.72 13.09 2203.39 6.388333333 N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42 2141.381 7 7 7 7 7 7 7 7 7
N97 2206.045 8.3 2197.745 8.27 2197.775 8.3 2197.745 8.71 2197.335 8.48 2197.565 9.66 2196.385 8.62 N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42 2141.381 7 <
N98 2195.191 13.65 2181.541 13.92 2181.271 14.23 2180.961 14.77 2180.421 14.68 2180.511 15.58 2179.611 14.47166667 N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42 2141.381 7
N99 2204.786 20.12 2184.666 20.28 2184.506 20.47 2184.316 20.41 2184.376 20.3 2184.486 21.81 2182.976 20.565 N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42 2141.381 7
N103 2206.709 19 2187.709 19.02 2187.689 18.23 2188.479 18.68 2188.029 18.46 2188.249 18.25 2188.459 18.60666667 P104 2183.381 42 2141.381 7 </td
P104 2183.381 42 2141.381 7 P106 2217.728 36.38 2181.348 23.2 2194.528 32.6 2185.128 32.51 2185.218 36.27 2181.458 26.82666667 N108 2191.93 9.1 2182.83 8.49 2183.44 22.92 2169.01 8.25 2183.68 8.52 2183.41 SECO
P106 2217.728 36.38 2181.348 23.2 2194.528 32.6 2185.128 32.51 2185.218 36.27 2181.458 26.82666667 N108 2191.93 9.1 2182.83 8.49 2183.44 22.92 2169.01 8.25 2183.68 8.52 2183.41 SECO
N112 2187 87 20 2167 87 193 2168 57 18 74 2169 13 192 2169 67 32 07 2155 9 12 27 2174 6 20 42
N113 2296.195 43.48 2252.715 2296.195 SECO
N114 2266.976 35.3 2231.676 34.31 2232.666 22.59 2244.386 35.57 2231.406 34.93 2232.046 35.14 2231.836 32.97333333
N115 2263.674 70 2193.674 36.76 2226.914 28.8 2234.874 38.25 2225.424 35.18 2228.494 44.98 2218.694 42.32833333
N117 2194.701 24.5 2170.201 22.43 2172.271 22.82 2171.881 22.85 2171.851 21.81 2172.891 23.33 2171.371 22.95666667
P118 2188.146 16.2 2171.946 2.7
P121 2136.024 17.9 2118.124 16.56 2119.464 16.24 2119.784 16.32 2119.704 16.88 2119.144 13.98333333
N142 2138.089 15 2123.089 14.81 2123.279 4.968333333
P161 2114.219 36.5 2077.719 35.23 2078.989 34.89 2079.329 33.98 2080.239 33.51 2080.709 29.01833333
N163 2116.35 15.57 2100.78 16.95 2099.4 15.99 2100.36 15.48 2100.87 16.73 2099.62 13.45333333
N165 2116.788 17.4 2099.388 17.51 2099.278 15.64 2101.148 17.21 2099.578 17.2 2099.588 14.16
N166 2114.144 19.3 2094.844 21.74 2092.404 21.67 2092.474 10.45166667
N179 2125.933 9.45 2116.483 3.83 2122.103 10.08 2115.853 9.89 2116.043 9.27 2116.663 9.04 2116.893 8.5933333333 P180 2124.215 46.64 2077.575 46.74 2077.475 45.23 2078.985 45.77 2078.445 30.73
N183 2130.254 19.05 2111.204 18.95 2111.304 18.98 2111.274 18.61 2111.644 18.72 2111.534 18.8 2111.454 18.85166667
N190 2115.158 6.4 2108.758 5.51 2109.648 4.25 2110.908 4.31 2110.848 4.28 2110.878 3.35 2111.808 4.6833333333 P199 2219.647 1.8 2217.847 2.8 2216.847 0.7666666667

No	El Brocal msnm	Junio-j	ulio 1973	A	gosto	Sept	tiembre	Oc	ctubre	Nov	iembre	Dic	iembre	
		NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	Promedio NEs m
N202	2126.007	9.64	2116.367	8.91	2117.097	8.74	2117.267	8.92	2117.087	12.16	2113.847	12.46	2113.547	10.13833333
N204	2120.407	9.6	2110.807			7.39	2113.017	7.37	2113.037	7.19	2113.217	6.56	2113.847	6.351666667
P205	2123.806	48.6	2075.206											8.1
N206	2129.598	7.2	2122.398			6.67	2122.928	5.6	2123.998	4.98	2124.618			4.075
P208	2131.905									58.82	2073.085	57.71	2074.195	19.42166667
P211	2140.293	51.1	2089.193			65.08	2075.213	66.01	2074.283	56.8	2083.493	64.53	2075.763	50.58666667
N212	2137.912	7.3	2130.612	7.47	2130.442	6.65	2131.262	6.43	2131.482	6.18	2131.732	5.89	2132.022	6.653333333
N220	2120.662	6.66	2114.002	5.52	2115.142	5.08	2115.582	5.18	2115.482	4.26	2116.402	5.19	2115.472	5.315
P253	2279.102											28.31	2250.792	4.718333333
N254	2227.081			27.77	2199.311	23.73	2203.351	23.73	2203.351	27.74	2199.341			17.16166667
P264	2217.355											4.51	2212.845	0.751666667
N266	2263.261			4.2	2259.061	3.15	2260.111	4	2259.261	4.24	2259.021			2.598333333
P268	2240.087			57.55	2182.537	61.72	2178.367							19.87833333
N282	2204.69	7	2197.69	6.74	2197.95	6.41	2198.28	6.42	2198.27	6.23	2198.46	28.34	2176.35	10.19
N286	2223.935	26.58	2197.355	26.5	2197.435	27.61	2196.325	26.51	2197.425	26.22	2197.715	3.61	2220.325	22.83833333
N290	2198.141	3.75	2194.391	3.52	2194.621	3.56	2194.581	3.54	2194.601	3.67	2194.471	5.96	2192.181	4
N294	2196.841	5.08	2191.761	4.13	2192.711			4.02	2192.821	4.36	2192.481	1.11	2195.731	3.116666667
N297	2189.52	1.4	2188.12	1.06	2188.46									0.41
N299	2196.54											12.61	2183.93	2.101666667
N314	2301.468	29.8	2271.668	29.59	2271.878	29.15	2272.318	29.44	2272.028	29.12	2272.348			24.51666667
N318	2278.025	12.38	2265.645	12.25	2265.775			12.21	2265.815	12.11	2265.915	11.3	2266.725	10.04166667
N323	2211.837	10.47	2201.367	10.48	2201.357	10.22	2201.617							5.195
P326	2208.234	7.27	2200.964	6.31	2201.924	6.2	2202.034			5.14	2203.094	24.04	2184.194	8.16
N327	2209.148			23.03	2186.118	27.97	2181.178			22.68	2186.468			12.28
N328	2204.265	28.27	2175.995									6.89	2197.375	5.86
P331	2210.377	5.92	2204.457	6	2204.377	8.91	2201.467							3.471666667
N335	2198.132	9.55	2188.582	9.22	2188.912	9.03	2189.102	9.38	2188.752	9.09	2189.042			7.711666667
N343	2214.911	12.15	2202.761	12.21	2202.701	11.9	2203.011	11.92	2202.991	11.96	2202.951			10.02333333
N351	2223.083	9.15	2213.933	6.15	2216.933	6.18	2216.903	6.51	2216.573	6.04	2217.043	5.71	2217.373	6.623333333
N352	2178.043	8.52	2169.523	8.5	2169.543	8.57	2169.473	6.23	2171.813	5.96	2172.083			6.296666667
N368	2188.495	4.15	2184.345	4.55	2183.945	4.3	2184.195	5.03	2183.465					3.005
N377	2165.393			18.03	2147.363	17.28	2148.113	16.1	2149.293	15.38	2150.013	25.55	2139.843	15.39
N390	2203.045	29.6	2173.445	28.22	2174.825	28.05	2174.995	28.3	2174.745	29.03	2174.015	27.73	2175.315	28.48833333
N391	2207.074	19.25	2187.824	19.15	2187.924	18.97	2188.104	20.15	2186.924	20.48	2186.594			16.33333333
N392	2204.539	4.95	2199.589	7.22	2197.319	7.64	2196.899	18.72	2185.819	19.07	2185.469			9.6
P393	2198.885	38.88	2160.005	38.6	2160.285							13.68	2185.205	15.19333333
N396	2179.641	22.6	2157.041	21.97	2157.671	21.54	2158.101	22.36	2157.281	22.18	2157.461	18.57	2161.071	21.53666667
P413	2204.508										2204.508	SECO		0
N419	2194.087	6.6	2187.487	6.45	2187.637	8.1	2185.987	7.93	2186.157	8.05	2186.037	8.21	2185.877	7.556666667
N422	2185.727	1.65	2184.077	1.57	2184.157							1.35	2184.377	0.761666667
N424	2230.204	19.91	2210.294	19.78	2210.424	42.08	2188.124	24.27	2205.934	19.63	2210.574	19.54	2210.664	24.20166667
P426	2251.694			30.85	2220.844	31.14	2220.554	31.44	2220.254					15.57166667
N430	2268.413	37.85	2230.563	29.73	2238.683	36.22	2232.193	34.11	2234.303	36.19	2232.223	36.04	2232.373	35.02333333
P437	2261.738			30.92	2230.818	31.05	2230.688	78.6	2183.138	76.99	2184.748	70.01	2191.728	47.92833333
P438	2265.03			31.18	2233.85	31.28	2233.75	32.11	2232.92	31.09	2233.94	31.67	2233.36	26.22166667
N440	2197.427	2.32	2195.107	2.4	2195.027	2.26	2195.167	2.12	2195.307			2.22	2195.207	1.886666667

No	El Brocal msnm	Junio-	julio 1973	A	gosto	Sept	iembre	Oc	ctubre	Nov	iembre	Dic	iembre	
	msim	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	Promedio NEs m
P443	2199.866			2.1	2197.766	1.65	2198.216	1.76	2198.106			1.73	2198.136	1.206666667
N455	2114.923	24.22	2090.703	23.03	2091.893	23.01	2091.913	23.17	2091.753	23.32	2091.603	23.22	2091.703	23.32833333
N460	2119.468	11.8	2107.668	11.42	2108.048									3.87
N468	2120.622	11.3	2109.322	13.07	2107.552	10.95	2109.672	10.73	2109.892	10.94	2109.682	10.92	2109.702	11.31833333
N471	2131.803	11.17	2120.633	10.72	2121.083	10.46	2121.343	10.57	2121.233	10.49	2121.313	10.46	2121.343	10.645
N477	2142.779	28.3	2114.479	26.94	2115.839	25.14	2117.639	24.24	2118.539	23.64	2119.139	23.18	2119.599	25.24
N481	2165.748	27.02	2138.728	28.01	2137.738	27.12	2138.628	27.14	2138.608	26.78	2138.968	26.7	2139.048	27.12833333
N483	2143.019	7.25	2135.769	6.55	2136.469			9.82	2133.199					3.936666667
P500	2254.161			14.69	2239.471	14.36	2239.801	14.63	2239.531	16.52	2237.641	18.86	2235.301	13.17666667
N501	2171.46	23.1	2148.36	19.48	2151.98	19.05	2152.41	19.12	2152.34	19.36	2152.1			16.685
N504	2197.002	20.9	2176.102	20.42	2176.582	20.2	2176.802							10.25333333
N506	2237.739	38.55	2199.189			25.46	2212.279	24.92	2212.819	24.89	2212.849			18.97
P507	2242.229	23.5	2218.729	25.5	2216.729	26	2216.229							12.5
P508	2244.286			26.5	2217.786	19.25	2225.036	29	2215.286	29.99	2214.296			17.45666667
N515	2283.202			12.04	2271.162			11.97	2271.232	12.15	2271.052	12.02	2271.182	8.03
P516	2291.193					19.7	2271.493					19.18	2272.013	6.48
P521	2295.798			76.16	2219.638	79.63	2216.168	76.9	2218.898	77.5	2218.298	76.64	2219.158	64.47166667
N524	2296.471			37.2	2259.271	31.5	2264.971	37.59	2258.881	37.99	2258.481	37.48	2258.991	30.29333333
N528	2229.891			4.3	2225.591	4.19	2225.701	5.62	2224.271	4.48	2225.411	4.08	2225.811	3.778333333
P542	2186.777	22.8	2163.977	22.9	2163.877	21.09	2165.687	27.33	2159.447					15.68666667
P548	2278.328	48.9	2229.428	48.8	2229.528	42.08	2236.248	46.01	2232.318			42.35	2235.978	38.02333333
N552	2201.413					3.1	2198.313	3.86	2197.553	3.55	2197.863	5.15	2196.263	2.61
P553	2202.366					7.85	2194.516							1.308333333
P557	2207.68			4.15	2203.53	4.1	2203.58	4.99	2202.69	4.44	2203.24	5.25	2202.43	3.821666667
P560	2218.172							1.11	2217.062	1.24	2216.932	1.12	2217.052	0.578333333
N563	2226.684			2.1	2224.584	1.9	2224.784	1.84	2224.844	2.15	2224.534	2.09	2224.594	1.68
P570	2218.799			14.9	2203.899	15.7	2203.099							5.1
P573	2314.502	75.59	2238.912	75.38	2239.122	75.18	2239.322	76.15	2238.352			77.26	2237.242	63.26
N574	2311.33	73.74	2237.59	73.61	2237.72	73.04	2238.29	74.33	2237	71.1	2240.23	75.51	2235.82	73.555
P577	2339.491					74.2	2265.291	75.11	2264.381	73.3	2266.191	76.27	2263.221	49.81333333
N580	2263.577	39.74	2223.837	39.02	2224.557	85.51	2178.067	39.64	2223.937	40	2223.577	40.6	2222.977	47.41833333
N593	2253.824	4.14	2249.684			8.38	2245.444	8.51	2245.314	8.78	2245.044			4.968333333
P603	2269.298			17.65	2251.648	17.31	2251.988	17.5	2251.798	19.42	2249.878	18.21	2251.088	15.015
N608A	2261.154			2.36	2258.794	2.19	2258.964	2.21	2258.944	2.53	2258.624	2.27	2258.884	1.926666667
N615	2289.602					8.88	2280.722	9.59	2280.012	9.68	2279.922	9.57	2280.032	6.286666667
P620	2274.527			8.36	2266.167	8.18	2266.347	8	2266.527	8.23	2266.297	7.93	2266.597	6.783333333
P621	2266.69					20.51	2246.18							3.418333333
P622	2241.334			6.82	2234.514	6.91	2234.424	6.9	2234.434	7.11	2234.224	7.14	2234.194	5.813333333
P625	2241.942			6.89	2235.052	7.84	2234.102			7.53	2234.412	6.73	2235.212	4.831666667
P632	2288.159					9.59	2278.569							1.598333333
P634	2375.941			33.11	2342.831	32.96	2342.981	30.96	2344.981					16.17166667
P636	2326.659			35.8	2290.859	42.09	2284.569	32.15	2294.509					18.34
P637	2377.058			26.62	2350.438					26.45	2350.608	26.43	2350.628	13.25
P641	2387.279			36.87	2350.409	36.62	2350.659	36.55	2350.729	36.74	2350.539	36.61	2350.669	30.565
N643	2387.201			12.43	2374.771	12.18	2375.021	12.16	2375.041	12.2	2375.001	11.14	2376.061	10.01833333
N646	2425.729					20.67	2405.059	20.71	2405.019	20.49	2405.239	20.41	2405.319	13.71333333
N653	2324.966			9.79	2315.176	9.59	2315.376	9.56	2315.406	9.51	2315.456	7.41	2317.556	7.643333333

No	El Brocal msnm	Junio-	julio 1973	Aş	gosto	Sept	iembre	Oct	ubre	Nove	embre	Dic	iembre	
		NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	NEs m	Elev NEs	Promedio NEs m
N661	2317.854			17.67	2300.184			18.25	2299.604	17.9	2299.9	17.33	2300.524	11.85833333
P666	2363.163					36.9	2326.263	20.1	2343.063					9.5
P668	2320.923			16.08	2304.843	16.95	2303.973			17.08	2303.8	16.94	2303.983	11.175
N681	2537.092			52.08	2485.012	52.05	2485.042	51.95	2485.142	51.95	2485.1	51.03	2486.062	43.17666667
N700	2202.64					19.52	2183.12	18.75	2183.89					6.378333333
N707	2196.187	1.5	2194.687	1.47	2194.717	1.77	2194.417	1.96	2194.227	2.1	2194.1	1.55	2194.637	1.725
N712	2193.542	1.51	2192.032	0.92	2192.622	1.26	2192.282	1.24	2192.302	1.41	2192.1	1.13	2192.412	1.245
P716	2202.909			3.74	2199.169	3.05	2199.859	4.16	2198.749	4.49	2198.4	4.09	2198.819	3.255
N725	2222.379	25.44	2196.939	25.34	2197.039			26.57	2195.809	27.32	2195.1	26.42	2195.959	21.84833333
N743	2241.261	15.55	2225.711	15.56	2225.701	15.64	2225.621	15.53	2225.731	15.82	2225.4	16.71	2224.551	15.80166667
N747	2224.309	5.57	2218.739	4.56	2219.749	4.81	2219.499	4.83	2219.479	5.03	2219.3	7.31	2216.999	5.351666667
N761	2299.617	52.23	2247.387	52.43	2247.187			52.42	2247.197	52.77	2246.8	53.61	2246.007	43.91
P764	2367.706					49.23	2318.476							8.205
N777	2237.156	15	2222.156	16	2221.156	16	2221.156	14.91	2222.246	15.3	2221.9	17.18	2219.976	15.73166667
P803	2292.03	36	2256.03	39	2253.03									12.5
N805	2357.44	84.7	2272.74							86.48	2270.9	86.98	2270.46	43.02666667
P806	2376.543			35.74	2340.803	35.85	2340.693			35.53	2341.0			17.85333333
N807	2389.598	4.9	2384.698	4.7	2384.898	1.77	2387.828	2.04	2387.558	4.03	2385.6	4.94	2384.658	3.73
P808	2411.711	34.94	2376.771	32.22	2379.491	32.83	2378.881	33.94	2377.771	34.31	2377.4	34.03	2377.681	33.71166667
P809	2393.097	26.6	2366.497	35.93	2357.167	27.02	2366.077	27.02	2366.077	27.49	2365.6	27.16	2365.937	28.53666667
N810	2386.704	2.15	2384.554	2.1	2384.604	2	2384.704	2.04	2384.664	2.16	2384.5	2.37	2384.334	2.136666667
N811	2360.104	3.9	2356.204	5.29	2354.814	4.77	2355.334	5.84	2354.264	5.6	2354.5	5.92	2354.184	5.22
N813	2366.602	1.85	2364.752							2.1	2364.5			0.658333333
N815	2377.643	9	2368.643	2.25	2375.393	8.17	2369.473	8.86	2368.783	8.71	2368.9	9.06	2368.583	7.675
N822	2340.301	13.05	2327.251											2.175
N823	2354.236	28.75	2325.486	13.06	2341.176	28.79	2325.446	28.8	2325.436	29.05	2325.2	28.76	2325.476	26.20166667
N826	2333.032	11.3	2321.732	12.45	2320.582	12.23	2320.802	12.77	2320.262	12.45	2320.6	12.63	2320.402	12.305
N830	2353.216	9.7	2343.516	10.13	2343.086	8.93	2344.286	8.86	2344.356	8.29	2344.9	8.08	2345.136	8.998333333
P831	2348.437			52.5	2295.937			53.48	2294.957	52.44	2295.9	54.94	2293.497	35.56
N907	2447.77	130	2317.77	136.72	2311.05	139.47	2308.3	136.61	2311.16	137.28	2310.5	138.25	2309.52	136.3883333
N910	2247.652	18.54	2229.112	18.61	2229.042	18.52	2229.132	18.66	2228.992	19.05	2228.6	19.65	2228.002	18.83833333
N919	2298.065	41.5	2256.565	41.08	2256.985	41.15	2256.915	41.15	2256.915	41.54	2256.5	42.43	2255.635	41.475
N921	2283.157	21.45	2261.707	21.68	2261.477	21.65	2261.507	23.94	2259.217	24.32	2258.8	24.93	2258.227	22.995
P951	2213.404									12.51	2200.9			2.085

Niveles estáticos de 1982

POZO	X UTM	Y UTME	Prof. m	NEs m	ND m	Q l/s
Ahuatepec	560477	2116459	27	1	4	30
Apetlachica 4	579935	2111546	176.4	21.5	31.6	70
Apetlachica 5	579917	2111566	150	23.7		66
Apetlachica 6	579914	2111620	90	29.1		45
Apetlachica 7	579992	2111541	157		35	70
Baños Malinche. Puebla	585437	2109285	85		10.17	55
Baños Públicos Soto. San Martin Texmelucan	559093	2132341	60	6	25	18
Baños San Cristóbal. Cholula De Rivadavia	572001	2108320	48	24.5		16
CFE 1	583830	2111680	57	34.57		9
CFE 2	583928	2111662	46		29.03	13
Chachapa	596895	2107601	42	11.77	31.2	20
Chapulco (Granjas San Isidro)	582313	2098654	31.7	9.4	11.1	
Cholula	568840	2106815	28		21.26	
Cholula	567490	2110051	38	35.6		
Cholula	566845	2106994	47	21	30	12
Coronango	574181	2109890	25	14.1	18.2	
Coyotzingo	555242	2122657	18	14.5		10
Cuanala	570658	2113196	30	27.2	28.5	10
El Llano San Pedro Costocan	559991	2125554	27	26.4		
Estadio	588049	2109728	136		60.86	25
Granja La Concepción	561809	2125672	40	16	22	30
Huejotzingo	561620	2119787	17	7	9	10
Huejotzingo	562913	2117390	22	1	4	
Huejotzingo	564916	2118945	80	21.3	22	22
Huejotzingo	559820	2117781	30	0.7	6.8	16
Huejotzingo	559038	2123909	29	1.9	5.4	10.6
Huejotzingo	561567	2117615	30	0.5	5.5	10
Huejotzingo	566060	2123501	25	8	10	32
Huejotzingo	569019	2111857	18	4	8	16
Huejotzingo (Pozo Las Animas)	561584	2119988	44	3	5	12
Juan C. Bonilla	566368	2115064	100	38	40	10
Juan C. Bonilla	566383	2115058	40	31	35.9	1.5
Laguna San Baltazar 1	582718	2101938	105	53	59	71
Loma Bella	580493	2099730	170	76	80	40
Margaritas 1	586134	2102133	89		48.98	80

POZO	X UTM	Y UTM	Prof. m	NEs m	ND m	Q l/s
Margaritas 2	586093	2102159	87		54.23	75
Moratilla 1	580356	2111694	160	19.35	25.85	65
Moratilla 4	580279	2112136	155		25.09	70
Nativitas	569509	2127903	100	2.4	2.9	
Nativitas	568265	2126781	75	1.4	3.7	31
Nativitas	566259	2128009	30	62	62.75	
Nativitas	566259	2128009	60	3		
Parque Juárez (Huexotitla)	583928	2104413	100		58	50
Puebla	591976	2112982	96	19.5	65.81	20
Puebla	588640	2108520	200	20.6	38.2	
Puebla	580838	2110833	92	23	42	18
Puebla	584738	2110372	37.6		25.9	5
Puebla	585146	2105247	120	17	34	
Puebla	584600	2110004	56.29	25.1	35.55	27
Puebla	588529	2109266	100	68.1		12
Puebla	589289	2108304	95		42.39	12
Puebla	585767	2103385	150	47	66	
Puebla	575229	2100526	150		80	30
Puebla	578074	2108655	125	27	56.27	30
Puebla	580165	2105741	200	20.6	38.2	
Puebla	584144	2110515	150	47	66	
Puebla	587510	2105948	136	21	59	40
Puebla	588511	2106739	152	18.5	32.7	30
Puebla Parque Industrial Resurrección	589692	2109526	125	70	205	20
Puebla, Balneario Agua Azul	581716	2104055	180	68	90	60
Recta Cholula 4 (Zavaleta)	578267	2107283	10	6.8	7.1	
Reyes Tlanechicolpan	568034	2104556	18	16.5		
San Andrés Cholula	574493	2107376	15	10		2
San Andrés Cholula	575258	2107010	184	10	20.3	18
San Andrés Cholula	575346	2107140	80	UDSDAC	7.6	
San Andrés Cholula	574018	2102533	18	12.2	13.9	
San Andrés Cholula	575901	2101493	36	22.7	30.7	
San Andrés Cholula	574090	2112230	70	15.5		16
San Andrés Cholula	575945	2105677	16	14.5		12
San Andrés Cholula	568711	2106822	13	4.5	8.5	10
San Andrés Cholula	572736	2104901	22	18.5	20	12

POZO	X UTM	Y UTM	Prof. m	NEs m	ND m	Q l/s
San Andrés Cholula	573367	2106320	14	10	13	1
San Andrés Cholula	573401	2105770	16	12.3	14.5	12
San Andrés Cholula	573541	2106318	12	14	15	10
San Andrés Cholula	573548	2106316	20	16	18	1
San Andrés Cholula	573587	2105914	20	14.3	28	12
San Andrés Cholula	573952	2106718	15	8.9	15	10
San Andrés Cholula	574106	2106612	9	4	6	2
San Andrés Cholula	574150	2105709	9	4	6	2
San Andrés Cholula	574271	2106197	25	6		9
San Andrés Cholula	574337	2106155	9	1		7
San Andrés Cholula	574570	2104938	14	15		7
San Antonio Grande	562612	2126242	13	5.3	9	16
San Aparicio 3	588416	2111822	170	21.1	85.1	62
San Baltazar 1	583700	2100997	99	51.7	63.1	
San Baltazar 4 (Arboledas De San Ignacio)	583649	2099936	130	56	68.3	25
San Cristóbal Tepatlaxco	557926	2134020	100		16.1	30
San Cristóbal Tepatlaxco	558867	2134900	80	17.5	63.5	60
San Francisco Ocotlán	575518	2114020	170	12	40	70
San Francisco Coapa	567408	2108235	38	35.6		
San Gabriel Almoloya Santa Bárbara	574070	2112409	60	15.6	18	16
San Gregorio Atzompa	568768	2104183	70	2.5	12.2	26.5
San Gregorio Atzompa	567958	2103183	79	9.5	74.5	15
San Gregorio Atzompa	569070	2102772	20.5	12.5	20	16
San Gregorio Atzompa	568659	2102600	27	6.7	9	7
San Gregorio Atzompa	568668	2102721	11	2.4	6.4	16
San Gregorio Atzompa	569128	2105891	25	2.3	22.5	16
San Jerónimo Tecuanipan	563617	2102788	17	14.3		12
San Juan Cuautlancingo	578549	2109859	25	14	16.1	1.5
San Juan Cuautlancingo	575980	2112558	90		58	33
San Juan Cuautlancingo	579500	2117262	53	26.2	17.1	8
San Juan Tuxco	556678	2130065	150	30.5	55.35	64
San Luis Tehuiloyocan	568358	2105161	19	15.6		10
San Manuel	584859	2102438	109		60.35	35
San Martin Texmelucan	557293	2131238	120	4.25	15	70
San Martin Texmelucan	558616	2133306	189	6.6	33	30
San Martin Texmelucan	560070	2129099	60	6.4		6

POZO	X UTM	Y UTM	Prof. m	NEs m	ND m	Q l/s
San Martin Texmelucan	558375	2132152	46	9	15	6
San Martin Texmelucan	549806	2133568	100	22.2	29.5	12
San Martin Texmelucan	560780	2132891	67	18.4	23	63
San Martin Texmelucan (Pozo 2 Agua Potable)	556681	2130974	130	1.9	15	80
San Martin Texmelucan (Pozo 4 Agua Potable)	560220	2131573	130	1.9	14.5	20
San Martin Texmelucan (Pozo 6 Agua Potable)	558995	2134006	150	30.5	55.35	64
San Martinito	578048	2103273	120	25.3	30	28
San Martinito	573078	2104552	188	12.3	44	40
San Mateo Cuanala	567459	2112469	62	32.2	25.4	40
San Miguel Xoxtla	573183	2119415	10	6.8	1.6	1
San Miguel Xoxtla	573867	2119915	18	15.3	16.1	0.5
San Pedro Cholula	570795	2106080	27	21.7		13
San Pedro Cholula	569727	2107048	30	25.6	27.1	
San Pedro Cholula (Soapach 10)	577401	2109679	32	25.8	30	12
San Pedro Cholula (Sosapach 6)	573961	2108530	33	29.3	32.4	16
San Pedro Tlaltenango	568712	2118300	25	1.4	3.8	10
San Pedro Tlaltenango	566897	2117499	16	2	4.5	9
San Pedro Tlaltenango	568224	2119703	21	6	8	9
San Pedro Tlaltenango	568224	2119703	15	5	7	10
San Rafael Tlanalalpan (Pozo De Agua Potable)	555077	2133459	22	0.5	2.4	6
San Sebastián Aparicio (Pozo 1 Agua Potable)	588474	2112042	85	25	30	12
Santa Isabel Cholula	565338	2100333	260	2	48	9
Santa Isabel Cholula	566105	2098945	30	20	25	4
Santa María Coronango	572043	2114771	22	19.4	17	
Santa María Coronango	574086	2113760	26	19.7	29	1
Santa María Coronango	572337	2115355	22	17	19	7
Santa María Tonantzintla	571241	2105257	15	13.6		
Santa María Zacatepec	567698	2115498	85	22.3		14
Santiago Momoxpan	576915	2109176	15	7.2	8	
Sociedad Francisco Villa	576773	2115112	18		16.1	
Sta. Clara Ocoyucan	573481	2096583	35	27.25	30.1	
Tlaltenango	567123	2120382	15	5	7	10
Xoxtla I HYLSA 1)	571700	2118617	100	10	17	50
Xoxtla II (HYLSA 2)	571702	2118092	23	23.6	31	12
Xoxtla III (HYLSA 3)	571327	2118840	104	32.2	29	220
Coatepec	580320	2100083	115	13.7	5.9	16
Huejotzingo	561620	2119787	25	0.8	3	12.6
Papelera	582900	2104880	32		19.55	

POZO	X UTM	Y UTM	Prof. m	NEs m	ND m	Q l/s
San Martín Texmelucan	556912	2131228	120	25	35.2	64
San Martín Texmelucan	560036	2126947	180		25.6	20
San Martín Texmelucan	561538	2117685	120	8	24	32

Niveles estáticos de 1988 a 1992

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	D-6	Pozo L. Cárdenas	nov-90	52.08	EXYCO
P	D-6	San Buenaa Ventura N.	nov-90	61.23	EXYCO
P	D-6	San Buenaa Ventura N.	nov-90	64.13	EXYCO
P	D-6	Pozo Carranza Bramb.	ene-92	5	CALOMEL
P	E-6	Carcaña 4	ene-92	64	
P	E-6	Carcaña 1	nov-90	43.69	SOAPAP
P	E-6	Carretas	ene-89	23.16	SOAPAP
	E-6	Carretas	ene-91	48.2	SOAPAP
	E-6	Carretas	ene-92	43	
P	E-6	Recta Cholula 5	ene-89	44.8	SOAPAP
P	E-6	Recta Cholula 5	ene-91	69.1	SOAPAP
P	E-6	Recta Cholula 5	ene-92	76	
P	E-6	Recta Cholula 1	ene-88	44.19	SOAPAP
P	E-6	Recta Cholula 3	ene-91	63.85	SOAPAP
P	E-6	Recta Cholula 3	ene-92	64.92	
P	E-6	Recta Cholula 1	ene-89	35.05	SOAPAP
P	E-6	Recta Cholula 1	ene-91	68	SOAPAP
P	E-6	Recta Cholula 1	ene-92	68	
P	F-6	Tlaltepango 1	ene-92	56.2	
P	F-6	Tlaltepango 2	jul-88	69.74	SOAPAP
P	F-6	Autopista	ene-88	43.69	SOAPAP
P	F-6	Autopista	ene-92	43	
P	F-6	Desarenador	ene-92	95	
P	F-6	Puente Negro	ene-92	80.46	
P	F-6	Cieneguillas	nov-90	10.5	EXYCO
P	F-6	10 De Mayo	ene-88	54.25	SOAPAP
P	F-6	10 De Mayo	ene-92	64.61	
P	F-6	México 68	ene-89	57.91	SOAPAP
P	F-6	México 68	ene-92	56	

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	F-6	Santa Rosa	ene-89	54.55	SOAPAP
P	F-6	Santa Rosa	ene-92	54	
P	F-6	Xonaca 2	ene-92	67	
P	F-6	Humboldt	ene-92	61	
P	F-6	El Cristo	ene-89	59.43	SOAPAP
P	F-6	El Cristo	ene-91	44.5	SOAPAP
P	F-6	El Cristo	ene-92	75.59	
P	F-6	Analco	ene-90	78.19	SOAPAP
P	F-6	Analco	ene-92	86	
P	F-6	Ecológico 2	ene-88	55.16	SOAPAP
P	F-6	Ecológico 2	ene-92	56	
P	F-6	Ecologico1	ene-92	57	
P	F-6	El Ángel 1	ene-89	55.69	SOAPAP
P	F-6	El Ángel 1	ene-92	57	
P	F-6	El Ángel 1	ene-88	67.36	SOAPAP
P	F-6	El Ángel 2	ene-89	52.73	SOAPAP
P	F-6	El Ángel 1	ene-91	72.5	
P	F-6	El Ángel 2	ene-92	73	
P	F-6	Parque Juárez	ene-91	30	SOAPAP
P	F-6	Parque Juárez	ene-92	52	
P	F-6	Insurgentes	ene-92	68.77	
P	F-6	Héroes De Puebla	ene-88	42.97	SOAPAP
P	F-6	Héroes De Puebla	ene-91	56.68	SOAPAP
P	F-6	Héroes De Puebla	ene-92	57	
P	F-6	CRI-CRI	ene-92	86	
P	F-6	El Mirador 1	ene-89	58.52	ACSA
P	F-6	El Mirador 1	ene-92	60	
P	F-6	El Mirador 2	ene-89	56.52	ACSA
P	F-6	El Mirador 2	ene-92	61.87	
P	F-6	ISSSTEP	ene-92	105.9	
P	F-6	El Dorado	ene-91	83.82	SOAPAP
P	F-6	El Dorado	ene-92	42	
P	F-6	Gabriel Pastor	ene-91	73.32	SOAPAP
P	F-6	Gabriel Pastor	ene-92	41	
P	F-6	Plaza América	ene-89	7.92	SOAPAP
P	F-6	Plaza América	ene-90	23.16	SOAPAP
P	F-6	Plaza América	ene-91	65	SOAPAP

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	F-6	Plaza América	ene-92	65	
P	F-6	Prados Agua Azul	oct-88	23.77	SOAPAP
P	F-6	Prados Agua Azul	ene-91	72	SOAPAP
P	F-6	Prados Agua Azul	ene-92	51	
P	F-6	Paraíso	ene-91	49	SOAPAP
P	F-6	La Margarita 1	ene-89	64	SOAPAP
P	F-6	La Margarita 1	ene-92	77.6	
P	F-6	La Margarita 2	ene-89	69.18	SOAPAP
P	F-6	La Margarita 2	ene-91	67	SOAPAP
P	F-6	La Margarita 2	ene-92	87	
P	F-6	U. Guadalupe	ene-88	86.56	SOAPAP
P	F-6	U. Guadalupe	ene-92	87	
P	F-6	San Manuel	ene-88	86.56	SOAPAP
P	F-6	San Manuel	ene-89	86.56	SOAPAP
P	F-6	Tuxpan	ene-88	79.55	SOAPAP
P	F-6	Tuxpan	jun-89	86.25	SOAPAP
P	F-6	Tuxpan	ene-92	99.8	
P	F-6	Laguna De San Baltazar	ene-88	56.38	SOAPAP
P	F-6	Laguna De San Baltazar	jun-89	55.47	SOAPAP
P	F-6	Laguna De San Baltazar	ene-91	75	SOAPAP
P	F-6	La Margarita 2	ene-88	56.69	SOAPAP
P	F-6	La Margarita 3	ene-89	55.47	ACSA
P	F-6	La Margarita 3	ene-91	75	ACSA
P	F-6	La Margarita 3	ene-92	37	
P	E-4	Pozo -4	nov-90	2.86	EXYCO
P	G-6	Club Sta. Águeda	nov-90	0.29	EXYCO
P	G-6	Malintzin-2	ene-88	82.9	SOAPAP
	G-6	Malintzin-2	ene-90	76.8	ACSA
P	G-6	Malintzin-1	ene-88	82.9	SOAPAP
	G-6	Malintzin-1	nov-90	76.8	SOAPAP
P	G-6	Maravillas 1	ene-92	80	
P	G-6	Maravillas 2	ene-92	76	
P	G-6	Parque 2000	ene-88	81.31	SOAPAP
	G-6	Parque 2000	ene-92	87.76	
P	G-6	Xonacatepec 4	ene-92	76	
P	G-6	Xonacatepec 3	ene-88	85.65	SOAPAP
	G-6	Xonacatepec 3	ene-92	85	

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	G-6	Xonacatepec 2	ene-92	80	
P	G-6	Colon 1	ene-88	111.86	ACSA
	G-6	Colon 1	ene-90	115.82	SOAPAP
	G-6	Colon 1	ene-92	120.9	
P	G-6	B. De Sn. Sebastián 2	ene-92	78	
P	G-6	Sn. Antonio Abad	ene-92	66	SOAPAP
P	E-4	M. R. Anaya 2	oct-91	38.5	
P	E-4	M. R. Anaya 2	ene-92	74.37	
P	E-4	M. R. Anaya 3	ene-92	74	
P	E-4	Amalucan	ene-91	74.06	ACSA
P	E-4	Sn. Rafael 2	ene-88	53.03	
P	E-4	Sn. Rafael 2	ene-92	58	ACSA
P	E-4	Sn. Rafael 2	jun-89	54.86	
P	E-4	Sn. Rafael 2	ene-91	59	SOAPAP
P	E-4	J. Colombres	ene-90	57.3	
P	E-4	J. Colombres	ene-92	57	ACSA
P	E-4	Seminario	ene-89	53.6	
P	E-4	Seminario	ene-92	50	ACSA
P	E-4	Cd. Satélite	ene-89	49.07	EXYCO
P	E-4	Cd. Satélite	nov-90	52.31	
P	E-4	Cd. Satélite	ene-92	50	
P	E-4	Gonzalo Bautista	ene-92	103	
P	E-4	Clavijero	ene-92	51	SOAPAP
P	F-5	Apetlachica 4	ene-91	38.2	ACSA
P	F-5	Apetlachica 7	ene-88	30.48	
P	F-5	Apetlachica 7	ene-92	31	
P	F-5	Apetlachica 6	ene-92	35	SOAPAP
P	F-5	Apetlachica 5	ene-91	40.53	
P	F-5	Apetlachica 5	ene-92	43.6	ACSA
P	F-5	Sn. Miguel 1	ene-88	23.21	
P	F-5	Sn. Miguel 1	ene-92	39	ACSA
P	F-5	Moratilla 1	ene-89	34.73	SOAPAP
P	F-5	Moratilla 1	ene-91	42	SOAPAP
P	F-5	Moratilla 3	ene-91	47.54	ACSA
P	F-5	Moratilla 4	ene-89	32.61	ACSA
P	F-5	Moratilla 5	ene-89	24.99	SOAPAP
P	F-5	Moratilla 5	ene-91	45.2	

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	F-5	Moratilla 5	ene-92	45.2	SOAPAP
P	F-5	Barranca Honda 1	ene-91	35.25	
P	F-5	Barranca Honda 2	ene-92	16	ACSA
P	F-5	Barranca Honda 3	ene-88	24.57	
P	F-5	Barranca Honda 3	ene-92	9.5	ACSA
P	F-5	Barranca Honda 4	ene-88	38.65	
P	F-5	Barranca Honda 4	ene-92	28	SOAPAP
P	F-5	Constancia	jun-89	4.57	SOAPAP
P	F-5	Constancia	ago-91	42	ACSA
P	F-5	CEDA 1	ene-88	47.55	SOAPAP
P	F-5	CEDA 1	ene-91	81	
P	F-5	CEDA 1	ene-92	81	ACSA
P	F-5	CEDA 2	ene-89	47.54	
P	F-5	CEDA 2	ene-92	47	
P	F-5	CEDA 3	ene-92	85	SOAPAP
P	F-5	CEDA 4	ene-91	63	
P	F-5	CEDA 4	ene-92	71.1	SOAPAP
P	F-5	CEDA 5	ene-91	53.5	
P	F-5	CEDA 5	ene-92	56.5	SOAPAP
P	F-5	CONDE 1	ene-88	58.21	ACSA
P	F-5	CONDE 3	ene-88	73.15	
P	F-5	CONDE 3	ene-92	75	EXYCO
P	F-4	Pozo -1	nov-90	13.49	EXYCO
P	F-4	El Carmen A.	nov-90	13.79	EXYCO
P	F-4	Zacatelco	nov-90	13.65	ACSA
P	E-7	Castillotla	ene-88	69.74	ACSA
P	E-7	Castillotla	ene-90	63	ACSA
P	E-7	Castillotla	ene-91	99.39	
P	E-7	Castillotla	ene-92	99.36	
P	E-7	Atlixcayotl 9	ene-92	66	
P	E-7	Atlixcayotl 8	ene-92	45.65	
P	E-7	Atlixcayotl 7	nov-90	91.63	
P	E-7	Atlixcayotl 7	oct-91	91.13	
P	E-7	Atlixcayotl 7	abr-92	29	SOAPAP
P	E-7	Atlixcayotl 6	dic-91	44.28	ACSA
P	E-7	Atlixcayotl 4	nov-90	46	
P	E-7	Atlixcayotl 3	mar-92	48.85	ACSA

Continuación, niveles estáticos de 1988 a 1992

Tipo Aprov.	Cuadrante	Nom. Pozo	Fecha	NE	Empresa
P	E-7	Atlixcayotl 2	dic-90	48.2	
P	E-7	Atlixcayotl 2	nov-93	41	
P	E-7	Atlixcayotl 5	ene-92	42.05	ACSA
P	F-7	Sn. Baltazar 4	ene-89	75.55	
P	F-7	Sn. Baltazar 4	ene-92	91.44	ACSA
P	F-7	Tres Cerritos	ene-88	67.66	ACSA
P	F-7	Tres Cerritos	ene-91	49.5	ACSA
P	F-7	Sn. Baltazar 1	ene-89	74.67	
P	F-7	Sn. Baltazar 1	ene-92	92	EXYCO
P	E-3	Sn. Miguel	nov-90	5.47	EXYCO
P	F-3	Margaritas	ago-90	31.53	EXYCO
P	F-3	Sin Nom/ Aurora?	ago-90	47.51	EXYCO
P	F-3	Sin Nom/ Aurora?	ago-90	67.63	EXYCO
P	F-3	Sin Nom/ Aurora?	ago-90	90.78	EXYCO
P	F-3	Sin Nom/ Aurora?	ago-90	84.28	EXYCO
P	F-3	Sin Nom/ Aurora?	ago-90	39.82	EXYCO
P	G-2	Sta.Ma.	ago-90	5.94	EXYCO
P	G-3	I.T.A.	ago-90	6.87	EXYCO
P	G-4	Sn. Diego	ago-90	18.73	EXYCO
P	G-5	Sn. Diego	ago-90	19.17	EXYCO
P	G-6	Sin Nom/ Sn. Diego	ago-90	48.26	EXYCO
P	G-7	Sin Nom/ Sn. Diego	ago-90	52.37	EXYCO
P	G-8	Sin Nom/ Sn. Diego	ago-90	35.19	EXYCO
P	G-3	Sin Nom/ Sn. Bartolomé	ago-90	91.68	EXYCO

Niveles estáticos de 1997

Pozo	X UTM	Y UTM	Prof. m	Caudal	NEs m	ND	QE l/s
Atlixcayotl 2	576931	2101651		62.5	48.2	77.2	2.16
Atlixcayotl 3	576473	2101346	200	74	48.85	84.3	2.09
Atlixcayotl 4	576018	2101043	200	44.1	46	78	1.38
Atlixcayotl 5	577532	2102054	162.5	9.9	91.13	122	0.32
Atlixcayotl 6	575595	2100762	200	86.3	44.28	56.2	7.24
Atlixcayotl 7	575217	2100514	162	42.5	29	128.96	0.43
Atlixcayotl 8	574931	2100326	200	42	63	96	1.27
Atlixcayotl 9	574490	2100041	215	30.5	82.2	107.4	1.21
Autopista	585832	2110204	150	14.9	48.76	114	0.23
Barranca Honda 1	581434	2113951	206	45.4	86	92.96	6.52
Barranca Honda 2	581151	2113832	139	49.3	13.71	72	0.85
Barranca Honda 3	580802	2114139	98	31.5	10.13	31.51	1.47
Barranca Honda 4	581944	2113661	100	49.1	39.01	58	2.58
Clavijero	589733	2105156		2192.099	57.04	2135.06	
Cuanala	567583	2116882		2208.408	15.7	2192.71	
Domingo Arenas	560926	2114090		2272.846	6.8	2266.05	
Huejotzingo	563788	2121710		2230	2.9	2227.1	
Huejotzingo	561620	2119787		2263.696	16	2247.7	
Huejotzingo	561844	2125482		2249.272	11.72	2237.55	
Huejotzingo	559820	2117781		2314.409	33.9	2280.51	
Huejotzingo	559038	2123909		2296.041	36	2260.04	
Huejotzingo	565348	2122748		2215.889	3.2	2212.69	
Huejotzingo	566060	2123501		2210	1.88	2208.12	
Infonavit Amalucan	589797	2106933	190	15.2	84.12	146	0.25
Santa Clara Atoyatenco No. 3	575458	2131003		65	3.03	14.95	5.45
SOAPACH 2	582477	2120374	100	40.5	23.21	30.51	5.55
Tomalintla No. 3	590086	2139808		18.2	23.05	35.52	1.46
Ixtacuixtla	560800	2139162		2407.315	141.9	2265.42	

Continuación, niveles estáticos de 1997

Pozo	X UTM	Y UTM	Prof. m	Caudal	NEs m	ND	QE l/s
Ixtacuixtla	568765	2132562		2212.587	11.7	2200.89	
Laguna San Baltazar 1	582718	2101938	99.06	25.7	92.35	95.5	8.16
Lardizábal	564119	2131639		2226.145	1.8	2224.35	
Las Carretas	576881	2109545	200	32	60.12	63	11.11
Malintzi 2	588158	2110067	200	20.1	85.95	103.73	1.13
México 68	588281	2106935	123	48.7	81.99	103	2.32
Nealtican 09	564626	2103630	200	90	38.9	41.7	32.14
Nealtican 10 (Acuexcomac 10)	564011	2103415	300	90.5	22.9	26.7	23.82
Nealtican 2	561257	2109123	200	9.5	45.57	152.56	0.09
Nealtican 3	561106	2108722	200	35	47.69	144.46	0.36
Nealtican 4	561335	2108499	150	116	41.53	66.14	4.71
Nealtican 5	561194	2107798	200	25.3	39	113	0.34
Nealtican 6 (Acuexcomac 6)	562744	2106728	200	62.6	31	87	1.12
Nealtican 7 (Acuexcomac 7)	563232	2106499	200	85	29.9	36	13.93
Nealtican 8 (Acuexcomac 8)	565355	2103591	150	85	38.03	55.52	3.72
No Definida	553121	2134871	200	79.1	21	66.3	1.75
Parque Juárez (Huexotitla)	583928	2104413	151	25.2	53.64	138	0.3
Puebla	585644	2110561		2209.094	54	2155.09	
Col. San José El Rincón	584077	2087862		2064.133	7.47	2056.66	
Puebla	592317	2108667		2262.106	114.82	2147.29	
Puebla	591090	2091977		2060	3.95	2056.05	
Puebla	579786	2090216		2080	24.48	2055.52	
Puebla	585065	2097715		2077.614	42	2035.61	
Puebla	597156	2105796		2279.247	75.76	2203.49	
Puebla	578074	2108655		2119.573	63.93	2055.64	
Recta Cholula 1	576406	2107554	128	20	81.07	118	0.54
Recta Cholula 6 (Col. Bello Horizonte)	577909	2107355	141	66.6	82.29	96	4.86
San Andrés Calpan	555035	2112749		2482.593	114.9	2367.69	
San Andrés Cholula	574018	2102533		2125.947	60.63	2065.32	
San Andrés Cholula	575901	2101493		2113.532	74.5	2039.03	
San Andrés Cholula	573147	2103484		2147.448	31.36	2116.09	
San Andrés Cholula	574090	2112230		2175.107	27.2	2147.91	
San Baltazar 1	583700	2100997	98	17	99.6	100.81	14.05

Continuación, niveles estáticos de 1997

Pozo	X UTM	Y UTM	Prof. m	Caudal	NEs m	ND	QE l/s
San Baltazar Tétela	587000	2091841		2060	11.8	2048.2	
San Cristóbal Tulcingo	582229	2113837	90	24.7	38.7	69	0.81
San Fco. Totimehuacan	594157	2092168		2084.54	57.63	2026.91	
San Francisco Tláloc	553923	2141867		2337.911	8.05	2329.86	
San José De La Cañada	581467	2113751		2155.238	52.63	2102.61	
San Lorenzo Amecatla	578828	2116981		14.1	35.54	38.2	5.3
San Lorenzo Chiautzingo	552421	2124653		2479.017	40.88	2438.14	
San Lorenzo Chiautzingo	556070	2122905		2352.736	0.3	2352.44	
San Lucas El Grande	553914	2138014		2356.637	45.4	2311.24	
San Lucas El Grande	554101	2134738		2326.21	40.3	2285.91	
San Martin Texmelucan	560070	2129099		2263.595	9.4	2254.19	
San Martin Texmelucan	560281	2128076		2265.076	26.3	2238.78	
San Martin Texmelucan	560780	2132891		2239.248	84.65	2154.6	
San Mateo Cuanala	567459	2112469		2213.112	45.3	2167.81	
San Matías Talancaleca	549674	2138922		2472.316	56.85	2415.47	
San Miguel	599722	2106602	144	40.8	119.17	121	22.3
San Miguel Xoxtla	573895	2119743		2190.921	5	2185.92	
San Salvador El Verde	554049	2130399		2340.66	33.6	2307.06	
Santa Rita Tlahuapan	546003	2137859		2576.626	84.65	2491.98	
Santa Rosa	587815	2106648	130	13	83.66	105.61	0.59
Sta. Clara Ocoyucan	573481	2096583		2091.669	48.45	2043.22	
Xilotzingo (Universidades)	583396	2100284	157	55	90.52	93.5	18.46
Xonacatepec 2	585978	2106022	159.7	21.5	102.41	130	0.78
Xonacatepec 4	592118	2108986	175	50	91.44	106	3.43
Xoxtla I (HYLSA 1)	571700	2118617		50	1.66	36.12	1.45
Barrio Del Alto No. 2	581291	2137950		46.8	37.68	44.77	6.61
Coatepec	580320	2100083	117	9	101.19	115	0.65
Ignacio Zaragoza No. 5	575458	2131003	150	66.6	46.72	59.62	5.16
La Tranquilidad No. 4	554628	2137697	120	33	45.48	50.12	7.11
Papalotla Almecatla	582477	2120374	100	50	33.1	39.76	7.51
San Andrés Cuamilpa	590086	2139808		8.6	58.29	61.67	2.53
San Antonio Papalotla No. 1	561538	2117685		8.6	28.34	37.25	0.96
San Martín Texmelucan	561538	2117685		65.7	12.04	21.33	7.07
			-	-		-	!

Niveles estáticos de 2002

Localidad	X UTM	Y UTM	Elev_brocal m	NEs m	Prof. m
San Francisco Tláloc	553946	2141693	2337.911	9.63	2328.28
San Matías Talancaleca	549674	2138922	2472.316	59.5	2412.82
Sta. Rita Tlahuapan	546029	2137679	2576.626	86.3	2490.33
San Lucas El Grande	553936	2137845	2356.637	48.59	2308.05
San Lucas El Grande	554129	2134553	2326.21	41.7	2284.51
U. Hab. Antonio J. Hdez.	549806	2133568	2442.129	118.33	2323.8
Tlacotepec de José Manzo	554049	2130399	2340.66	35.48	2305.18
San Baltazar Temaxca	560070	2129099	2263.595	9.66	2253.94
San Matías Talancaleca	554510	2126699	2391.804	52	2339.8
San Jerónimo Tianguismanalco	560281	2128076	2265.076	25.9	2239.18
San Rafael Tenanyecac	566259	2128009	2210	0.3	2209.7
Parque Industrial	561844	2125482	2249.272	16.75	2232.52
San Juan Tetla	552421	2124653	2479.017	42.65	2436.37
San Mateo Capultitlan	559038	2123909	2296.041	34.5	2261.54
Sta. Ana Xalmimilulco	566060	2123501	2210	2.34	2207.66
San Lorenzo Chiautzingo	556070	2122905	2352.736	0.1	2352.64
Sta. Ana Xalmimilulco	565348	2122748	2215.889	4.03	2211.86
El Arenal	563788	2121710	2230	3.12	2226.88
Huejotzingo	561620	2119787	2263.696	22.03	2241.67
San José	573895	2119743	2190.921	1.85	2189.07
El Nopal	567269	2118609	2230	27.5	2202.5
San Juan Pancoac	559820	2117781	2314.409	34	2280.41
Los Tochimanes	567583	2116882	2208.408	16.25	2192.16
Frace. Capulrrabia	564847	2114980	2228.28	22.52	2205.76
Nealtican	561328	2109107	2237.78	52.3	2185.48
Col. Chahuac	560926	2114090	2272.846	7.43	2265.42
Santa Ana	555035	2112749	2482.593	114.2	2368.39
Juan C. Bonilla	567459	2112469	2213.112	45.45	2167.66
San José De La Cañada	581467	2113751	2155.238	53.25	2101.99
Sta. Bárbara Almoloya	574090	2112230	2175.107	26.13	2148.98
Central De Abastos	585644	2110561	2209.094	54.75	2154.34
Espíritu Santo	557232	2140737	2320	2.5	2317.5
San José De Los Milagros	560800	2139162	2407.315	143.76	2263.56
Guadalupe Victoria	564119	2131639	2226.145	2.23	2223.92
San José Atoyatenco	569509	2127903	2287.338	92.96	2194.38
Sta. Cruz Xonacatepec	597156	2105796	2279.247	79.65	2199.6
Sta. Inés Tecoexcomac	568765	2132562	2212.587	11.6	2200.99
San Miguel Xochitecatitla	568265	2126781	2201.848	5.4	2196.45
Clavijero	589750	2104939	2192.099	55.13	2136.97
San Francisco Acatepec	573147	2103484	2147.448	36.55	2110.9
Tlaltenango	567123	2120382	2222.879	22.3	2200.58
San Luis Tehuiloyocan	570795	2106080	2150	21.77	2128.23
San Antonio Cacalotepec	574018	2102533	2125.947	70.73	2055.22
San Francisco Coapa	567490	2110051	2191.713	32.95	2158.76

Continuación, niveles estáticos de 2002

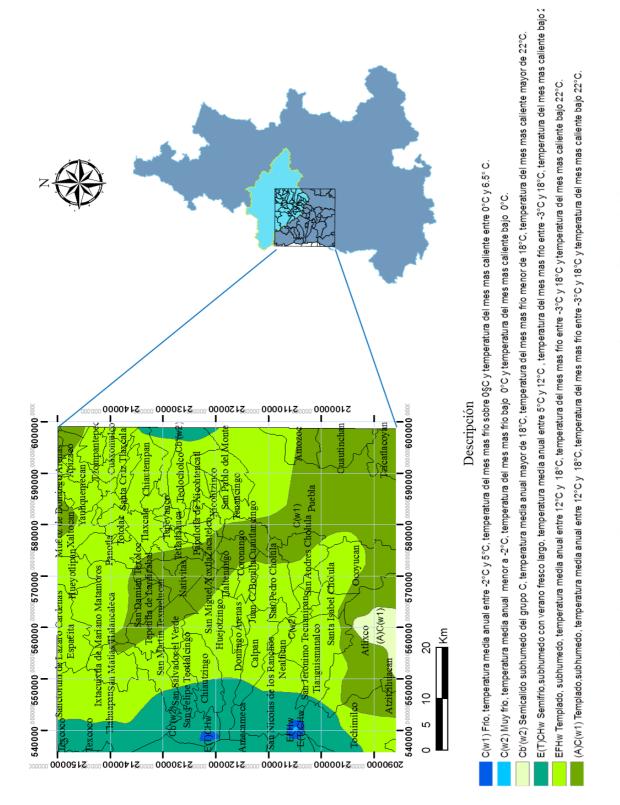
Localidad	X UTM	Y UTM	Elev_brocal m	NEs m	Prof m
San Francisco Coapan	567199	2108195	2185.486	46.51	2138.98
San Gregorio Zacapechpa	566845	2106994	2172.017	31.4	2140.62
San Antonio Cacalotepec	575901	2101493	2113.532	124.39	1989.14
San Agustín Calvario	568840	2106815	2163.413	23.92	2139.49
Ex hacienda Dolores	564045	2110067	2232.194	47.24	2184.95
San Fco. Totimehuacan	585065	2097715	2077.614	43.5	2034.11
Sta. Clara Ocoyucan	573481	2096583	2091.669	54.7	2036.97
Buenavista Tetela	587000	2091841	2060	13.2	2046.8
Oasis Valsequillo	591090	2091977	2060	8	2052
Gpe. V. Valsequillo	594157	2092168	2084.54	60.25	2024.29
San Andrés Azumitla	579786	2090216	2080	24.83	2055.17
Col. San José El Rincón	584077	2087862	2064.133	8.6	2055.53
San Pedro Tlaltenango	568741	2119650	2213.201	34.05	2179.15
Santiago Mextla	565160	2119897	2245.325	30.1	2215.23
Sta. María Zacatepec	567723	2115305	2214.763	32.25	2182.51
Viveros De Santa Cruz	578074	2108655	2119.573	65.1	2054.47
Guadalupe Xonacatepec	592317	2108667	2262.106	115.25	2146.86
Col. El Porvenir	588570	2106618	2186.225	68.7	2117.53
Los Sauces San Diego	574213	2109690	2149.268	8.7	2140.57
Huejotzingo	562913	2117390	2269.424	25.7	2243.72
Col. Lázaro Cárdenas	560205	2122265	2272.22	28.4	2243.82
Sta. Ma. Moyotzingo	558987	2125688	2298.26	34.28	2263.98

Niveles estáticos de 2010 y 2011

Pozo	Clave	Municipio	X UTM	Y UTM	CVE. PIEZO	ELEV. m	NEs m	Prof. m
Atlixcayotl 7	VP0425	119	575217	2100514		2104	109.8	
Atlixcayotl 9	VP0423	119	574490	2100041		2109.889	107.7	2002.189
Baños Malinche. Puebla	VP0922	114	585437	2109285		2189.612	25.35	2164.262
Baños Públicos Soto. San Martin Texmelucan	VP0601	132	559093	2132341		2255.539	9.93	2245.609
Baños San Cristóbal. Cholula De Rivadavia	VP0860	140	572001	2108320		2154.104	15.8	2138.304
Barranca Honda 1	VP1049	114	581151	2114082		2156.687	29.87	2126.817
Carcaña 1	VP0305	140	575818	2109377		2137.217	82.8	2054.417
Carcaña 4	VP0308	140	574951	2108571		2147	96	
Castillotla Mayorazgo	VP0438	114	579480	2100229	93	2104.34	93.3	2011.04
CFE 1	VP0362	114	583830	2111680		2190.678	60.5	2130.178
Chachapa	VP0680	114	593568	2107085		2257.844	30.06	2227.784
Cholula	VP1110	140	569591	2106084		2153.506	27.75	2125.756
Cholula	VP0800	140	567408	2108235	46	2187.689	34.12	2153.569
Cholula	VP0531	140	566798	2107152	47	2173.485	32.69	2140.795
Cholula San Pedro (SOAPACH 3)	VP0850	140	571607	2108261		2155.202	17.49	2137.712
Colon 4	VP0461	114	593625	2109801		2308.544	157.95	2150.594
Coronango	VP0057	41	574181	2109890	72	2151.707	9.23	2142.477

Continuación, niveles estáticos de 2010 y 2011

Pozo	Clave	Municipio	X UTM	Y UTM	CVE. PIEZO	ELEV. m	NEs m	Prof m
CRI - CRI	VP1076	114	585047	2103699		2134.62	60.36	2074.26
Cristo	VP1075	114	586027	2105065	116	2152.378	95.1	2057.278
El Dorado	VP1305	114	583561	2103850		2123	78.6	
El Llano San Pedro Costocan	VP0266	74	559991	2125554		2276.611	30.09	2246.521
El Mirador 1	VP0369	114	584878	2103732		2133.563	64.2	2069.363
Gabriel Pastor	VP0451	114	583018	2103515		2115.107	97	2018.107
Huejotzingo	VP0293	74	564916	2118945		2247.067	22.35	2224.717
Huejotzingo	VP0033	74	562433	2123804		2240	12.07	2227.93
Huejotzingo	VP0294	74	563636	2118824		2258.108	17.5	2240.608
Huejotzingo	VP0276	74	559776	2117988	23	2313.847	35.33	2278.517
Huejotzingo	VP0034	74	561319	2123826	80	2253.671	23.35	2230.321
Huejotzingo	VP0279	74	561567	2117615		2278.809	21.2	2257.609
Huejotzingo	VP0027	74	566019	2123701	16	2210	1.37	2208.63
Huejotzingo	VP0708	74	562874	2117592	73	2268.373	29.61	2238.763
Huejotzingo	VP0254	140	569019	2111857		2191.15	21.7	2169.45
Huejotzingo (Pozo Las Animas)	VP0028	74	561584	2119988	20	2265.964	13.32	2252.644
Humboldt	VP1074	114	586296	2105682		2168	94.5	
Insurgentes	VP1080	114	586638	2103211	118	2144.613	78.32	2066.293
Joaquín Colombres 2	VP0476	114	588696	2106303		2179.903	95.4	2084.503
Juan C. Bonilla	VP0495	90	566368	2115064		2216.309	11.9	2204.409
Juan C. Bonilla	VP0494	90	566383	2115058		2216.655	11.9	2204.755
La Constancia	VP0330	114	580750	2111313		2130.476	10.4	2120.076
Las Carretas	VP0303	140	576881	2109545		2137	70.3	
México 68	VP0395	114	588281	2106935		2190.251	96.1	2094.151
Moratilla 1	VP0331	114	580356	2111694		2129.399	54.8	2074.599
Moratilla 5	VP0335	41	580553	2112419		2135.821	85.6	2050.221
Nealtican 09	VP1061	126	564626	2103630	114	2165.842	39.13	2126.712
Nealtican 2	VP0403	126	561257	2109123	26	2238.133	61.38	2176.753
Nealtican 5	VP0401	126	561194	2107798		2218.146	49.2	2168.946
Nealtican 6 (Acuexcomac 6)	VP0405	126	562744	2106728	49	2200.331	65.98	2134.351
Parque Juárez (Huexotitla)	VP0452	114	583928	2104413		2125.623	61.4	2064.223
Pozo 1	VP1020	41	578974	2115284		2194.78	71.55	2123.23
Pozo 4	VP1021	41	579115	2115133		2194.126	69.49	2124.636
Prados Agua Azul	VP0454	114	582236	2103693		2117	42.7	
Puebla	VP0917	114	580838	2110833		2133.682	12.39	2121.292
Col. San José El Rincón	VP0058	114	584046	2088062	60	2060	9.82	2050.18
Puebla	VP0700	114	586571	2105291		2156.213	92.83	2063.383
Puebla	VP0941	114	584600	2110004		2190.26	33.65	2156.61
Puebla	VP0935	114	588529	2109266		2229.422	115.65	2113.772
Puebla	VP0984	114	589289	2108304		2219.27	78.94	2140.33
Puebla	VP0038	15	597164	2105759	37	2279.032	86.18	2192.852
Puebla	VP0301		578088	2108878		2130	59	
Puebla	VP0991	114	580165	2105741		2118.643	3.2	2115.443
Puebla Parque Industrial Resurrección	VP0943	114	589692	2109526		2244.604	94	2150.604

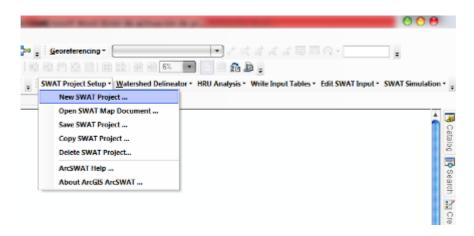

Continuación, niveles estáticos de 2010 y 2011

Pozo	Clave	Municipio	X UTM	Y UTM	CVE. PIEZO	ELEV. m	NEs m	Prof m
Recta Cholula 1	VP1062	114	576406	2107554	117	2125.991	87.4	2038.591
Recta Cholula 5 (Jardines De Zavaleta)	VP0419	114	578036	2108175		2137	111.1	
Reyes Tlanechicolpan	VP0552	126	568034	2104556		2150.081	19.03	2131.051
San Andrés Cholula	VP0871	119	574493	2107376		2134.845	18.5	2116.345
San Andrés Cholula	VP0862	119	574964	2106848		2131.181	77	2054.181
San Andrés Cholula	VP0021	119	575875	2101670	48	2114.872	132.54	1982.332
San Andrés Cholula	VP1268	119	572687	2103803		2150	31.03	2118.97
San Andrés Cholula	VP0039	34	574070	2112409	31	2176.909	41.13	2135.779
San Andrés Cholula	VP1112	119	575945	2105677		2123.972	25.06	2098.912
San Andrés Cholula	VP1201	119	572736	2104901		2140.172	21.7	2118.472
San Andrés Cholula	VP0875	119	573401	2105770		2136.268	14	2122.268
San Andrés Cholula	VP1197	119	573548	2106316		2137.598	22	2115.598
San Andrés Cholula	VP0876	119	573587	2105914		2136.179	14.03	2122.149
San Andrés Cholula	VP1298	119	573952	2106718		2137.393	29.5	2107.893
San Andrés Cholula	VP1297	119	574106	2106612		2136.357	31.02	2105.337
San Andrés Cholula	VP1300	119	574271	2106197		2134.086	10.55	2123.536
San Andrés Cholula	VP1199	119	574337	2106155		2133.799	14.75	2119.049
San Andrés Cholula	VP0878	119	574570	2104938		2132.452	16.03	2116.422
San Baltazar 1	VP1084	114	583700	2100997		2042.43	77.57	1964.86
San Buenaventura Nealtican	VP1124	126	562521	2108259		2293.298	85.3	2207.998
San Cristóbal Tepatlaxco	VP0631	132	557926	2134020		2260	14.63	2245.37
San Cristóbal Tepatlaxco	VP0632	132	558101	2133883		2260	14.9	2245.1
San Francisco Coapa	VP0800	140	567408	2108235	46	2187.689	34.12	2153.569
San Francisco Tláloc	VP0014	134	553923	2141867	1	2346.329	9.57	2336.759
San Gabriel Almoloya Santa Bárbara	VP0039	34	574070	2112409	31	2176.909	41.13	2135.779
San Gregorio Atzompa	VP1200	125	568768	2104183		2170	50.06	2119.94
San Gregorio Atzompa	VP0565	125	567958	2103183		2146.524	13.2	2133.324
San Gregorio Atzompa	VP0568	125	569070	2102772		2133.936	12.5	2121.436
San Gregorio Atzompa	VP0566	125	568659	2102600		2137.788	10	2127.788
San Gregorio Atzompa	VP0567	125	568668	2102721		2137.961	9.5	2128.461
San Gregorio Atzompa	VP0569	125	568704	2102020		2144.424	16.5	2127.924
San Gregorio Atzompa	VP0087	125	569128	2105891		2157.69	16.75	2140.94
San Gregorio Zacapechpan	VP0086	140	567428	2105648		2162.7	23.08	2139.62
San Jerónimo Tecuanipan	VP0517	126	563617	2102788		2132.013	8.5	2123.513
San Juan Cuautlancingo	VP1029	114	578549	2109859		2137.588	11.15	2126.438
San Juan Cuautlancingo	VP1043	41	577464	2110422		2138.328	51.83	2086.498
San Juan Tuxco	VP0635	556750	2128990			2312.441	29.47	2282.971
San Lorenzo Chiautzingo	VP0031	48	552388	2124847	14	2475.085	52	2423.085
San Lucas El Grande	VP0013	134	553914	2138014	4	2361.183	64.17	2297.013
San Lucas El Grande	VP0012	143	554101	2134738	5	2326.299	67.75	2258.549
San Luis Tehuiloyocan	VP0801	119	568358	2105161		2161.853	25.08	2136.773
San Manuel	VP0447	114	584859	2102438		2130	123.8	2006.2

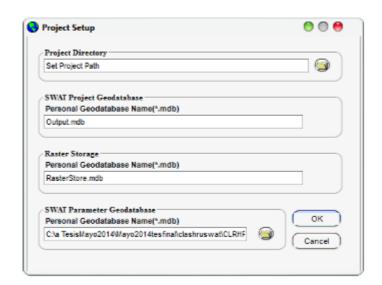
Continuación, niveles estáticos de 2010 y 2011

Pozo	Clave	Municipio	X UTM	Y UTM	CVE. PIEZO	ELEV. m	NEs m	Prof m
San Martin Texmelucan	VP0612	132	558616	2133306		2256.95	5.14	2251.81
San Martin Texmelucan	VP0656	132	560887	2129349	9	2254.575	18.28	2236.295
San Jerónimo Tianguismanalco	VP0002	132	560254	2128279	11	2259.363	28.5	2230.863
San Martinito	VP1129	119	578048	2103273		2110.13	4.89	2105.24
San Matías Talancaleca	VP0110	134	552846	2139429		2431.99	127.33	2304.66
San Miguel 1	VP0324	41	580278	2111621		2126.368	41.3	2085.068
San Miguel Xoxtla	VP0169	136	573869	2119915		2191.185	2.82	2188.365
San Miguel Xoxtla	VP0056	136	573867	2119915	21	2191.185	2.96	2188.225
San Pedro Cholula	VP0591	119	570769	2106274	43	2150.168	25.8	2124.368
San Pedro Cholula	VP0080	140	569727	2107048		2160	32.96	2127.04
San Pedro Cholula (SOAPACH 10)	VP0856	140	577401	2109679		2133.916	13.64	2120.276
San Pedro Cholula (SOSAPACH 6)	VP0857	140	573961	2108530		2143.84	82.76	2061.08
San Pedro Tlaltenango	VP0271	181	568712	2118300		2206.456	28.94	2177.516
San Pedro Tlaltenango	VP0262	181	566897	2117499	89	2222.383	29.08	2193.303
San Pedro Tlaltenango	VP0035	181	568224	2119703		2219.632	37.59	2182.042
San Pedro Tlaltenango	VP0035	181	568224	2119703	61	2219.632	37.59	2182.042
San Rafael Tlanalalpan (Pozo De Agua Potable)	VP0623	132	555077	2133459		2310.224	41.26	2268.964
Santa Isabel Cholula	VP0729	148				2120	24.21	2095.79
Santa Isabel Cholula	VP1179	148	566105	2098945		2118.872	24	2094.872
Santa María Coronango	VP1001	34	574086	2113760		2184.513	11.4	2173.113
Santa María Coronango	VP1003	34	572337	2115355		2177.815	9.87	2167.945
Santa María Tonantzintla	VP1161	119	571241	2105257		2145.948	21.8	2124.148
Santa Rosa	VP0396	114	587815	2106648		2178.342	89.1	2089.242
Tecontla	VP0290	60	560129	2116928		2314.587	36.47	2278.117
Tlaltepango 1	VP0353	114	586341	2110479		2215.101	93	2122.101
Unidad Guadalupe	VP0449	114	585082	2102733		2131.774	124.7	2007.074
Xonacatepec 3	VP0400	114	593015	2108796		2279	101.38	
Xonacatepec 4	VP0399	114	592118	2108986	68	2256.683	110.05	2146.633
Lardizábal Tlax.	VP0055	19	564120	2131830	35	2225.838	3.97	2221.868
Huejotzingo	VP0201	132	563779	2124266		2228.479	4.56	2223.919
San Lorenzo Chiautzingo	VP0225	48	557709	2123561	86	2327.021	38.02	2289.001
San Matías Talancaleca	VP0111	134	552733	2138316		2395.469	55.58	2339.889
Tlaltenango	VP0016	74	567079	2120578	42	2211.681	31.05	2180.631

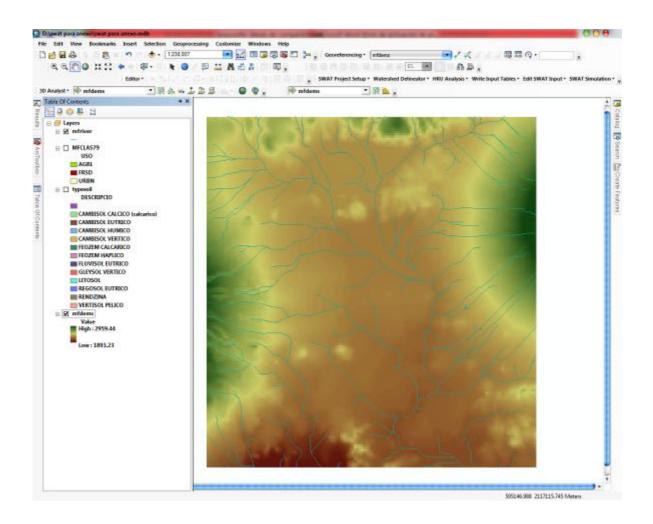
ANEXO D. Mapa de climas del área de estudio

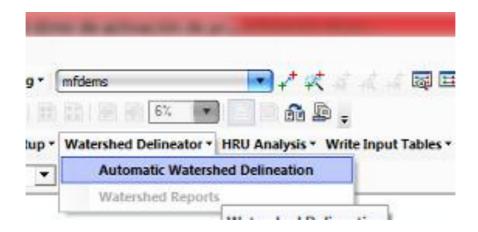


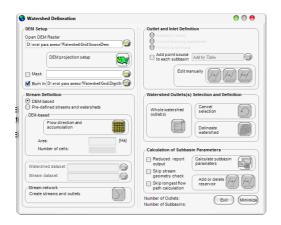
Mapa de climas del área de estudio (elaboración propia a partir de información de CONABIO, 2014).

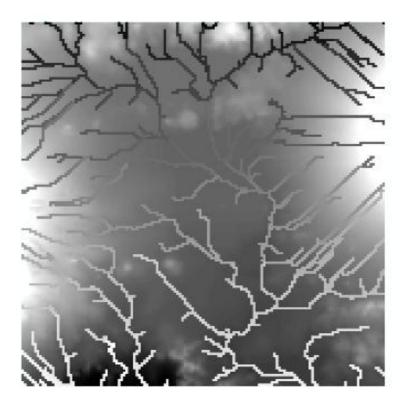

A N E X O E . Obtención de HRUs

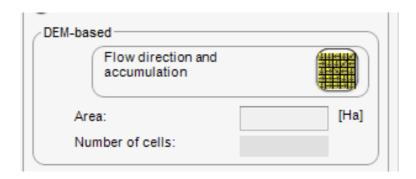
A continuación se describen los pasos para la obtención de las HRUs con ArcSWAT.


1.- Ir al menú de ArcSWAT ProjectSetup y elegir la opción New SWAT Project


2.- Al abrir la ventana Project Setup elegimos el directorio donde se guardara nuestra base de datos y proyecto asociado de SWAT. Una vez llenado los campos damos O.K., hasta este momento solo hemos creado nuestro proyecto y direccionado la carpeta donde se almacenaran los archivos creados.

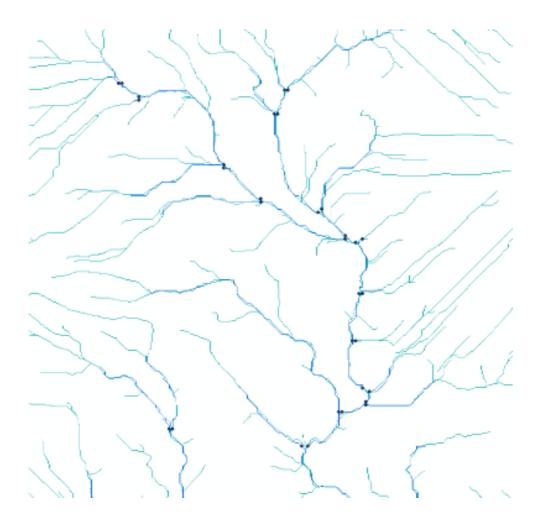

3.- Una vez realizado el paso 2, es necesario traer el DEM, y los shape files ríos, uso de suelo y tipo de suelo.

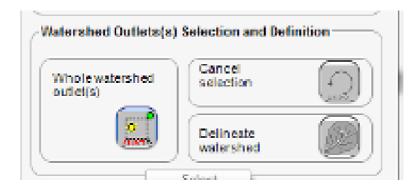

4.- Ahora ingresamos al menú Watershed Delineator y elegimos la opción Automatic Waterdhed Delineation.

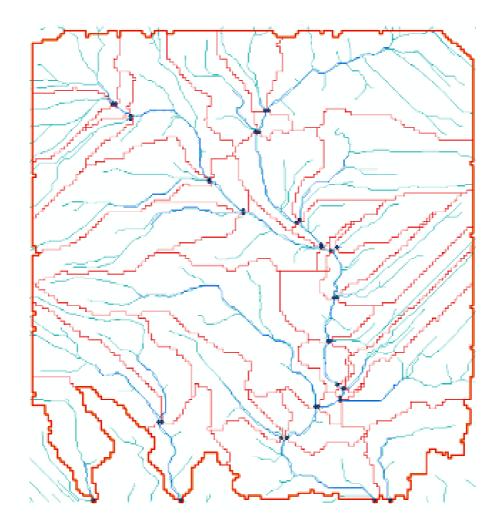

- 5.- Se abre el cuadro Waterdhed Delineation, aquí se elaboraran las subcuencas de manera automática. Para ello seguimos los siguientes pasos.
- a) En Open DEM raster elegimos nuestro DEM, dando click en el directorio.En la ventana que se abre seleccionamos Select FromMap, y ahí cargamos nuestro DEM.

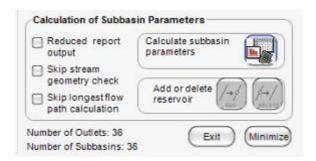
- b) En DEM projection setup, seleccionamos las unidades en z (en este caso metros).
- c) Elegimos la casilla Burn in y en el directorio seleccionamos el shp de ríos.

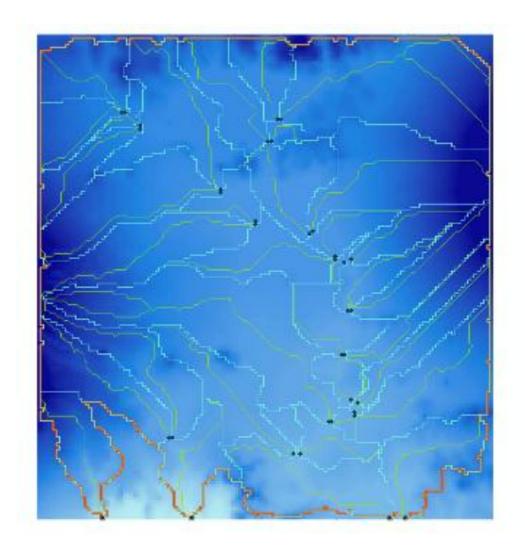
d) Hasta aquí, tenemos lo necesario para construir nuestras subcuencas. Ahora crearemos automáticamente la información de dirección y acumulación de flujo dando click sobre el botón Flow direction and acumulation.


e) Ahora creamos la red de puntos de convergencia y salida de flujo, dando click en Stream network


f) Una vez obtenida la red de puntos de control pueden aumentarse, eliminarse o agregarse, en función de la información con que se cuente, con las opciones que se encuentran en Outlet and Inlet Definition. Cuando se tienen puntos de aforo es recomendable incluirlos.

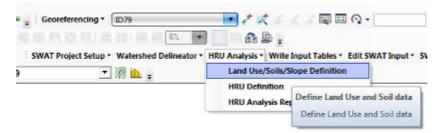

g) El archivo obtenido previo a la generación de las subcuencas es el siguiente.

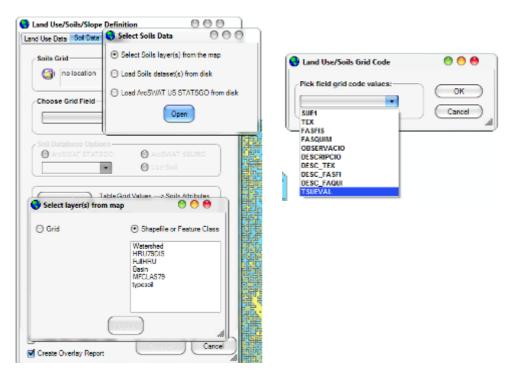

h) Para crear las subcuencas primero damos click en el icono Whole Whatershed Outlets. Seleccionamos nuestros puntos de control del archivo creado f y damos click sobre la pantalla. Listo los puntos de control para crear las subcuencas están seleccionados.



Ahora damos click en el icono delineate whatershed, y listo hemos delineado nuestras subcuencas.

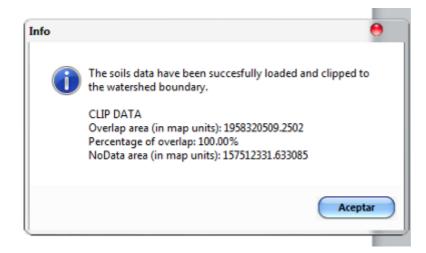
g) Ahora solo resta calcular los parámetros de la subcuenca, para ello damos click en el icono Calculate subbasin parameters. Dejamos que termine el proceso y listo damos click en exit.



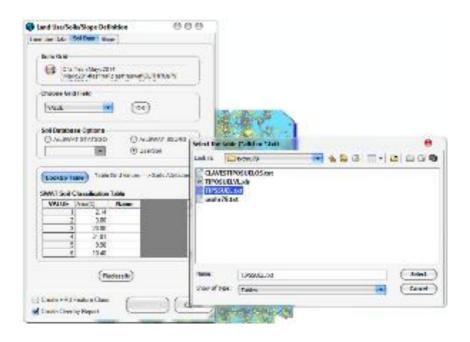

Archivo obtenido de subcuencas procesadas con ArcSWAT

h) Hasta este punto se puede trabajar casi con la capacidad de cualquier equipo de PC o Laptop moderno, que dependiendo la capacidad del hardware será la velocidad de respuesta y procesamiento. Pero a partir de este punto, es crucial contar como mínimo con un equipo que tenga las siguientes características si su equipo tiene como sistema operativo Windows 7 o Windows 8. Una memoria RAM de 8GB, un disco duro de 500 Gb y un procesador i Core 5 (o su análogo). Teniendo un equipo con esas características (mínimas), durante este trabajo el tiempo de procesamiento para realizar los siguientes pasos para crear las HRU es de ~90 a 240 minutos, por cada HRU. Se recomienda no interrumpir durante este tiempo de procesamiento las subrutinas en cada uno de los siguientes pasos, ya que de lo contario ArcGIS colapsa.

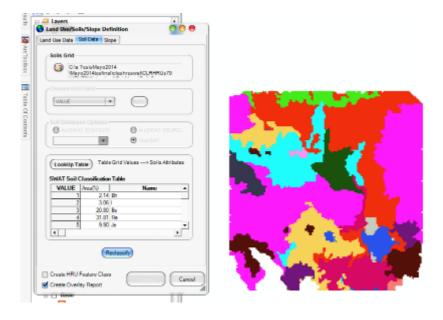
i) Ahora ingresamos al menú HRU Analysis y seleccionamos la opción Land Use/ Soils/ Slope Definition.

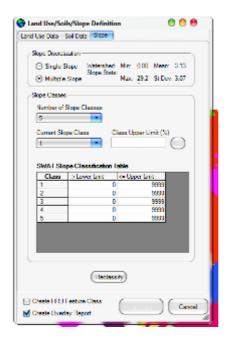


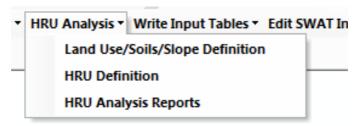
j) Una vez abierto el cuadro Land Use/ Soils/ Slope Definition, es necesario cargar la información de uso de suelo y tipo de suelo. El procedimiento descrito a continuación es el mismo para ambos. Primero damos click en el icono de Soil Grid, y seleccionamos de nuestros shape files el archivo correspondiente tipo o uso de suelos y seleccionamos el código de valores correspondiente. En el caso de uso de suelo se han utilizado los archivos obtenidos de la clasificación no supervisada, obtenidos a partir de las imágenes LANDSAT.

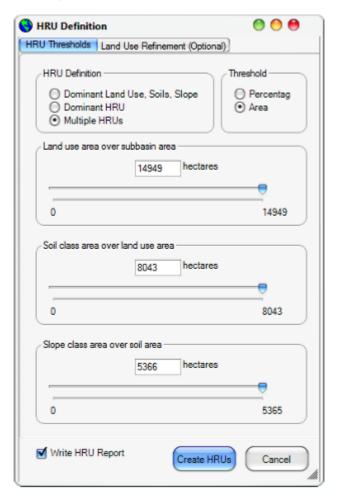


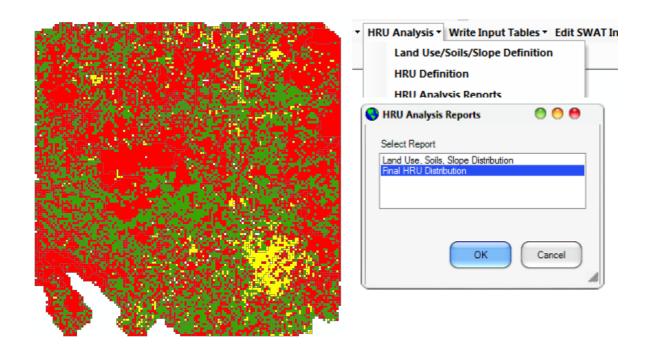
Si nuestros datos son correctos, nos enviara un recuadro donde nos indica que el archivo ha sido leído satisfactoriamente, con el criterio de convergencia de la superficie. La tolerancia de convergencia del archivo con el área determinada de las subcuencas debe coincidir en un

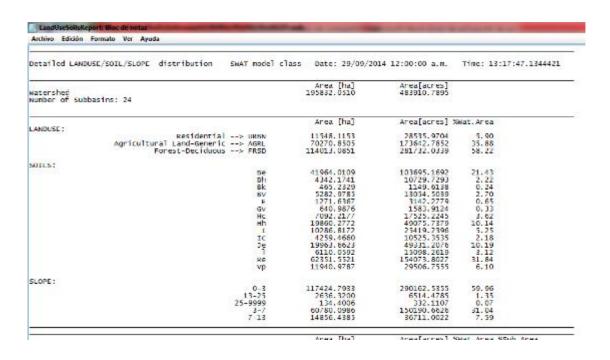

mínimo del 85% para ser aceptado en el procesamiento. Lo ideal es el 100% de convergencia como en este trabajo.


Ahora de Choose grif fild, en la pantalla desplegable, que ahora está cargada, se elige Value (o el campo de tipo entero asociado con la información necesaria del shape file). Automáticamente al dar click en Ok, al costado derecho, se cargara la información correspondiente en la tabla de abajo. Para seleccionar los datos correspondientes (del área de estudio) para el tipo o uso de suelo, activamos clic en el option buton User Soil, que nos abrirá una ventana para cargar nuestro archivo en formato ASCII.


Una vez cargado el archivo damos click en reclasificar para incluir la información correspondiente.


k) Una vez cargados los datos en las pestañas Land Use Date y Soil Date, damos click en la ventana Slope, elegimos Multiple Slope y seleccionamos el número de clases a procesar (en este punto el máximo son 5). En Current Slope Class proporcionamos el intervalo en porcentaje que abarcara cada clasificación, siendo en orden continuo (el intervalo anterior es el inicio del siguiente).


l) Una vez ingresados todos los datos y archivos en el formato correcto en el cuadro Land Use/Soils/Slope Definition, se activara el botón Overley. Creando así la base de datos y archivos para crear las HRU. Ahora en el menú HRU Analysis elegimos HRU Definiton.



m) En el cuadro HRU Definiton, elegimos la opción que nos interese para definir y crear nuestras HRU. Finalmente, damos click en el boton Create HRUs.

n) Una vez creado nuestras HRUs, podemos entrar al menú HRU Analysis y consultar los datos de nuestro archivo de las HRUs dando click en HRU Analysis Reports.

A N E X O F. Tablas de precipitación (P) y temperatura (T), del periodo 1982 a 2008.

Tablas de precipitación (P) y temperatura (T), del periodo 1982 a 2008.

Precipitación (P mm/año) del periodo 1982 a 1990.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	P (mm) 1982	P (mm) 1983	P (mm) 1984	P (mm) 1985	P (mm) 1986	P (mm) 1987	P (mm) 1988	P (mm) 1989	P (mm) 1990
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	486	529	923	745	605	542	608	1013	1060
2	21034	Echeverría, Puebla	575473.397	2099100.060	698	728	1144	938	707	646	853	654	982
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	634	777	1083	881	779	729	788	857	981
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	477	535	819	715	824	626	715	626	687
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	563	518	859	745	864	573	998	1006	1053
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	948	500	723	573	569	613	613	385	510
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	521	623	624	728	426	710	639	472	465
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	651	800	1240	954	643	1015	724	532	613
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	554	1041	1545	815	926	574	1108	1041	1178
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	403	708	1004	850	820	634	778	670	857
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	667	997	883	887	844	836	1054	585	837
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	768	535	540	681	507	601	619	335	430
13	21242	Capulac, Tétela de O.	598988.519	2111383.657	632	776	1164	923	690	908	741	623	709
14	21247	Cholula	571541.276	2108711.536	552	665	1010	848	772	637	792	650	860
15	21248	Puebla	584192.018	2103231.972	612	736	1046	875	714	700	766	785	918
16	21249	Puebla	591602.973	2094414.351	540	662	1278	780	754	582	836	976	1030
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	489	487	747	699	470	635	521	500	536
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	449	502	745	601	441	633	654	411	697
19	29047	Españita, Españita	560666.870	2151607.340	750	972	1408	1542	459	991	761	743	1421
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	521	595	906	753	483	714	664	526	675
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	570	704	857	695	644	623	702	503	950
			Promedio anual P	(mm)	594.5	685.2	978.5	820.4	663.9	691.5	758.8	661.6	830.9

Precipitación (P mm/año) del periodo 1991 a 1999.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	P (mm) 1991	P (mm) 1992	P (mm) 1993	P (mm) 1994	P (mm) 1995	P (mm) 1996	P (mm) 1997	P (mm) 1998	P (mm) 1999
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	698	793	620	634	504	355	654	659	791
2	21034	Echeverría, Puebla	575473.397	2099100.060	837	1105	842	797	1357	1250	905	836	858
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	980	1252	832	984	1221	906	1024	910	934
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	844	868	667	618	843	723	726	797	828
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	1279	946	842	1253	1356	1055	743	681	786
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	693	827	689	677	982	628	711	721	666
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	615	1227	1037	786	914	465	545	910	540
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	908	510	749	818	613	798	731	804	859
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	1361	959	854	1348	1432	1083	748	698	786
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	870	1114	687	610	802	718	806	773	839
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	919	1111	891	580	957	677	924	855	1128
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	718	751	760	719	979	651	745	769	638
13	21242	Capulac,Tetela de O.	598988.519	2111383.657	888	743	829	861	841	950	755	809	1018
14	21247	Cholula	571541.276	2108711.536	848	1037	748	693	1070	947	812	805	851
15	21248	Puebla	584192.018	2103231.972	874	1181	923	870	1261	1157	944	886	881
16	21249	Puebla	591602.973	2094414.351	1027	958	809	997	1086	890	755	722	800
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	753	929	755	683	960	546	685	645	570
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	624	976	650	686	1024	663	725	757	698
19	29047	Españita, Españita	560666.870	2151607.340	1432	1318	1055	1352	1478	1355	1479	936	874
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	779	863	710	674	1186	932	714	788	898
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	972	1159	889	920	979	804	919	769	635
	Promedio anual P (mm)					982.2	801.8	836.2	1040.2	835.9	811.90	787.14	803.71

Precipitación (P mm/año) del periodo 2000 a 2008.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	P (mm) 2000	P (mm) 2001	P (mm) 2002	P (mm) 2003	P (mm) 2004	P (mm) 2005	P (mm) 2006	P (mm) 2007	P (mm) 2008	PROMEDIO 1982_2008 P (mm)
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	614	602	760	666	740	459	663	980	718	682
2	21034	Echeverría, Puebla	575473.397	2099100.060	733	1058	495	1168	859	611	869	1017	828	880
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	947	1240	780	1106	1052	602	903	1015	878	929
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	693	769	594	390	779	592	872	798	659	707
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	283	825	760	917	908	540	797	985	687	845
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	638	631	579	376	788	570	851	704	791	665
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	806	845	807	690	1154	863	1055	971	1028	758
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	599	816	732	980	986	599	895	1053	913	798
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	313	847	766	891	896	532	785	981	706	954
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	683	788	594	427	783	592	872	940	995	764
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	834	650	867	867	867	867	867	998	973	867
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	684	725	630	475	860	627	905	776	848	677
13	21242	Capulac, Tétela de O.	598988.519	2111383.657	689	857	776	1106	1049	602	902	1192	998	853
14	21247	Cholula	571541.276	2108711.536	719	796	589	736	815	601	876	1061	850	801
15	21248	Puebla	584192.018	2103231.972	873	1162	744	1093	1016	603	899	1059	873	906
16	21249	Puebla	591602.973	2094414.351	561	765	763	867	878	524	772	925	820	828
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	494	746	570	733	709	592	871	731	813	662
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	722	672	585	401	772	589	868	756	807	660
19	29047	Españita, Españita	560666.870	2151607.340	515	571	654	592	885	674	892	838	905	1050
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	801	868	579	550	768	590	870	872	816	744
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	639	694	701	748	962	766	1077	881	992	806
		Promedi	o anual P (mm)	659.05	806.05	682.14	751.38	882.19	618.81	874.33	930.14	852.29	801.71

Temperaturas (T $^{\circ}\text{C})$ del periodo 1982 a 1990.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	T °C 1982	T °C 1983	T °C 1984	T °C 1985	T °C 1986	T °C 1987	T °C 1988	T °C 1989	T °C 1990
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	16.72	16.4	15.99	15.87	15.93	16.24	16.51	15.79	13.99
2	21034	Echeverría, Puebla	575473.397	2099100.060	15.78	15.28	14.61	14.5	15.15	15.59	15.58	15.32	15.85
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	17.39	16.45	15.48	15.41	16.32	17.34	17.38	16.95	17.17
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	17.52	16.98	16.63	17.04	17.38	17.52	17.16	16.62	17.69
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	17.49	17.11	17.11	17.46	15.2	16.56	10.5	9.91	9.87
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	15.86	15.11	14.89	14.2	12.66	14.54	14.48	14.72	14.9
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	14.39	13.82	14.29	14.48	14.32	14.5	14.53	15.06	15.38
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	12.92	12.91	12.94	12.44	14.65	14.58	13.25	13.59	13.84
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	10.43	8.64	7.72	7.41	7.77	7.3	8.18	7.69	7.76
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	14.38	14.37	13.92	14.17	13.28	13.01	14.26	14.34	14.28
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	18.33	17.92	17.74	17.77	18.01	18.48	18.58	17.99	18.19
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	15.28	14.77	13.44	13.98	15.66	14.71	15.33	14.68	14.83
13	21242	Capulac, Tétela de O.	598988.519	2111383.657	14.52	14.33	14.21	13.82	15.34	15.54	14.74	14.74	14.79
14	21247	Cholula	571541.276	2108711.536	16.09	15.64	15.2	15.21	15.43	15.79	15.93	15.64	16.11
15	21248	Puebla	584192.018	2103231.972	16.06	15.45	14.99	14.83	15.37	16	15.72	15.31	15.52
16	21249	Puebla	591602.973	2094414.351	14.55	13.96	13.58	13.51	13.51	13.91	13.45	12.85	12.39
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	15.99	15.78	15.37	15.76	15.74	15.93	15.39	15.18	15.32
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	14.91	14.08	13.94	13.41	13.25	14.66	14.63	14.21	14.41
19	29047	Españita, Españita	560666.870	2151607.340	14.46	14.51	13.97	13.67	10.8	14.03	14.6	14.34	13.7
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	15.27	14.84	14.61	14.48	14.99	15.5	15.07	14.86	15.23
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	14.43	14.26	14.17	7.93	7.78	8.28	8.43	14.43	14.11
			Promedio A	nual de T (°C)	15.37	14.89	14.51	14.16	14.22	14.76	14.46	14.49	14.54

Temperaturas (T $^{\circ}\text{C})$ del periodo 1991 a 1999.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	T °C 1991	T °C 1992	T °C 1993	T °C 1994	T °C 1995	T °C 1996	T °C 1997	T °C 1998	T °C 1999
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	16.33	15.72	16.12	16.64	16.78	15.31	16.21	16.75	15.74
2	21034	Echeverría, Puebla	575473.397	2099100.060	15.94	15.7	15.17	15.64	14.9	14.95	15.03	17.14	17.04
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	17.31	16.82	17.11	17.63	17.83	17.11	17.34	17.76	16.9
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	14.38	17.32	17.08	14.89	15.03	17.48	16.51	17.15	14.52
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	13.74	15.56	16.93	16.79	17.26	16.7	17.97	17.09	16.9
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	14.54	14.35	14.85	15.02	15.08	14.62	14.55	15.63	14.83
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	14.47	13.54	14.16	14.33	13.52	13.53	13.96	14.77	14.25
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	14	14.11	13.89	13.29	14.66	14.55	14.41	12.86	13.58
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	8.17	7.6	7.76	8.11	8.45	8.19	17.75	17.05	16.84
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	14.37	13.83	14.53	14.92	15.04	14.73	14.36	14.96	14.44
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	18.23	18.01	18.68	19.09	19.33	18.76	18.47	18.94	18.2
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	14.41	14.12	14.69	14.92	14.92	14.41	14.44	15.39	14.59
13	21242	Capulac, Tétela de O.	598988.519	2111383.657	15.24	14.99	15.09	14.89	15.82	15.39	15.51	18.08	16.46
14	21247	Cholula	571541.276	2108711.536	15.52	15.75	15.82	15.75	15.76	15.94	15.82	16.73	15.88
15	21248	Puebla	584192.018	2103231.972	15.95	15.4	15.82	16.11	16.26	16.19	17.1	17.15	16.81
16	21249	Puebla	591602.973	2094414.351	13.67	13.19	13.72	13.92	13.95	14.77	17.24	16.98	16.55
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	15.38	15.03	15.16	15.81	15.64	14.55	14.65	15.37	14.63
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	14.48	14.13	14.28	14.68	14.91	14.14	14.17	15.61	15.23
19	29047	Españita, Españita	560666.870	2151607.340	14.07	13.45	14.4	13.76	13.58	14.37	14	14.83	13.33
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	14.71	15.04	15.04	16.4	17.49	16.77	17.15	17.86	15.93
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	14.11	13.74	14.51	14.58	14.53	14.32	14.2	14.84	13.78
			Promedio A	anual de T (°C)	14.72	14.64	14.99	15.10	15.27	15.08	15.75	16.33	15.54

Temperaturas (T $^{\circ}\text{C})$ del periodo 2000 a 2008.

No	No Estación	ESTACIÓN	X(UTM)	Y(UTM)	T °C 2000	T °C 2001	T °C 2002	T °C 2003	T °C 2004	T °C 2005	T °C 2006	T °C 2007	T °C 2008	T °C Promedio 1982_2008
1	21016	Balcón del Diablo A Texaluca	593618.662	2091436.567	15.95	16.11	16.36	16.53	16.03	16.71	16.27	16.79	16.05	16.14
2	21034	Echeverría, Puebla	575473.397	2099100.060	17.19	17.28	14.89	15.91	15.38	15.74	15.63	15.64	15.03	15.62
3	21035	Puebla 21 Poniente 113A	586000.204	2099145.902	17.08	16.96	17.39	17.49	17.2	17.84	17.25	16.11	16.88	17.03
4	21046	Huejotzingo, Huejotzingo	561835.109	2116643.605	14.13	13.96	13.58	14.76	14.72	15.79	16.03	17.19	14.75	16.07
5	21071	San Baltazar Tétela, Dge	587727.859	2089969.311	17.16	17.97	16.49	16.73	16.27	16.92	16.46	16.6	22.18	16.18
6	21078	S.M.Texmelucan Labastida	559575.843	2132238.607	15.12	14.25	12.25	15.34	15.06	16.9	16.29	16.25	15.88	14.89
7	21096	Santa Rita Tlahuapan, Dge	543801.465	2137726.602	14.82	13.8	14.27	14.73	14.09	14.16	14.46	14.26	14.53	14.31
8	21148	San Miguel Canoa, Puebla	594949.688	2119330.148	13.72	13.09	14.63	16.4	16.57	17.2	16.84	12.83	12.37	14.08
9	21164	S. Juan Tetla, C.Agr.Exp	587718.995	2091850.463	17.08	17.68	16.56	16.79	16.35	16.99	16.53	16.54	20.44	12.14
10	21167	Calpan, San Andrés Calpan	559113.279	2112761.735	13.99	13.89	13.57	14.85	14.77	15.85	15.99	16.08	16.36	14.54
11	21192	Huilango E-2, Tochimilco	544247.087	2083286.977	18.15	17.56	18.27	18.27	18.27	18.27	18.27	17.89	17.72	18.27
12	21232	Tepatlaxco,S.M. Texmeluca	555997.529	2134108.418	14.63	14.18	13.14	15.14	14.81	16.02	15.76	15.68	15.62	14.8
13	21242	Capulac, Tétela de O.	598988.519	2111383.657	16.72	15.91	15.59	16.71	16.82	17.47	16.93	15.76	15.38	15.58
14	21247	Cholula	571541.276	2108711.536	15.77	15.7	14.69	15.67	15.42	16.15	16.19	16.99	16.54	15.82
15	21248	Puebla	584192.018	2103231.972	16.96	16.92	16.75	17.06	16.73	17.36	16.87	16.16	17.35	16.23
16	21249	Puebla	591602.973	2094414.351	16.76	17.07	16.62	16.82	16.4	17.05	16.57	16.76	16.59	15.05
17	29040	Ixtacuixtla, Ixtacuixtla	566598.072	2137131.873	14.54	15.34	15.84	15.98	15.6	15.82	16.09	16.03	15.78	15.47
18	29041	Tepetitla, Lardizábal	566099.327	2129826.623	14.53	14.33	14.61	14.32	14.46	14.94	16.11	16.17	15.73	14.6
19	29047	Españita, Españita	560666.870	2151607.340	14.16	13.77	11.6	8.36	7.95	7.7	7.05	7.84	15.06	12.72
20	29169	Zacatelco, Zacatelco	579571.182	2125232.647	16.19	16.34	13.1	15.36	14.99	15.57	16.13	15.73	15.02	15.54
21	29016	Nanacamilpa (CGE)	549008.570	2154338.355	13.96	13.49	12.83	3.48	3.05	2.48	1.28	2.66	14.55	11.12
			Promedio A	anual de T (°C)	15.65	15.50	14.91	15.08	14.81	15.38	15.19	15.05	16.18	15.06

A N E X O G . Tablas de resultados de los valores de escurrimiento, evapotranspiración, infiltración y recarga de cada una de las 24 subcuencas relacionadas con las HRUs para los años 1979, 1985, 1989, 1997 y 2014

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga para el año de 1979.

SUBBASIN	HRUs	A km²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	2.385	854	15	0.27	230.580	602.512	615.609	20.908	7.811	92.526	79.429
1	AGRL	11.726	854	15	0.25	213.500	602.512	615.609	37.988	24.891	109.606	96.509
	FRSD	39.154	854	15	0.16	136.640	602.512	615.609	114.848	101.751	186.466	173.369
	URBN	20.770	845	15.5	0.26	219.700	604.588	623.723	20.712	1.577	92.330	73.195
2	AGRL	51.179	845	15.5	0.24	202.800	604.588	623.723	37.612	18.477	109.230	90.095
	FRSD	143.699	845	15.5	0.16	135.200	604.588	623.723	105.212	86.077	176.830	157.695
	URBN	5.366	815	15	0.26	211.900	585.957	601.970	17.143	1.130	88.761	72.748
3	AGRL	72.346	815	15	0.25	203.750	585.957	601.970	25.293	9.280	96.911	80.898
	FRSD	143.401	815	15	0.16	130.400	585.957	601.970	98.643	82.630	170.261	154.248
	URBN	0.894	830	15.3	0.26	215.800	595.840	613.883	18.360	0.317	89.978	71.935
4	AGRL	28.819	830	15.3	0.25	207.500	595.840	613.883	26.660	8.617	98.278	80.235
	FRSD	61.316	830	15.3	0.16	132.800	595.840	613.883	101.360	83.317	172.978	154.935
	URBN	1.789	813	15	0.26	211.380	585.080	601.243	16.540	0.377	88.158	71.995
5	AGRL	20.074	813	15	0.25	203.250	585.080	601.243	24.670	8.507	96.288	80.125
	FRSD	63.800	813	15	0.16	130.080	585.080	601.243	97.840	81.677	169.458	153.295
	URBN	0.398	854	15.4	0.26	222.040	607.276	624.696	24.684	7.264	96.302	78.882
6	AGRL	5.664	854	15.4	0.25	213.500	607.276	624.696	33.224	15.804	104.842	87.422
	FRSD	16.894	854	15.4	0.16	136.640	607.276	624.696	110.084	92.664	181.702	164.282
	URBN	1.590	814	15	0.26	211.640	585.519	601.607	16.841	0.753	88.459	72.371
7	AGRL	25.739	814	15	0.27	219.780	585.519	601.607	8.701	-7.387	80.319	64.231
	FRSD	30.012	814	15	0.16	130.240	585.519	601.607	98.241	82.153	169.859	153.771
	URBN	5.963	825	15.1	0.26	214.500	591.429	607.732	19.071	2.768	90.689	74.386
8	AGRL	49.092	825	15.1	0.24	198.000	591.429	607.732	35.571	19.268	107.189	90.886
	FRSD	61.713	825	15.1	0.16	132.000	591.429	607.732	101.571	85.268	173.189	156.886
	URBN	0.398	872	16	0.26	226.720	621.874	644.810	23.406	0.470	95.024	72.088
9	AGRL	20.571	872	16	0.25	218.000	621.874	644.810	32.126	9.190	103.744	80.808
	FRSD	31.801	872	16	0.16	139.520	621.874	644.810	110.606	87.670	182.224	159.288
	URBN	0.398	828	15	0.26	215.280	591.592	606.628	21.128	6.092	92.746	77.710
10	AGRL	11.925	828	15	0.24	198.720	591.592	606.628	37.688	22.652	109.306	94.270
	FRSD	11.528	828	15	0.16	132.480	591.592	606.628	103.928	88.892	175.546	160.510
	URBN	1.988	835	15.1	0.26	217.100	595.733	611.296	22.167	6.604	93.785	78.222
11	AGRL	26.136	835	15.1	0.24	200.400	595.733	611.296	38.867	23.304	110.485	94.922
	FRSD	36.769	835	15.1	0.16	133.600	595.733	611.296	105.667	90.104	177.285	161.722
	URBN	1.093	815	15	0.26	211.900	585.957	601.970	17.143	1.130	88.761	72.748
12	AGRL	17.888	815	15	0.27	220.050	585.957	601.970	8.993	-7.020	80.611	64.598
	FRSD	30.509	815	15	0.16	130.400	585.957	601.970	98.643	82.630	170.261	154.248

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga para el año de 1979.

SUBBASIN	HRUs	A km²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	25.043	865	14.5	0.26	224.900	600.610	607.612	39.490	32.488	111.108	104.106
13	AGRL	48.098	865	14.5	0.27	233.550	600.610	607.612	30.840	23.838	102.458	95.456
	FRSD	57.340	865	14.5	0.16	138.400	600.610	607.612	125.990	118.988	197.608	190.606
	URBN	21.764	895	14.8	0.26	232.700	616.092	624.042	46.208	38.258	117.826	109.876
14	AGRL	16.397	895	14.8	0.25	223.750	616.092	624.042	55.158	47.208	126.776	118.826
	FRSD	48.098	895	14.8	0.16	143.200	616.092	624.042	135.708	127.758	207.326	199.376
	URBN	5.168	882	16	0.26	229.320	626.104	648.418	26.576	4.262	98.194	75.880
15	AGRL	88.147	882	16	0.24	211.680	626.104	648.418	44.216	21.902	115.834	93.520
	FRSD	85.663	882	16	0.16	141.120	626.104	648.418	114.776	92.462	186.394	164.080
	URBN	1.391	855	15	0.27	230.850	602.922	615.946	21.228	8.204	92.846	79.822
16	AGRL	2.286	855	15	0.24	205.200	602.922	615.946	46.878	33.854	118.496	105.472
	FRSD	1.689	855	15	0.16	136.800	602.922	615.946	115.278	102.254	186.896	173.872
	URBN	0.298	924	8	0.26	240.240	479.325	462.548	204.435	221.212	276.053	292.830
17	AGRL	16.397	924	8	0.24	221.760	479.325	462.548	222.915	239.692	294.533	311.310
	FRSD	51.775	924	8	0.16	147.840	479.325	462.548	296.835	313.612	368.453	385.230
	URBN	0.298	907	10	0.26	235.820	533.069	508.210	138.111	162.970	209.729	234.588
18	AGRL	31.204	907	10	0.24	217.680	533.069	508.210	156.251	181.110	227.869	252.728
	FRSD	32.993	907	10	0.16	145.120	533.069	508.210	228.811	253.670	300.429	325.288
	URBN	2.584	868	15	0.28	243.040	608.199	620.268	16.761	4.692	88.379	76.310
19	AGRL	26.335	868	15	0.27	234.360	608.199	620.268	25.441	13.372	97.059	84.990
	FRSD	29.316	868	15	0.16	138.880	608.199	620.268	120.921	108.852	192.539	180.470
	URBN	1.193	881	16	0.26	229.060	625.684	648.060	26.256	3.880	97.874	75.498
20	AGRL	12.323	881	16	0.25	220.250	625.684	648.060	35.066	12.690	106.684	84.308
	FRSD	11.726	881	16	0.16	140.960	625.684	648.060	114.356	91.980	185.974	163.598
	URBN	0.199	954	7	0.29	276.660	442.699	442.049	234.641	235.291	306.259	306.909
21	AGRL	11.329	954	7	0.27	257.580	442.699	442.049	253.721	254.371	325.339	325.989
	FRSD	35.378	954	7	0.16	152.640	442.699	442.049	358.661	359.311	430.279	430.929
	URBN	3.776	852	13	0.29	247.080	574.937	568.726	29.983	36.194	101.601	107.812
22	AGRL	18.683	852	13	0.26	221.520	574.937	568.726	55.543	61.754	127.161	133.372
	FRSD	17.490	852	13	0.16	136.320	574.937	568.726	140.743	146.954	212.361	218.572
	URBN	2.286	885	16	0.26	230.100	627.360	649.488	27.540	5.412	99.158	77.030
23	AGRL	36.372	885	16	0.25	221.250	627.360	649.488	36.390	14.262	108.008	85.880
	FRSD	27.925	885	16	0.16	141.600	627.360	649.488	116.040	93.912	187.658	165.530
	URBN	3.975	876	16	0.26	227.760	623.574	646.261	24.666	1.979	96.284	73.597
24	AGRL	26.732	876	16	0.25	219.000	623.574	646.261	33.426	10.739	105.044	82.357
	FRSD	25.937	876	16	0.16	140.160	623.574	646.261	112.266	89.579	183.884	161.197
Σ		1882.397	61932	1031	15.94	13945.940	42341.784	43190.388	5644.276	4795.672	10800.772	9952.168
Promedi	ios		860.167	14.321	0.224	193.694	588.080	599.866	78.393	66.607	150.011	138.225

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 1985.

SUBBASIN	HRUS	A km ²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	3.876	821	15	0.26	213.460	588.572	604.134	18.968	3.406	90.586	75.024
1	AGRL	39.552	821	15	0.25	205.250	588.572	604.134	27.178	11.616	98.796	83.234
	FRSD	9.938	821	15	0.16	131.360	588.572	604.134	101.068	85.506	172.686	157.124
	URBN	26.136	855	15.7	0.26	222.300	611.162	631.817	21.538	0.883	93.156	72.501
2	AGRL	109.016	855	15.7	0.25	213.750	611.162	631.817	30.088	9.433	101.706	81.051
	FRSD	82.682	855	15.7	0.16	136.800	611.162	631.817	107.038	86.383	178.656	158.001
	URBN	12.223	816	14	0.28	228.480	574.748	580.712	12.772	6.808	84.390	78.426
3	AGRL	135.252	816	14	0.27	220.320	574.748	580.712	20.932	14.968	92.550	86.586
	FRSD	74.930	816	14	0.16	130.560	574.748	580.712	110.692	104.728	182.310	176.346
	URBN	2.783	805	14	0.28	225.400	570.208	577.104	9.392	2.496	81.010	74.114
4	AGRL	47.403	805	14	0.27	217.350	570.208	577.104	17.442	10.546	89.060	82.164
	FRSD	40.844	805	14	0.16	128.800	570.208	577.104	105.992	99.096	177.610	170.714
	URBN	4.770	810	14	0.28	226.800	572.283	578.754	10.917	4.446	82.535	76.064
5	AGRL	49.589	810	14	0.26	210.600	572.283	578.754	27.117	20.646	98.735	92.264
	FRSD	30.509	810	14	0.16	129.600	572.283	578.754	108.117	101.646	179.735	173.264
	URBN	4.074	801	14	0.28	224.280	568.536	575.772	8.184	0.948	79.802	72.566
6	AGRL	16.497	801	14	0.27	216.270	568.536	575.772	16.194	8.958	87.812	80.576
	FRSD	2.385	801	14	0.16	128.160	568.536	575.772	104.304	97.068	175.922	168.686
	URBN	3.180	821	14	0.29	238.090	576.782	582.326	6.128	0.584	77.746	72.202
7	AGRL	34.484	821	14	0.25	205.250	576.782	582.326	38.968	33.424	110.586	105.042
	FRSD	19.279	821	14	0.16	131.360	576.782	582.326	112.858	107.314	184.476	178.932
	URBN	9.540	854	15.3	0.26	222.040	606.102	622.432	25.858	9.528	97.476	81.146
8	AGRL	47.105	854	15.3	0.25	213.500	606.102	622.432	34.398	18.068	106.016	89.686
	FRSD	58.732	854	15.3	0.16	136.640	606.102	622.432	111.258	94.928	182.876	166.546
	URBN	1.590	813	15	0.26	211.380	585.080	601.243	16.540	0.377	88.158	71.995
9	AGRL	29.316	813	15	0.25	203.250	585.080	601.243	24.670	8.507	96.288	80.125
	FRSD	21.465	813	15	0.16	130.080	585.080	601.243	97.840	81.677	169.458	153.295
	URBN	1.491	822	15	0.26	213.720	589.006	604.492	19.274	3.788	90.892	75.406
10	AGRL	13.615	822	15	0.25	205.500	589.006	604.492	27.494	12.008	99.112	83.626
	FRSD	8.845	822	15	0.16	131.520	589.006	604.492	101.474	85.988	173.092	157.606
_	URBN	6.857	819	15	0.26	212.940	587.703	603.415	18.357	2.645	89.975	74.263
11	AGRL	29.714	819	15	0.24	196.560	587.703	603.415	34.737	19.025	106.355	90.643
	FRSD	27.627	819	15	0.16	131.040	587.703	603.415	100.257	84.545	171.875	156.163
	URBN	5.168	860	15	0.27	232.200	604.966	617.621	22.834	10.179	94.452	81.797
12	AGRL	17.093	860	15	0.26	223.600	604.966	617.621	31.434	18.779	103.052	90.397
	FRSD	26.235	860	15	0.16	137.600	604.966	617.621	117.434	104.779	189.052	176.397

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 1985.

SUBBASIN	HRUS	A km²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	36.471	860	15	0.28	240.800	604.966	617.621	14.234	1.579	85.852	73.197
13	AGRL	54.856	860	15	0.26	223.600	604.966	617.621	31.434	18.779	103.052	90.397
	FRSD	38.359	860	15	0.16	137.600	604.966	617.621	117.434	104.779	189.052	176.397
	URBN	31.701	860	14	0.29	249.400	592.029	594.375	18.571	16.225	90.189	87.843
14	AGRL	22.956	860	14	0.27	232.200	592.029	594.375	35.771	33.425	107.389	105.043
	FRSD	29.515	860	14	0.16	137.600	592.029	594.375	130.371	128.025	201.989	199.643
	URBN	8.050	855	14	0.29	247.950	590.136	592.882	16.914	14.168	88.532	85.786
15	AGRL	100.073	855	14	0.25	213.750	590.136	592.882	51.114	48.368	122.732	119.986
	FRSD	70.558	855	14	0.16	136.800	590.136	592.882	128.064	125.318	199.682	196.936
	URBN	2.186	894	15	0.29	259.260	618.401	628.603	16.339	6.137	87.957	77.755
16	AGRL	2.087	894	15	0.27	241.380	618.401	628.603	34.219	24.017	105.837	95.635
	FRSD	1.093	894	15	0.16	143.040	618.401	628.603	132.559	122.357	204.177	193.975
	URBN	0.795	1032	9	0.29	299.280	514.998	498.917	217.722	233.803	289.340	305.421
17	AGRL	27.726	1032	9	0.24	247.680	514.998	498.917	269.322	285.403	340.940	357.021
	FRSD	40.148	1032	9	0.16	165.120	514.998	498.917	351.882	367.963	423.500	439.581
	URBN	2.484	946	12	0.29	274.340	585.147	565.399	86.513	106.261	158.131	177.879
18	AGRL	44.819	946	12	0.24	227.040	585.147	565.399	133.813	153.561	205.431	225.179
	FRSD	17.192	946	12	0.16	151.360	585.147	565.399	209.493	229.241	281.111	300.859
	URBN	3.776	899	14	0.29	260.710	606.174	605.526	32.116	32.764	103.734	104.382
19	AGRL	44.620	899	14	0.25	224.750	606.174	605.526	68.076	68.724	139.694	140.342
	FRSD	8.845	899	14	0.16	143.840	606.174	605.526	148.986	149.634	220.604	221.252
	URBN	3.677	899	15	0.29	260.710	620.310	630.160	17.980	8.130	89.598	79.748
20	AGRL	14.807	899	15	0.26	233.740	620.310	630.160	44.950	35.100	116.568	106.718
	FRSD	6.559	899	15	0.16	143.840	620.310	630.160	134.850	125.000	206.468	196.618
	URBN	0.994	1210	8	0.29	350.900	447.448	485.955	411.652	373.145	483.270	444.763
21	AGRL	18.882	1210	8	0.24	290.400	447.448	485.955	472.152	433.645	543.770	505.263
	FRSD	27.031	1210	8	0.16	193.600	447.448	485.955	568.952	530.445	640.570	602.063
	URBN	9.441	1032	11	0.29	299.280	576.862	552.606	155.858	180.114	227.476	251.732
22	AGRL	23.552	1032	11	0.27	278.640	576.862	552.606	176.498	200.754	248.116	272.372
	FRSD	6.758	1032	11	0.16	165.120	576.862	552.606	290.018	314.274	361.636	385.892
	URBN	5.466	974	14	0.29	282.460	630.277	624.705	61.263	66.835	132.881	138.453
23	AGRL	44.322	974	14	0.26	253.240	630.277	624.705	90.483	96.055	162.101	167.673
	FRSD	16.397	974	14	0.16	155.840	630.277	624.705	187.883	193.455	259.501	265.073
	URBN	11.329	854	15	0.29	247.660	602.512	615.609	3.828	-9.269	75.446	62.349
24	AGRL	20.174	854	15	0.26	222.040	602.512	615.609	29.448	16.351	101.066	87.969
	FRSD	25.242	854	15	0.16	136.640	602.512	615.609	114.848	101.751	186.466	173.369
Σ		1876.732	63636	996	16.43	14757.420	42073.216	42576.543	6805.364	6302.037	11961.860	11458.533
Promed	ios		883.833	####	0.231	204.964	584.350	591.341	94.519	87.528	166.137	159.146

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga para el año de 1989.

SUBBASIN	HRUs	A km²	P mm/año	T °C	К	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	8.447	802.5	14.95	0.25	200.625	579.892	596.340	21.983	5.535	93.601	77.153
1	AGRL	31.502	802.5	14.95	0.27	128.400	579.892	596.340	94.208	77.760	165.826	149.378
	FRSD	13.416	802.5	14.95	0.16	200.625	579.892	596.340	21.983	5.535	93.601	77.153
	URBN	39.651	892.29	16.2	0.26	231.995	632.778	656.798	27.516	3.496	99.134	75.114
2	AGRL	123.525	892.29	16.2	0.25	223.073	632.778	656.798	36.439	12.419	108.057	84.037
	FRSD	55.154	892.29	16.2	0.16	142.766	632.778	656.798	116.745	92.725	188.363	164.343
	URBN	44.918	816	14.95	0.26	212.160	585.839	601.263	18.001	2.577	89.619	74.195
3	AGRL	106.930	816	14.95	0.25	204.000	585.839	601.263	26.161	10.737	97.779	82.355
	FRSD	71.353	816	14.95	0.16	130.560	585.839	601.263	99.601	84.177	171.219	155.795
	URBN	18.385	852.5	14.95	0.27	230.175	601.288	613.964	21.037	8.361	92.655	79.979
4	AGRL	35.378	852.5	14.95	0.26	221.650	601.288	613.964	29.562	16.886	101.180	88.504
	FRSD	37.763	852.5	14.95	0.16	136.400	601.288	613.964	114.812	102.136	186.430	173.754
	URBN	19.478	889.04	14.9	0.29	257.822	615.169	624.630	16.050	6.588	87.668	78.206
5	AGRL	28.223	889.04	14.9	0.27	240.041	615.169	624.630	33.830	24.369	105.448	95.987
	FRSD	38.061	889.04	14.9	0.16	142.246	615.169	624.630	131.625	122.163	203.243	193.781
	URBN	4.174	832.5	14.95	0.26	216.450	592.937	607.113	23.113	8.937	94.731	80.555
6	AGRL	11.031	832.5	14.95	0.27	224.775	592.937	607.113	14.788	0.612	86.406	72.230
	FRSD	7.851	832.5	14.95	0.16	133.200	592.937	607.113	106.363	92.187	177.981	163.805
	URBN	9.242	843	14.95	0.26	219.180	597.356	610.742	26.464	13.078	98.082	84.696
7	AGRL	30.012	843	14.95	0.27	227.610	597.356	610.742	18.034	4.648	89.652	76.266
	FRSD	18.087	843	14.95	0.16	134.880	597.356	610.742	110.764	97.378	182.382	168.996
	URBN	19.478	875.54	15.55	0.27	236.396	618.042	635.646	21.102	3.499	92.720	75.117
8	AGRL	64.098	875.54	15.55	0.26	227.640	618.042	635.646	29.857	12.254	101.475	83.872
	FRSD	33.391	875.54	15.55	0.16	140.086	618.042	635.646	117.411	99.808	189.029	171.426
	URBN	13.416	885	16.16	0.26	230.100	629.245	653.232	25.655	1.668	97.273	73.286
9	AGRL	19.478	885	16.16	0.25	221.250	629.245	653.232	34.505	10.518	106.123	82.136
	FRSD	20.174	885	16.16	0.16	141.600	629.245	653.232	114.155	90.168	185.773	161.786
	URBN	3.975	889	14.95	0.29	257.810	615.816	625.825	15.374	5.365	86.992	76.983
10	AGRL	16.099	889	14.95	0.27	240.030	615.816	625.825	33.154	23.145	104.772	94.763
	FRSD	3.975	889	14.95	0.16	142.240	615.816	625.825	130.944	120.935	202.562	192.553
	URBN	14.112	875.5	13.67	0.29	253.895	593.055	590.993	28.550	30.612	100.168	102.230
11	AGRL	35.080	875.5	13.67	0.27	236.385	593.055	590.993	46.060	48.122	117.678	119.740
	FRSD	15.900	875.5	13.67	0.16	140.080	593.055	590.993	142.365	144.427	213.983	216.045
	URBN	10.037	848.57	11.175	0.29	246.085	544.036	525.376	58.449	77.109	130.067	148.727
12	AGRL	27.925	848.57	11.175	0.27	229.114	544.036	525.376	75.420	94.080	147.038	165.698
	FRSD	11.528	848.57	11.175	0.16	135.771	544.036	525.376	168.763	187.423	240.381	259.041

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga para el año de 1989.

SUBBASIN	HRUs	A km²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	39.453	805.3	13.065	0.29	233.537	558.635	557.001	13.128	14.762	84.746	86.380
13	AGRL	64.496	805.3	13.065	0.27	217.431	558.635	557.001	29.234	30.868	100.852	102.486
	FRSD	27.726	805.3	13.065	0.16	128.848	558.635	557.001	117.817	119.451	189.435	191.069
	URBN	32.297	891.8	13.065	0.29	258.622	589.298	580.547	43.880	52.631	115.498	124.249
14	AGRL	32.297	891.8	13.065	0.27	240.786	589.298	580.547	61.716	70.467	133.334	142.085
	FRSD	21.962	891.8	13.065	0.16	142.688	589.298	580.547	159.814	168.565	231.432	240.183
	URBN	45.515	783.7	14.29	0.26	203.762	564.395	575.854	15.543	4.084	87.161	75.702
15	AGRL	77.116	783.7	14.29	0.24	188.088	564.395	575.854	31.217	19.758	102.835	91.376
	FRSD	57.539	783.7	14.29	0.16	125.392	564.395	575.854	93.913	82.454	165.531	154.072
	URBN	0.994	883	15.56	0.26	229.580	621.219	638.434	32.201	14.986	103.819	86.604
16	AGRL	3.180	883	15.56	0.27	238.410	621.219	638.434	23.371	6.156	94.989	77.774
	FRSD	1.193	883	15.56	0.16	141.280	621.219	638.434	120.501	103.286	192.119	174.904
	URBN	8.944	903.7	9.93	0.29	262.073	530.824	505.990	110.803	135.637	182.421	207.255
17	AGRL	17.391	903.7	9.93	0.27	243.999	530.824	505.990	128.877	153.711	200.495	225.329
	FRSD	42.335	903.7	9.93	0.16	144.592	530.824	505.990	228.284	253.118	299.902	324.736
	URBN	7.751	890	13.045	0.29	258.100	588.397	579.608	43.503	52.292	115.121	123.910
18	AGRL	31.006	890	13.045	0.27	240.300	588.397	579.608	61.303	70.092	132.921	141.710
	FRSD	25.739	890	13.045	0.16	142.400	588.397	579.608	159.203	167.992	230.821	239.610
	URBN	10.633	832.3	14.95	0.27	224.721	592.852	607.043	14.727	0.536	86.345	72.154
19	AGRL	29.714	832.3	14.95	0.24	199.752	592.852	607.043	39.696	25.505	111.314	97.123
	FRSD	18.683	832.3	14.95	0.16	133.168	592.852	607.043	106.280	92.089	177.898	163.707
	URBN	7.056	887	16.165	0.26	230.620	630.146	654.071	26.234	2.309	97.852	73.927
20	AGRL	15.702	887	16.165	0.25	221.750	630.146	654.071	35.104	11.179	106.722	82.797
	FRSD	2.584	887	16.165	0.16	141.920	630.146	654.071	114.934	91.009	186.552	162.627
	URBN	3.975	883.7	9.3	0.29	256.273	512.184	487.880	115.243	139.547	186.861	211.165
21	AGRL	15.006	883.7	9.3	0.27	238.599	512.184	487.880	132.917	157.221	204.535	228.839
	FRSD	28.024	883.7	9.3	0.16	141.392	512.184	487.880	230.124	254.428	301.742	326.046
	URBN	6.857	832.3	13.67	0.29	241.367	577.040	578.494	13.893	12.439	85.511	84.057
22	AGRL	25.639	832.3	13.67	0.27	224.721	577.040	578.494	30.539	29.085	102.157	100.703
	FRSD	7.553	832.3	13.67	0.16	133.168	577.040	578.494	122.092	120.638	193.710	192.256
	URBN	20.869	862	15.56	0.26	224.120	612.522	631.153	25.358	6.727	96.976	78.345
23	AGRL	38.061	862	15.56	0.24	206.880	612.522	631.153	42.598	23.967	114.216	95.585
	FRSD	7.652	862	15.56	0.16	137.920	612.522	631.153	111.558	92.927	183.176	164.545
	URBN	13.913	891.85	15.56	0.28	249.718	624.795	641.421	17.337	0.711	88.955	72.329
24	AGRL	31.602	891.85	15.56	0.27	240.800	624.795	641.421	26.255	9.630	97.873	81.248
	FRSD	11.528	891.85	15.56	0.16	142.696	624.795	641.421	124.359	107.733	195.977	179.351
Σ		1893.229	61944.27	1024.5	16.46	14366.589	42623.280	43138.257	4954.402	4439.425	10110.898	9595.921
Promed	ios		860.337	14.230	0.231	199.536	591.990	599.142	68.811	61.659	140.429	133.277

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 1997.

SUBBASIN	HRUs	A km ²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	10.037	859	15.4	0.27	231.930	609.379	626.450	17.691	0.620	69.774	52.703
1	AGRL	33.888	859	15.4	0.26	223.340	609.379	626.450	26.281	9.210	78.364	61.293
	FRSD	9.441	859	15.4	0.16	137.440	609.379	626.450	112.181	95.110	164.264	147.193
	URBN	46.608	849	15.5	0.26	220.740	606.306	625.166	21.954	3.094	74.037	55.177
2	AGRL	120.842	849	15.5	0.25	212.250	606.306	625.166	30.444	11.584	82.527	63.667
	FRSD	50.881	849	15.5	0.16	135.840	606.306	625.166	106.854	87.994	158.937	140.077
	URBN	34.384	859	15.4	0.27	231.930	609.379	626.450	17.691	0.620	69.774	52.703
3	AGRL	151.351	859	15.4	0.25	214.750	609.379	626.450	34.871	17.800	86.954	69.883
	FRSD	37.465	859	15.4	0.16	137.440	609.379	626.450	112.181	95.110	164.264	147.193
	URBN	15.403	840.3	15.4	0.26	218.478	601.429	619.809	20.393	2.013	72.476	54.096
4	AGRL	59.030	840.3	15.4	0.25	210.075	601.429	619.809	28.796	10.416	80.879	62.499
	FRSD	17.093	840.3	15.4	0.16	134.448	601.429	619.809	104.423	86.043	156.506	138.126
	URBN	14.608	840.3	15.4	0.26	218.478	601.429	619.809	20.393	2.013	72.476	54.096
5	AGRL	55.750	840.3	15.4	0.25	210.075	601.429	619.809	28.796	10.416	80.879	62.499
	FRSD	15.403	840.3	15.4	0.16	134.448	601.429	619.809	104.423	86.043	156.506	138.126
	URBN	6.360	857	16.7	0.23	197.110	622.950	654.761	36.940	5.129	89.023	57.212
6	AGRL	14.012	857	16.7	0.22	188.540	622.950	654.761	45.510	13.699	97.593	65.782
	FRSD	2.683	857	16.7	0.16	137.120	622.950	654.761	96.930	65.119	149.013	117.202
	URBN	11.627	840.25	16.7	0.21	176.453	615.260	647.943	48.538	15.854	100.621	67.937
7	AGRL	39.850	840.25	16.7	0.22	184.855	615.260	647.943	40.135	7.452	92.218	59.535
	FRSD	5.863	840.25	16.7	0.16	134.440	615.260	647.943	90.550	57.867	142.633	109.950
	URBN	23.055	893.65	18.9	0.19	169.794	661.428	717.173	62.428	6.684	114.511	58.767
8	AGRL	64.992	893.65	18.9	0.18	160.857	661.428	717.173	71.365	15.620	123.448	67.703
	FRSD	28.919	893.65	18.9	0.16	142.984	661.428	717.173	89.238	33.493	141.321	85.576
	URBN	11.428	876.9	17.4	0.22	192.918	638.760	677.173	45.222	6.809	97.305	58.892
9	AGRL	35.974	876.9	17.4	0.2	175.380	638.760	677.173	62.760	24.347	114.843	76.430
	FRSD	5.664	876.9	17.4	0.16	140.304	638.760	677.173	97.836	59.423	149.919	111.506
	URBN	9.938	908.55	18	0.22	199.881	659.917	704.992	48.752	3.677	100.835	55.760
10	AGRL	12.720	908.55	18	0.2	181.710	659.917	704.992	66.923	21.848	119.006	73.931
	FRSD	1.391	908.55	18	0.16	145.368	659.917	704.992	103.265	58.190	155.348	110.273
	URBN	16.397	858.55	16.5	0.24	206.052	621.538	650.983	30.960	1.515	83.043	53.598
11	AGRL	36.571	858.55	16.5	0.22	188.881	621.538	650.983	48.131	18.686	100.214	70.769
	FRSD	12.124	858.55	16.5	0.16	137.368	621.538	650.983	99.644	70.199	151.727	122.282
	URBN	13.615	871.95	15.9	0.25	217.988	620.113	641.343	33.850	12.619	85.933	64.702
12	AGRL	23.453	871.95	15.9	0.24	209.268	620.113	641.343	42.569	21.339	94.652	73.422
	FRSD	12.422	871.95	15.9	0.16	139.512	620.113	641.343	112.325	91.095	164.408	143.178

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 1997.

SUBBASIN	HRUs	A km ²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
	URBN	55.949	858.25	16.35	0.24	205.980	619.793	647.548	32.477	4.722	84.560	56.805
13	AGRL	54.359	858.25	16.35	0.23	197.398	619.793	647.548	41.059	13.304	93.142	65.387
	FRSD	21.366	858.25	16.35	0.16	137.320	619.793	647.548	101.137	73.382	153.220	125.465
	URBN	38.161	858.25	16.35	0.24	205.980	619.793	647.548	32.477	4.722	84.560	56.805
14	AGRL	18.087	858.25	16.35	0.22	188.815	619.793	647.548	49.642	21.887	101.725	73.970
	FRSD	30.310	858.25	16.35	0.16	137.320	619.793	647.548	101.137	73.382	153.220	125.465
	URBN	36.173	860	15.4	0.27	232.200	609.797	626.798	18.003	1.002	70.086	53.085
15	AGRL	123.724	860	15.4	0.27	232.200	609.797	626.798	18.003	1.002	70.086	53.085
	FRSD	20.273	860	15.4	0.16	137.600	609.797	626.798	112.603	95.602	164.686	147.685
	URBN	2.484	881.85	16.35	0.25	220.463	630.099	656.490	31.289	4.898	83.372	56.981
16	AGRL	1.093	881.85	16.35	0.23	202.826	630.099	656.490	48.926	22.535	101.009	74.618
	FRSD	1.789	881.85	16.35	0.16	141.096	630.099	656.490	110.655	84.264	162.738	136.347
	URBN	9.242	735.3	11.45	0.29	213.237	510.304	503.076	11.759	18.987	63.842	71.070
17	AGRL	22.161	735.3	11.45	0.27	198.531	510.304	503.076	26.465	33.693	78.548	85.776
	FRSD	37.266	735.3	11.45	0.16	117.648	510.304	503.076	107.348	114.576	159.431	166.659
	URBN	15.403	771.95	14.13	0.26	200.707	557.456	568.395	13.787	2.848	65.870	54.931
18	AGRL	39.552	771.95	14.13	0.25	192.988	557.456	568.395	21.506	10.568	73.589	62.651
	FRSD	9.540	771.95	14.13	0.16	123.512	557.456	568.395	90.982	80.043	143.065	132.126
	URBN	19.677	870	16.7	0.24	208.800	628.795	659.922	32.405	1.278	84.488	53.361
19	AGRL	36.571	870	16.7	0.23	200.100	628.795	659.922	41.105	9.978	93.188	62.061
	FRSD	2.783	870	16.7	0.16	139.200	628.795	659.922	102.005	70.878	154.088	122.961
	URBN	13.515	863.54	16.35	0.24	207.250	622.135	649.584	34.156	6.707	86.239	58.790
20	AGRL	10.236	863.54	16.35	0.22	189.979	622.135	649.584	51.427	23.977	103.510	76.060
	FRSD	1.590	863.54	16.35	0.16	138.166	622.135	649.584	103.239	75.790	155.322	127.873
	URBN	1.491	735.33	10.8	0.29	213.246	501.459	490.273	20.625	31.811	72.708	83.894
21	AGRL	16.894	735.33	10.8	0.27	198.539	501.459	490.273	35.332	46.518	87.415	98.601
	FRSD	28.621	735.33	10.8	0.16	117.653	501.459	490.273	116.218	127.404	168.301	179.487
	URBN	9.441	871.96	15.4	0.26	226.710	614.749	630.921	30.501	14.330	82.584	66.413
22	AGRL	26.136	871.96	15.4	0.25	217.990	614.749	630.921	39.221	23.049	91.304	75.132
	FRSD	4.472	871.96	15.4	0.16	139.514	614.749	630.921	117.697	101.526	169.780	153.609
	URBN	25.142	895.2	16.35	0.26	232.752	635.769	661.391	26.679	1.057	78.762	53.140
23	AGRL	36.769	895.2	16.35	0.25	223.800	635.769	661.391	35.631	10.009	87.714	62.092
	FRSD	4.671	895.2	16.35	0.16	143.232	635.769	661.391	116.199	90.577	168.282	142.660
	URBN	18.186	858.6	15.7	0.26	223.236	612.705	633.120	22.659	2.244	74.742	54.327
24	AGRL	18.882	858.6	15.7	0.25	214.650	612.705	633.120	31.245	10.830	83.328	62.913
	FRSD	19.975	858.6	15.7	0.16	137.376	612.705	633.120	108.519	88.104	160.602	140.187
Σ		1893.229	61244.04	1135.1	15.23	13156.454	43892.21 7	45561.35 1	4195.369	2526.235	7945.345	6276.211
Promedi	ios		850.612	15.766	0.214	182.729	609.614	632.797	58.269	35.087	110.352	87.170

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 2014.

SUBBASIN	HRUs	A km ²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
1	AGRL	28.223	775.5	15.82	0.22	170.610	576.017	603.110	28.873	1.780	116.558	89.465
	FRSD	10.136	775.5	15.82	0.17	131.835	576.017	603.110	67.648	40.555	155.333	128.240
	URBN	13.515	775.5	15.82	0.22	170.610	576.017	603.110	28.873	1.780	116.558	89.465
2	AGRL	103.650	845.4	16.88	0.22	185.988	619.458	653.896	39.954	5.516	127.639	93.201
	FRSD	49.192	845.4	16.88	0.16	135.264	619.458	653.896	90.678	56.240	178.363	143.925
	URBN	65.489	845.4	16.88	0.22	185.988	619.458	653.896	39.954	5.516	127.639	93.201
3	AGRL	117.960	810.43	14.78	0.24	194.503	581.517	595.637	34.410	20.289	122.095	107.974
	FRSD	25.540	810.43	14.78	0.22	178.295	581.517	595.637	50.618	36.498	138.303	124.183
	URBN	81.688	810.43	14.78	0.26	210.712	581.517	595.637	18.201	4.081	105.886	91.766
	AGRL	50.185	840.43	14.78	0.25	210.108	594.256	606.057	36.067	24.266	123.752	111.951
4	FRSD	12.521	840.43	14.78	0.17	142.873	594.256	606.057	103.301	91.500	190.986	179.185
	URBN	28.621	840.43	14.78	0.27	226.916	594.256	606.057	19.258	7.457	106.943	95.142
	AGRL	42.235	827.9	14.78	0.25	206.975	589.012	601.777	31.913	19.148	119.598	106.833
5	FRSD	16.000	827.9	14.78	0.22	182.138	589.012	601.777	56.750	43.985	144.435	131.670
	URBN	28.322	827.9	14.78	0.27	223.533	589.012	601.777	15.355	2.590	103.040	90.275
	AGRL	19.180	775.5	15.3	0.22	170.610	571.081	593.011	33.809	11.879	121.494	99.564
6	URBN	2.882	775.5	15.3	0.23	178.365	571.081	593.011	26.054	4.124	113.739	91.809
	AGRL	46.608	810.43	15.3	0.24	194.503	587.182	606.627	28.745	9.300	116.430	96.985
7	FRSD	3.478	810.43	15.3	0.17	137.773	587.182	606.627	85.475	66.030	173.160	153.715
	URBN	7.453	810.43	15.3	0.25	202.608	587.182	606.627	20.641	1.195	108.326	88.880
8	AGRL	62.906	880.32	16.35	0.24	211.277	629.442	655.921	39.602	13.122	127.287	100.807
	FRSD	18.981	880.32	16.35	0.17	149.654	629.442	655.921	101.224	74.745	188.909	162.430
	URBN	36.670	880.32	16.35	0.25	220.080	629.442	655.921	30.798	4.319	118.483	92.004
9	AGRL	31.304	810.43	15.83	0.23	186.399	592.674	617.657	31.357	6.374	119.042	94.059
	FRSD	4.969	810.43	15.83	0.16	129.669	592.674	617.657	88.088	63.104	175.773	150.789
	URBN	16.695	810.43	15.83	0.23	186.399	592.674	617.657	31.357	6.374	119.042	94.059
10	AGRL	14.907	762.85	15.83	0.2	152.570	569.912	597.882	40.368	12.398	128.053	100.083
10	URBN	9.540	762.85	15.83	0.21	160.199	569.912	597.882	32.740	4.769	120.425	92.454
	AGRL	25.341	797.8	15.83	0.22	175.516	586.778	612.569	35.506	9.715	123.191	97.400
11	FRSD	7.056	797.8	15.83	0.16	127.648	586.778	612.569	83.374	57.583	171.059	145.268
	URBN	30.807	797.8	15.83	0.23	183.494	586.778	612.569	27.528	1.737	115.213	89.422
12	AGRL	18.087	805	15.83	0.22	177.100	590.152	615.484	37.748	12.416	125.433	100.101
	FRSD	8.149	805	15.83	0.16	128.800	590.152	615.484	86.048	60.716	173.733	148.401
	URBN	22.956	805	15.83	0.23	185.150	590.152	615.484	29.698	4.366	117.383	92.051

Cálculo de los valores de escurrimiento, evapotranspiración, infiltración y recarga, para el año de 2014.

SUBBASIN	HRUs	A km ²	P mm/año	T °C	K	ESC mm/año	ETR C mm/año	ETR T mm/año	I C mm/año	I T mm/año	rC mm/año	rT mm/año
13	AGRL	31.403	832.74	15.3	0.25	208.185	597.031	614.878	27.524	9.677	115.209	97.362
	FRSD	7.354	832.74	15.3	0.22	183.203	597.031	614.878	52.506	34.659	140.191	122.344
	URBN	92.917	832.74	15.3	0.26	216.512	597.031	614.878	19.197	1.350	106.882	89.035
14	AGRL	11.826	850.21	15.3	0.25	212.553	604.507	621.107	33.150	16.550	120.835	104.235
	FRSD	15.205	850.21	15.3	0.17	144.536	604.507	621.107	101.167	84.567	188.852	172.252
	URBN	59.527	850.21	15.3	0.26	221.055	604.507	621.107	24.648	8.048	112.333	95.733
15	AGRL	78.905	797.8	15.3	0.23	183.494	581.456	601.804	32.850	12.502	120.535	100.187
	FRSD	22.956	797.8	15.3	0.16	127.648	581.456	601.804	88.696	68.348	176.381	156.033
	URBN	78.408	797.8	15.3	0.24	191.472	581.456	601.804	24.872	4.524	112.557	92.209
16	URBN	5.267	937.57	16.36	0.27	253.144	653.129	676.480	31.297	7.946	118.982	95.631
17	AGRL	21.465	850.205	11.62	0.25	212.551	552.344	536.076	85.310	101.578	172.995	189.263
	FRSD	32.894	850.205	11.62	0.22	187.045	552.344	536.076	110.816	127.084	198.501	214.769
	URBN	15.403	850.205	11.62	0.27	229.555	552.344	536.076	68.305	84.574	155.990	172.259
	AGRL	38.061	815.27	13.73	0.24	195.665	571.105	574.572	48.500	45.033	136.185	132.718
18	FRSD	5.466	815.27	13.73	0.22	179.359	571.105	574.572	64.805	61.338	152.490	149.023
	URBN	20.372	815.27	13.73	0.27	220.123	571.105	574.572	24.042	20.575	111.727	108.260
19	AGRL	37.266	832.74	14.78	0.24	199.858	591.050	603.442	41.832	29.440	129.517	117.125
	FRSD	1.292	832.74	14.78	0.16	133.238	591.050	603.442	108.451	96.059	196.136	183.744
	URBN	20.372	832.74	14.78	0.27	224.840	591.050	603.442	16.850	4.458	104.535	92.143
20	AGRL	4.174	902.63	16.35	0.25	225.658	638.874	664.071	38.098	12.902	125.783	100.587
	URBN	21.267	902.63	16.35	0.26	234.684	638.874	664.071	29.072	3.876	116.757	91.561
	AGRL	20.472	920.1	11.1	0.25	230.025	560.464	537.585	129.611	152.490	217.296	240.175
21	FRSD	23.652	920.1	11.1	0.22	202.422	560.464	537.585	157.214	180.093	244.899	267.778
	URBN	2.882	920.1	11.1	0.27	248.427	560.464	537.585	111.209	134.088	198.894	221.773
22	AGRL	21.863	885.16	13.72	0.25	221.290	597.190	594.858	66.680	69.012	154.365	156.697
	FRSD	4.273	885.16	13.72	0.22	194.735	597.190	594.858	93.235	95.567	180.920	183.252
	URBN	14.509	885.16	13.72	0.27	238.993	597.190	594.858	48.977	51.309	136.662	138.994
23	AGRL	22.260	902.63	15.84	0.25	225.658	632.634	651.796	44.339	25.176	132.024	112.861
	FRSD	4.969	902.63	15.84	0.17	153.447	632.634	651.796	116.549	97.386	204.234	185.071
	URBN	38.260	902.63	15.84	0.27	243.710	632.634	651.796	26.286	7.123	113.971	94.808
24	AGRL	23.055	867.7	16.35	0.23	199.571	623.963	651.172	44.166	16.957	131.851	104.642
	FRSD	12.323	867.7	16.35	0.16	138.832	623.963	651.172	104.905	77.696	192.590	165.381
	URBN	21.664	867.7	16.35	0.24	208.248	623.963	651.172	35.489	8.280	123.174	95.965
Σ		1893.229	56094.115	1008.980	15.140	12703.895	39787.556	#######	3602.664	2535.733	9477.559	8410.628
Promedios			837.226	15.059	0.226	189.610	593.844	609.768	53.771	37.847	141.456	125.532