PIN IN

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS CAMPUS MONTECILLO

POSTGRADO DE HIDROCIENCIAS

CONDICIONES DEL MARCO FÍSICO, PRODUCTIVO Y SOCIOECONÓMICO EN EL DISTRITO DE RIEGO 014 RIO COLORADO, B.C. Y SONORA

JORGE ALEJANDRO DE LA TORRE HERMOSILLO

TESIS

PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE:

MAESTRO EN CIENCIAS

MONTECILLO, TEXCOCO, ESTADO DE MÉXICO

2014

La presente Tesis titulada: Condiciones del marco físico, productivo y socioeconómico en el Distrito de Riego 014 San Luis Río Colorado, B.C. y Sonora, realizada por el alumno: Jorge Alejandro de la Torre Hermosillo, bajo la dirección del Consejo Particular indicado, ha sido aprobada por el mismo y aceptada como requisito parcial para obtener el grado de:

MAESTRO EN CIENCIAS HIDROCIENCIAS

CONSEJO PARTICULAR

CONSEJERO

DR. ROBERTO ASCENCIO HERNÁNDEZ

ASESOR

DR. AGUSTÍN RODRÍGUEZ GONZÁLEZ

ASESOR

MC. FELIPE-JOSÉ ANTONIO PEDRAZA OROPEZA

CONDICIONES DEL MARCO FÍSICO, PRODUCTIVO Y SOCIOECONÓMICO EN EL DISTRITO DE RIEGO 014 RIO COLORADO, B.C. Y SONORA

JORGE ALEJANDRO DE LA TORRE HERMOSILLO, M.C.

COLEGIO DE POSTGRADUADOS, 2014

RESUMEN

Con el propósito de evaluar el posible impacto del sismo ocurrido el 4 de abril de 2010

en la zona agrícola del Distrito de Riego 014 Río Colorado, se hizo un estudio para la

caracterización físico química del suelo con especial énfasis en su composición textural

y grado de salinidad en la zona Nuevo Delta de los Módulos de Riego 10, 11 y 12. Se

colectaron 600 muestras de suelo, 300 a una profundidad de 0-30 cm y 300 de 30-60

cm atendiendo las directrices establecidas en la NOM-021-RECNAT-2000 y los criterios

propuestos por la FAO para su clasificación. Como base de comparación, se usaron las

determinaciones obtenidas en un estudio realizado por la CONAGUA en 2003-2004.

Los resultados no mostraron evidencias de un avance de la salinidad de los suelos y,

por lo mismo, el evento no afectó la capacidad productiva edáfica del área evaluada. La

distribución espacial de la salinidad puede más bien ser atribuible a las actividades

antropogénicos sostenidas y de otros factores naturales.

Palabras clave: Salinidad de suelos, Distrito de Riego 014, Valle de Mexicali.

CONDITIONS OF THE PHYSICAL, SOCIO-ECONOMIC AND PRODUCTIVE

CONTEXT IN THE IRIGATION DISTRIC 014, RIO COLORADO, B.C. AND SONORA.

JORGE ALEJANDRO DE LA TORRE HERMOSILLO, M.C.

COLEGIO DE POSTGRADUADOS, 2014

ABSTRACT

In order to assess the impact of the earthquake occurred on 4 April 2010 in the

agricultural area of the Distrito de Riego 014 Rio Colorado, a physical-chemical study

was developed to characterize the soil, with special emphasis on its textural composition

and degree of soil salinity in the area of the Nuevo Delta in Irrigation Modules 10, 11 and

12. 600 soil samples were collected in order to calssify them, 300 of them to a depth of

0-30 cm and the other 300 to 30-60 cm according to the guidelines of NOM-021-

RECNAT-2000 and the FAO criteria. A study conducted by the CNA from 2003 to 2004

was used as a basis for comparison. The results did not show an evidence of an

advance of the salinity in the soil and, as such way, the event did not affect the

productive capacity of the soil area evaluated. The spatial distribution of the salinity

could be attributable to sustained anthropogenic activities and other natural factors.

Keywords: soil salinity, Distrito de Riego 014, Mexicali Valley.

ii

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el financiamiento otorgado para realizar mis estudios de Maestría en Ciencias.

Al Colegio de Postgraduados, por darme la oportunidad de formarme en esta maestría en donde puedo interactuar hombre, campo y ciencia.

A Dios por haberme dejado llegar a este momento y concluir con una etapa más en mi vida, porque me ha dado las ganas y las fuerzas para salir adelante y nunca me ha dejado solo siempre está conmigo en todo momento.

A mis padres que siempre me han apoyado en todo momento, y me han inculcado buenos valores, gracias a Dios y a ustedes he llegado hasta aquí por sus buenos consejos y ejemplos yo les agradezco a todo lo que me ha dado, los amo.

A mi hermana que me ha apoyado siempre y se lo agradezco mucho y gracias por los consejos que me has dado, te quiero mucho.

A mi esposa que pase lo que pase me apoya y le agradezco mucho su amor, su paciencia, sus consejos y los momentos que hemos pasado juntos. Te amo.

Al DR. Roberto Ascencio Hernández, por todo el tiempo que dedico para dirigir esta tesis, gracias por su paciencia, orientación y buenas sugerencias.

Al MC. José Felipe Pedraza Oropeza, por la contribución que se hizo posible el presentar el trabajo.

Al DR. Agustín Rodríguez González, por su disposición y apoyo para obtener información indispensable para este trabajo de tesis.

CONTENIDO

1.	Introd	ducción	1
2.	Objet	ivos	3
3.	Hipót	esis	3
4.	Marco	o teórico conceptual	4
4	.1. Fac	ctores que afectan el rendimiento de los cultivos	4
	4.1.1.	Factores climáticos	4
	4.1.2.	Factores edáficos	6
	4.1.3.	Factores genéticos	6
	4.1.4.	Manejo del cultivo	7
4	.2. La	salinidad del suelo	7
	4.2.1.	Causas que originan la salinidad de los suelos	9
	4.2.	1.1. Causas Naturales	9
	4.2.	1.2. Causas Antrópicas	10
	4.2.2.	La salinidad y su efecto en el rendimiento de los cultivos	12
	4.2.3.	Criterios de clasificación de la salinidad del suelo	20
	4.2.4.	Técnicas de recuperación de suelos salinos	23
5.	Meto	dología	. 27
5	5.1. Ma	rco Físico	27
	5.1.1.	Ubicación del área de estudio	27
	5.1.2.	Características climáticas del Distrito de riego 014	28
	5.1.3.	Características edáficas	29
	5.1.4.	Fuentes de agua de riego	30
	5.1.5.	Principales cultivos del Distrito de Riego 014	33
5	5.2. Mu	estreo de suelos en campo	37
	5.2.1.	Delimitación del área de estudio	37
	5.2.2.	Determinación de los sitios de muestreo	37
	5.2.3.	Colecta de las muestras	40
5	5.3. An	álisis de laboratorio	42
	5.3.1.	Preparación de la muestra (método AS-01)	42

	5.3	3.2. Determinaciónes físico-quimicas	44
6.	Re	esultados y Discusión	. 51
	6.1.	Textura del suelo	51
	6.2.	El pH y la conductividad eléctrica	52
	6.3.	Contenido de sodio y sodio intercambiable	53
	6.4.	Contenido de aniones y cationes	56
	6.5.	Salinidad del suelo	59
	6.6.	Análisis de la salinidad por cuadrante	61
	6.0	6.1. Cuadrante I	63
	6.0	6.2. Cuadrante II	66
	6.0	6.3. Cuadrante III	68
	6.0	6.4. Cuadrante IV	71
	6.7.	Análisis del efecto de la salinidad del suelo en la productividad agrícola	73
	6.	7.1. Mapas de productividad de alfalfa	74
	6.	7.2. Mapas de productividad de algodón	76
	6.	7.3. Mapas de productividad de cebolla	79
	6.	7.4. Mapas de productividad de espárragos	80
	6.	7.5. Mapas de productividad de lechuga	82
	6.	7.6. Mapas de productividad de trigo	84
7.	Co	onclusiones y Recomendaciones	. 87
8.	Li	teratura citada	. 90
9.	Ar	nexos	93
	9.1.	Ubicación e identificación de muestras	93
	9.2.	Textura, pH, CEe, PSI y CO ₃ ²	108
	9.3.	Disminución del Rendimiento Potencial de cultivos	123

INDICE DE FIGURAS

Figura 1.	Proporción de la superficie agrícola de suelos con problemas de sales en distintas
	áreas del Distrito de Riego 014 Río Colorado, B.C. y Son. y cotas medias. El mapa
	base sin la información se tomó de Carrillo-Guerrero (2009) 12
Figura 2.	Ubicación el Distrito de Riego 014 Río Colorado, B.C. y Son. Fuente: Las Cuencas
	Hidrográficas de México27
Figura 3.	Temperatura media mensual en el Distrito de Riego 014 Río Colorado, B.C. y Son. 29
Figura 4.	Flujo de las avenidas del Río Colorado en el Distrito de Riego 014 Río Colorado, B.C.
	y Son., antes de que se estableciera su control. El mapa de texturas fue tomado de
	Carrillo-Guerrero (2009)
Figura 5.	Módulos del Distrito de Riego 014 Río Colorado, B.C. y Son. y sus principales fuentes
	de abastecimiento de agua para el riego. El mapa base se tomó de Carrillo-Guerrero
	(2009)
Figura 6.	Relación entre el riego acumulado entre 1999 y 2007, respecto al practicado durante
	el ciclo 2007-2008 en los módulos del Distrito de Riego 014 Río Colorado, B.C. y Son.
Figura 7.	Proporción de suelos no salinos y salinos en los distintos módulos del Distrito de
	Riego 014 Río Colorado, B.C. y Son
Figura 8.	Porcentaje de la superficie total sembrada entre 1999 y 2008 por ciclo de cultivo en el
	Distrito de Riego 014 Río Colorado, B.C. y Son., según datos del SIAP (2010) 35
Figura 9.	Valor de la producción (%) de la superficie total sembrada entre 1999 y 2008 por ciclo
	de cultivo en el Distrito de Riego 014 Río Colorado, B.C. y Son. (SIAP, 2010) 35
Figura 10	Proporción de la superficie sembrada en algunos cultivos respecto al total
	producido entre 1999 y 2008 en el Distrito de Riego 014 Río Colorado, B.C. y Son.
	(SIAP, 2010)
Figura 11	. Ubicación de los 12 cuadrantes donde se colectaron las muestras de suelo en los
	módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora 38
Figura 12	2. Ubicación de las cinco submuestras para formar la muestra compuesta en cada
	parcela seleccionada para colectar el suelo
Figura 13	3. Procedimiento de colecta de muestras de suelo
Figura 14	L. Procedimiento para colectar una submuestra de suelo
Figura 15	Mapa de salinidad en los módulos 10, 11 y 12 del Distrito de Riego 014, Río
	Colorado, B.C. y Sonora, de acuerdo a la clasificación propuesta por FAO
	(profundidad 0-30 cm)

Figura 16	6. Mapa de salinidad en los módulos 10, 11 y 12 del Distrito de Riego 014, Río
	Colorado, B.C. y Sonora, de acuerdo a la clasificación propuesta por FAO
	(profundidad 30-60 cm)
Figura 17	7. Subdivisión de los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado,
	B.C. y Sonora, en cuatro cuadrantes con sus respectivas coordenadas
Figura 18	8. Variación de la salinidad en el Cuadrante I de la zona del Nuevo Delta del Distrito
	de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta
	por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6.
	Los círculos representan los resultados obtenidos en este estudio 2010 y los
	triángulos al realizado en 2003-2004 por CONAGUA
Figura 19	9. Variación de la salinidad en el Cuadrante II de la zona del Nuevo Delta del Distrito
	de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta
	por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6.
	Los círculos representan los resultados obtenidos en este estudio 2010 y los
	triángulos al realizado en 2003-2004 por CONAGUA
Figura 20	0. Salinidad en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014
	con base en la clasificación FAO (0-30 cm). Verde= categorías 1 y 2; Rojo=
	Categorías 3 a la 6. Círculos resultados de este estimado (2010); triángulos al
	realizado en 2003-2004 por CONAGUA
Figura 21	1. Variación de la salinidad en el Cuadrante IV de la zona del Nuevo Delta del Distrito
	de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta
	por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6.
	Los círculos representan los resultados obtenidos en este estudio 2010 y los
	triángulos al realizado en 2003-2004 por CONAGUA
Figura 22	2. Reducción de la productividad potencial (%) del cultivo de alfalfa (0-30 cm) 75
Figura 23	3. Reducción de la productividad potencial (%) del cultivo de Alfalfa (30-60 cm) 76
Figura 24	4. Reducción de la productividad potencial (%) del cultivo de Algodón (0-30 cm) 77
Figura 25	5. Reducción de la productividad potencial (%) del cultivo de Algodón (30-60 cm) 78
Figura 26	6. Reducción de la productividad potencial (%) del cultivo de Cebolla (0-30 cm) 79
Figura 27	7. Reducción de la productividad potencial (%) del cultivo de Cebolla (30-60 cm) 80
Figura 28	8. Reducción de la productividad potencial (%) del cultivo de Espárrago (0-30 cm) 81
Figura 29	, , , , , , , , , , , , , , , , ,
Figura 30	 Reducción de la productividad potencial (%) del cultivo de la Lechuga (0-30 cm) 83

Figura 31.	Reducción de la productividad potencial (%) del cultivo de la Lechuga (30-60 cm)
Figura 32.	
Figura 33.	Reducción de la productividad potencial (%) del cultivo del Trigo (30-60 cm) 86
	INDICE DE CUADROS
Cuadro 1.	Tolerancia de algunos cultivos a las sales (Maass y Hoffman, 1977) 16
Cuadro 2.	Tolerancia y rendimiento potencial de cultivos por influencia de la salinidad del agua
	de riego (CE _w) o salinidad del suelo (CE _e)
Cuadro 3.	Clases de las salinidad del suelo y un efecto en el crecimiento de los cultivos 22
Cuadro 4.	Categorías de salinidad del suelo de acuerdo a SEMARNAT (2002) 22
Cuadro 5.	Cultivos producidos en el Distrito de Riego 014 Río Colorado, B.C. y Son., según la
	información publicada por el SIAP (2008)
Cuadro 6.	Distribución del muestreo para evaluar la salinidad y capacidad productiva de los
	suelos del Nuevo Delta en el Distrito de Riego 014 Río Colorado, B.C. y Sonora 38
Cuadro 7.	Valor mínimo, mediana, promedio y máximo de arena, limo y arcilla determinadas a
	las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río
	Colorado, B.C. y Sonora
Cuadro 8.	Distribución de frecuencia de los valores de arena, limo y arcilla determinadas a las
	muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río
	Colorado, B.C. y Sonora
Cuadro 9.	Valor mínimo, mediana, promedio y máximo de pH y conductividad eléctrica del
	extracto de saturación, de las muestras colectadas en la zona del Nuevo Delta del
0 1 40	Distrito de Riego 014 Río Colorado, B.C. y Sonora
Cuadro 10	. ,
	extracto de saturación), de las muestras colectadas en la zona del Nuevo Delta del
0	Distrito de Riego 014 Río Colorado, B.C. y Sonora
Cuadro 11	, , , , , , , , , , , , , , , , , , , ,
	clasificación según FAO, de los suelos de la zona del Nuevo Delta del Distrito de
	Riego 014 Río Colorado, B.C. y Sonora

Cuadro 12	2. Distribución de frecuencia de los valores de sodio intercambiable, y clasificación
	de la conductividad eléctrica y porcentaje de sodio intercambiable (PSI) según FAO,
	en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.54
Cuadro 13	Valor mínimo, mediana, promedio y máximo de aniones (carbonatos,
	bicarbonatos, cloruros y sulfatos) del extracto de saturación de las muestras
	colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C.
	y Sonora 57
Cuadro 14	Distribución de frecuencia de los valores de aniones (carbonatos, bicarbonatos,
	cloruros y sulfatos) del extracto de saturación de las muestras colectadas en la zona
	del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora 57
Cuadro 15	Valor mínimo, mediana, promedio y máximo de cationes analizados en el
	extracto de saturación de las muestras colectadas en la zona del Nuevo Delta del
	Distrito de Riego 014 Río Colorado, B.C. y Sonora
Cuadro 16	Distribución de frecuencia de los valores de cationes analizados en el extracto
	de saturación de las muestras colectadas en la zona del Nuevo Delta del Distrito de
	Riego 014 Río Colorado, B.C. y Sonora
Cuadro 17	Clasificación de los suelos por su salinidad 59
Cuadro 18	Conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio
	intercambiable (PSI) y salinidad del suelo según FAO de los estudios de 2003-2004
	(CONAGUA) y 2010, en el Cuadrante I de la zona del Nuevo Delta del Distrito de
	Riego 014 Río Colorado, B.C. y Sonora
Cuadro 19	Distribución de frecuencia de la conductividad eléctrica (extracto de la pasta de
	saturación), porcentaje de sodio intercambiable (PSI) y salinidad del suelo según
	FAO de los estudios de 2003-2004 (CONAGUA) y 2010, en el Cuadrante I de la
	zona del Nuevo Delta del Distrito de Riego 014
Cuadro 20	Conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio
	intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios
	de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante II de la
	zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora 66
Cuadro 21	. Distribución de frecuencia de la conductividad eléctrica (extracto de la pasta de
	saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del
Cuadro 14 Cuadro 15 Cuadro 16 Cuadro 17 Cuadro 18 Cuadro 19	suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos
	ubicados en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014 Río
	Colorado, B.C. y Sonora

Cuadro 22	. Conductividad eléctrica (extracto de saturación), porcentaje de sodio
	intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios
	de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante III de la
	zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora 69
Cuadro 23	Distribución de frecuencia de la conductividad eléctrica (extracto de saturación),
	porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según
	FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en
	el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado,
	B.C. y Sonora
Cuadro 24	. Conductividad eléctrica (extracto de saturación), porcentaje de sodio
	intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios
	de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante IV de la
	zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora 71
Cuadro 25	Distribución de frecuencia de la conductividad eléctrica (extracto de saturación),
	porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según
	FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en
	el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado,
	B.C. y Sonora

1. Introducción

El Distrito de Riego 014 Río Colorado, B.C. y Sonora, es uno de los más grandes distritos de México. Se localiza en el extremo noroeste de la República Mexicana, en la porción noreste del Estado de Baja California y noroeste de Sonora. Políticamente, comprende los Municipios de Mexicali, Baja California y San Luis Río Colorado, Sonora, cerca de la frontera con los Estados Unidos de América (EUA), a una altura promedio de 25 msnm. Comprende una superficie física total de 328,000 hectáreas, de las cuales 250,000 forman el Distrito compactado, donde se encuentran las obras de infraestructura hidroagrícola. Cuenta con una superficie de 210,000 ha que pertenece a 16,500 usuarios registrados en el Padrón de Usuarios del Distrito aproximadamente

Para su administración, operación y conservación el Distrito se divide en 22 Módulos de Riego, cada uno a cargo de una Asociación Civil de Usuarios, que prestan el servicio de riego a sus usuarios miembros bajo un Título de Concesión otorgado para tal fin por el Gobierno Federal a través de la CONAGUA.

El 4 de abril de 2010 ocurrió un terremoto de 7.2 grados en la escala de Richter con su epicentro ubicado a una distancia de 60 km de Mexicali, B.C. y 62 km de San Luis Río Colorado, Sonora a una profundidad de 10 km. Los municipios afectados fueron precisamente Mexicali B.C. y San Luis Río Colorado, Sonora. Dada la severidad de los daños causados por dicho fenómeno, la Secretaría de Gobernación declaró el 12 y 16 de abril de 2010 como zona de desastre a ambos sitios, respectivamente.

Los productores agrícolas de los citados municipios, acudieron a diferentes instancias de gobierno para comunicar que a consecuencia del sismo se tuvieron afectaciones de sus parcelas tales como hundimientos, agrietamientos y desnivelación de sus terrenos. Además, reportaron afloramientos de agua salobre que inundó sus parcelas y que estos factores en su conjunto provocaron que se perdiera la capacidad productiva de los suelos.

Un diagnóstico preliminar de la SAGARPA, detectó que efectivamente se habían afectado 57 mil hectáreas, de las que 36 mil hectáreas tuvieron el mayor daño y que se ubican en la jurisdicción de los CADER (Centro de Atención para el Desarrollo Rural):

Colonias Nuevas, Guadalupe Victoria, Delta y Cerro Prieto, localidades que corresponden a los módulos 10, 11 y 12 del Distrito de Riego 014 Río Colorado, B.C. y Son. Como resultado de estas acciones, la SAGARPA publicó el 28 de junio de 2010 en el Diario Oficial de la Federación, los lineamientos y procedimientos de un proyecto estratégico de impacto regional para recuperar la capacidad productiva de los suelos agrícolas, esperando impactar favorablemente en el mayor número de productores afectados.

Con el interés de contribuir en la solución de los posibles impactos negativos causados por el terremoto sobre la producción de los cultivos de la región, la CONAGUA encomendó al Colegio de Postgraduados, entre otras acciones, realizar un diagnóstico de la capacidad productiva agrícola de los suelos de la zona Nuevo Delta de los Módulos de Riego 10, 11 y 12 del Distrito de Riego 014 Río Colorado, B.C. y Son., el cual consistió en un estudio del marco físico y socioeconómico que incluyeron aspectos relacionados con el manejo agronómico y del agua de riego, así como la evaluación de la problemática de la salinidad en la zona de estudio, con el propósito de que dicha información sea empleada para tomar decisiones sobre la elaboración de proyectos y programas relacionados con la recuperación de suelos, instalación de sistemas de drenaje, modernización de la infraestructura hidroagrícola, tecnificación del riego, entre otros aspectos. A partir del diagnóstico obtenido en la zona Nuevo Delta y puntos de referencia, se estará en posibilidades de proponer estrategias y acciones para resolver la problemática identificada desde el punto de vista técnico-productivo.

2. Objetivos

- Caracterización físico-química de los suelos en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.
- Determinar el impacto del sismo del 4 de abril de 2010 sobre la salinidad del suelo en la zona del nuevo Delta del Distrito de Riego 014 y su efecto en la productividad agrícola.

3. Hipótesis

 El sismo tuvo un impacto negativo en las características del suelo, incrementando su salinidad y consecuentemente disminuyendo su capacidad productiva.

4. Marco teórico conceptual

4.1. Factores que afectan el rendimiento de los cultivos

El desarrollo y rendimiento de un cultivo depende de los factores inherentes al medio en el cual las plantas crecen, como son los, factores climáticos y factores edáficos, asi como los, factores inherentes a la planta (genéticos) y los factores de manejo del cultivo. Estos factores generalmente no actúan en forma individual, más bien la variación de un factor de suelo creará variaciones en otro factor de la misma fase (suelo) o de una fase diferente (planta), y que condicionarán la respuesta de la planta a su manejo, existiendo así interacciones entre factores que afectarán el crecimiento y rendimiento esperados.

En este sentido los factores abióticos adversos tales como la sequía, la salinidad, las temperaturas extremas, toxicidad y deficiencia de minerales afectan el desarrollo y productividad de los cultivos y representan una amenaza a la seguridad alimentaria (Gao *et al.* 2007; Witcombe *et al.* 2008).

Entre estos factores, la salinidad es el que impacta una mayor superficie agrícola en el mundo ocasionado por una mala calidad del agua de riego, drenaje deficiente, inundaciones de aguas salinas en las zonas costeras y acumulación de sales en las zonas secas y desérticas (Kijne, 2006).

Generalmente, los agricultores se enfocan al manejo de las componentes suelo y planta, ya que el factor clima es más complicado su manejo. Sin embargo, para obtener la mejor respuesta en un cultivo será necesario considerar una combinación de los factores suelo, planta y clima en sus niveles óptimos, y el factor más limitante será el que más afecte los rendimientos.

4.1.1. Factores climáticos

En el sistema suelo-planta-clima los factores climáticos son menos controlables por el hombre. Sin embargo, si se conocen estos factores se pueden manejar los elementos

planta y suelo para aprovechar de forma más eficiente las condiciones impuestas por el factor clima.

Al respecto, la lluvia es un factor que el hombre no puede controlar, pero si se conoce su distribución en un área determinada, es posible planificar fechas de siembra, de manera que el cultivo tenga disponibilidad de humedad en sus períodos críticos.

Por otra parte, el impacto negativo del cambio climático en los cultivos es bien conocido. Se estima que la temperatura global se incrementará entre 1.1°C y 6.4°C durante el próximo siglo (IPCC, 2007).

La temperatura ambiente, afecta funciones en las plantas, tales como: fotosíntesis, respiración, permeabilidad de la pared celular, absorción de agua y nutrimentos, transpiración, todo ello afecta el crecimiento de la planta.

Así mismo, el incremento de las temperaturas puede crear disturbios en el patrón del clima, originando inundaciones recurrentes, sequías y salinización de suelos. El derretimiento de los casquetes polares y glaciares puede originar un incremento del nivel del mar (Melloul y Collin 2006), lo que puede afectar seriamente la productividad de los cultivos en las zonas costeras debido a un incremento en la salinidad del suelo.

En cuanto a la velocidad del viento, y en particular la alta velocidad del viento, puede causar ciertos problemas a algunos cultivos, como el acame de las plantas, ya que el viento vence el soporte mecánico del suelo. El viento también puede acelerar la evapotranspiración por lo que las plantas podrían sufrir de déficits de humedad más rápido.

4.1.2. Factores edáficos

El suelo es sin duda uno de los componentes que tienen una mayor relevancia en el desarrollo y rendimiento de un cultivo. La calidad del suelo está determinada por diversos factores, entre los cuales se incluyen la actividad biológica, la capacidad de almacenamiento de agua, la disponibilidad de nutrientes y la proporción de materia orgánica que contiene (Anderson et al., 1997).

Existe un considerable interés en determinar cómo el concepto de calidad del suelo se relaciona al uso de las tierras agrícolas en la producción sustentable, con la aceptación general que el uso sustentable requiere conservar propiedades edáficas que son importantes desde el punto de vista de la fertilidad y el laboreo del suelo (Bezdicek *et al.*, 1996). La alteración de las condiciones del suelo por las prácticas de manejo puede afectar la producción de los cultivos a través de su influencia en la distribución de la materia orgánica, actividad microbiana y dinámica de nutrientes (Salinas-García *et al.*, 1997).

4.1.3. Factores genéticos

Cada individuo o especie vegetal posee cierta capacidad intrínseca para la producción de biomasa en sus diferentes componentes. Esta capacidad puede expresarse a sus máximos niveles si las condiciones en las que se desarrolla son las óptimas para la especie o variedad utilizada. En caso contrario, la producción se irá reduciendo en función de las restricciones a las que se vea sometido durante su ciclo de cultivo.

En este sentido, con el propósito de alcanzar mayores rendimientos de los cultivos, se han realizado numerosas investigaciones enfocados al mejoramiento de las características productivas de los cultivos de interés. El mejoramiento genético de las plantas tiene como propósito la obtención de variedades con características de mayor rendimiento, mejor calidad comercial y nutritiva, mayor resistencia a factores adversos al cultivo, con la finalidad de generar variedades más eficientes para producir productos aprovechables por el hombre como alimentos, materia prima para la industria, forraje, etc.

4.1.4. Manejo del cultivo

El manejo agronómico de los cultivos, constituye un componente que determina a final de cuentas el rendimiento obtenido por un cultivo, ya sea que se alcance su máximo potencial del cultivar o algún valor intermedio de acuerdo a las condiciones prevalecientes durante el desarrollo de su ciclo de cultivo.

El manejo lo constituyen todas aquellas acciones en las que interviene el hombre con el objeto de aprovechar al máximo el potencial de los recursos de las que se disponen en una situación o ambiente dado. Se podría decir que el manejo empieza con la selección del cultivo a establecer tomando en consideración las condiciones ambientales y edáficas del lugar. La definición de la mejor fecha de siembra, la preparación del suelo, el arreglo topológico y la densidad de siembra son otros componentes de manejo de los cultivos que determinan en gran medida el rendimiento esperado. Otros factores igualmente importantes a considerar en el manejo de un cultivo son: la fertilización, control de malezas, control de plagas y enfermedades, aplicación del riego, labores culturales y la cosecha. En otras palabras, el rendimiento de un cultivo empieza desde el día de su siembra, pero un buen manejo de cultivo comienza desde antes del mismo.

En síntesis, los factores del sistema suelo-planta-clima generalmente no actúan en forma independiente, sino que sus efectos sobre el rendimiento son de tipo directo, por una parte, y de tipo indirecto a través de interacciones con otros factores. Por ejemplo, una interacción suelo-planta es la que ocurre cuando al agregar un fertilizante fosforado (factor de manejo) se aumenta la cantidad de fósforo aprovechable en el suelo, lo cual se debe reflejar en mejores rendimientos.

4.2. La salinidad del suelo

El término salinización se refiere al proceso de acumulación de sales en el suelo que ocurre cuando el agua, que contiene sales disueltas, se evapora de la superficie del suelo, frecuentemente dejando una costra blanca superficial en el suelo. La salinización

es generalmente más pronunciada en zonas áridas y semi-áridas que en regiones húmedas debido a las escasas lluvias, insuficientes para lavar las sales acumuladas en la zona radical de los cultivos. La acumulación de sales presente en las áreas de riego, se debe a que las cantidades de sales aplicadas con el agua de riego son mucho mayores a las que son removidas mediante el drenaje.

La salinidad del suelo, se refiere entonces a la cantidad de sales presentes en el suelo y puede ser estimada por la medición de la conductividad eléctrica (CE) de una solución extraída del suelo. La sal es un compuesto químico formado por iones con carga negativa enlazados a iones con carga positiva.

Es fundamental disponer de información periódica del estatus de la salinidad del suelo para analizar y evaluar la dinámica de la salinidad y la eficacia de las medidas de mitigación y/o recuperación implementadas. Sin embargo, el monitoreo de la salinidad de suelos es complicada debido a su variabilidad espacial y a su naturaleza dinámica a consecuencia de las prácticas de manejo, profundidad de los niveles freáticos, lluvia y la salinidad de las aguas subterráneas (Corwin and Rhoades, 1984). Además, resulta costoso practicar caracterizaciones frecuentes de áreas afectadas por salinidad con el uso de métodos convencionales.

La salinidad del suelo generalmente es descrito y caracterizado en términos de la concentración y tipo de sales solubles. La concentración de sales en solución en el agua o extracto de saturación comúnmente es determinado por la conductividad eléctrica (EC). La conductividad eléctrica es una medida de la conductancia de la solución del suelo, el cual depende de la cantidad de iones disueltos en el agua del suelo (Corwin y Rhoades, 1984).

4.2.1. Causas que originan la salinidad de los suelos

La principal causa de la salinidad lo constituye el ambiente árido y semiárido que por su alta demanda evaporativa fomenta la acumulación de sales en la zona radical de los cultivos, aunado a una precipitación insuficiente para eliminarlas por arrastre superficial o lavado.

Es por eso que en las tierras de las zonas áridas y semiáridas del mundo y del país es muy común la concentración de sales o sodio intercambiable en los horizontes del suelo, debido a que los procesos de acumulación natural y antrópicos son dinámicos y están limitando de manera marcada la producción de alimentos y forrajes y pueden a mediano y largo plazo provocar serios problemas socio-económicos.

En ese sentido, es importante conocer el origen y los factores que favorecen la acumulación de sales en los suelos. Las causas de salinización de los suelos se pueden agrupar en causas naturales y causas antrópicas.

4.2.1.1. Causas Naturales

La presencia de sales en el suelo, también tiene que ver con los procesos naturales de su formación (mineralización o meteorización de las rocas y minerales). En climas húmedos las sales formadas, generalmente pueden ser lavadas del suelo, mientras que en climas áridos o semiáridos generalmente no son removidas completamente de sus capas superficiales.

La cercanía de la costa y la altura sobre el nivel del mar son fuentes primarias de salinidad. Se menciona que la brisa marina puede influir 50 a 150 km de la costa variando con la distancia la relación Cl⁻ a Na⁺. Mientras que el K⁺ generalmente es de origen terrestre, la deposición de Mg⁺⁺ es de origen marítimo. Se considera que el Ca⁺⁺ y SO₄⁻² se incrementa con la distancia de la costa al interior del continente.

La intemperización de los minerales del suelo y la existencia de sales fósiles también son causas primarias de salinidad que se agudizan en condiciones heterogéneas de micro-topografía y las propiedades fisicoquímicas del perfil del suelo, donde textura, estructura, porosidad, permeabilidad, capacidad de retención de humedad y de intercambio catiónico juegan un papel muy importante.

Estos procesos además se ven favorecidos en suelos con predominio de partículas finas (arcilla y limo), donde el movimiento descendente del agua y el lavado de sales, se ven disminuidos por la baja porosidad de estos. La presencia de capas freáticas superficiales, favorecen los movimientos ascendentes de agua hacia la superficie del suelo por capilaridad, arrastrando las sales hacia su superficie.

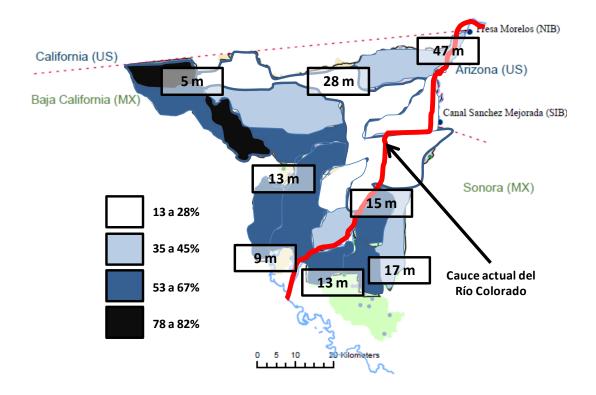
4.2.1.2. Causas Antrópicas

La salinidad del suelo también puede producirse como resultado de un manejo inadecuado por parte del hombre. La agricultura, desde su comienzo, ha provocado situaciones de salinización, cuando las técnicas aplicadas no han sido las correctas.

En este sentido, la calidad del agua de riego agrícola y el manejo agronómico de los cultivos son dos factores de salinidad de los suelos, susceptibles de control para conservar y mejorar el potencial productivo de los suelos afectados por sales.

La actividad agraria y especialmente el riego, ha provocado desde tiempos remotos procesos de salinización de diferente magnitud: cuando se han empleado aguas conteniendo sales sin el debido control (acumulándose directamente en los suelos o contaminando los niveles freáticos), o bien cuando se ha producido un descenso del nivel freático regional y la intrusión de capas de agua salinas, situadas en zonas más profundas, como consecuencias de la sobreexplotación.

Es clásico el ejemplo de la región de Mesopotamia en la que la utilización de aguas de riego salinas condujo a la salinización de los suelos. La pérdida de la productividad de las tierras fue la causa de caída de la civilización sumeria hace unos 5000 años. Hoy


día se acepta que la mayor parte de los suelos bajo riego presentan algunas pérdidas de productividad por problemas de salinidad.

También se ocasionan problemas graves de salinización en superficies de cotas bajas, cuando se realizan transformaciones de riego de áreas situadas en zonas altas y no se ha previsto su influencia en aquellas otras, directamente por la acción de las aguas de riego, pero también se puede producir por las movilizaciones de tierras que pueden provocar la aparición de rocas salinas en la superficie del terreno que además de contaminar a los suelos in situ provocan su acumulación en los suelos de las depresiones cercanas por acción de las aguas de escorrentía.

El empleo de elevadas cantidades de fertilizantes, especialmente los más solubles, más allá de las necesidades de los cultivos, es otra de las causas que provocan situaciones de altas concentraciones de sales, que contaminan los acuíferos y como consecuencia los suelos que reciben estas aguas.

Finalmente la actividad industrial, en ocasiones, puede acarrear situaciones serias de acumulación de determinadas sales en los suelos situados bajo su zona de influencia, por medio de la contaminación atmosférica o mediante las aguas que discurren por su cuenca hidrográfica.

En lo que corresponde particularmente al Valle de Mexicali, entre las causas que han fomentado la acumulación de sales en los suelos se atribuye al empleo de aguas salobres, porque la entrega de este tipo de aguas se resolvió parcialmente a partir de 1973. En la actualidad se aprecia que está progresando la salinización por la calidad del agua de riego y el deficiente manejo de la irrigación y de la red de drenaje, ya que las sales que se reintegran al acuífero se bombean posteriormente para nuevos riegos, haciendo que retornen las sales a la capa arable. En la Figura 1, se presenta la proporción de suelos con algún grado de problemas de acumulación de sales (>4 dS m⁻¹ y PSI>15%) y las cotas medias en distintas partes del Distrito de Riego 014.

Figura 1. Proporción de la superficie agrícola de suelos con problemas de sales en distintas áreas del Distrito de Riego 014 Río Colorado, B.C. y Son. y cotas medias. El mapa base sin la información se tomó de Carrillo-Guerrero (2009).

La acumulación de sales se vuelve crítica en la franja occidental y sur del Valle de Mexicali ("la ruta de la sal") y coincide con las siguientes situaciones:

- a) Suelos con mayor contenido de arcilla, incrementando el tiempo de residencia de sales solubles;
- b) Cotas más bajas, lo cual pudiese asociarse con problemas de drenaje;
- c) Uso del Río Colorado como fuente principal de abastecimiento para el riego.

4.2.2. La salinidad y su efecto en el rendimiento de los cultivos

El desarrollo de las plantas en suelos salinos con pH < 8.5 es afectado negativamente principalmente por las altas concentraciones de sales solubles. Las sales ejercen tres

efectos principales en la planta: efectos osmóticos, efectos de iones específicos y desequilibrios nutricionales. El principal efecto de las sales solubles en las plantas es el osmótico. Cantidades relativamente grandes de sales en solución en la zona de raíces se traducen en una disminución de la capacidad de la planta de extraer el agua necesaria para su desarrollo. En consecuencia, las plantas que crecen en suelos salinos con frecuencia parecen afectadas por sequía. Las plantas estresadas osmóticamente generalmente sufren un retraso en su crecimiento y sus hojas se vuelven color verde más oscuro que las plantas normales. Algunas plantas presentan enanismo a causa de la baja fertilidad y sus hojas generalmente se vuelven verde amarillentas (Winicov and Bastola, 1997).

El exceso de salinidad en la zona radicular de plantas tiene un efecto perjudicial en general sobre las plantas, que se manifiesta como una reducción en la tasa de transpiración y de crecimiento (incluyendo la ampliación de células y la síntesis de metabolitos y compuestos estructurales).

Este efecto se relaciona principalmente con la concentración total de electrolitos y es en gran medida independiente de la composición de solutos específicos. La hipótesis que mejor parece ajustarse es que la salinidad excesiva reduce el crecimiento de las plantas, al hacer los ajustes bioquímicos necesarios para sobrevivir bajo estrés. La planta extrae agua del suelo ejerciendo una fuerza de absorción mayor que la que tiene el agua al suelo. Si la planta no puede realizar el ajuste interno suficiente y ejercer suficiente fuerza, no es capaz de extraer agua suficiente y va a sufrir estrés hídrico. Esto ocurre cuando el suelo seca demasiado. La sal en la interface suelo-agua, aumenta la fuerza que la planta debe ejercer para extraer el agua y esta fuerza adicional se conoce como el efecto osmótico o potencial osmótico. Esta energía se desvía de los procesos que conducen a crecimiento y rendimiento.

Hay un intervalo de 8 a 10 veces en la tolerancia a la sal de algunos cultivos agrícolas, este amplio rango de tolerancia permite un uso mucho mayor de agua moderadamente salina, gran parte del cual se pensaba que era no utilizable, ampliando significativamente el rango aceptable del agua, considerado apto para el riego.

Como se ha indicado previamente, el rendimiento de un cultivo es consecuencia de la interacción de múltiples variables cuyo tipo, magnitud e intensidad, son función de las características del marco físico y socioeconómico de cada terreno o sitio de interés. Por su origen, es factible agruparlas en tres diferentes factores:

- a) Factores humanos: son inherentes a la actividad de los grupos humanos e interfieren o condicionan la producción, ya sea de manera directa o indirecta, como es la disponibilidad de crédito (en tiempo y forma), mano de obra, costos y precio de venta de la cosecha, tenencia de la tierra, entre otros.
- b) Factores ambientales: condiciones de clima y suelo que predominan en el sitio de interés, como son la profundidad del suelo, textura, ambiente químico, frecuencia e intensidad de la lluvia, velocidad de infiltración, temperatura, presión de vapor, entre otros.
- c) Factores agronómicos: variables que se modifican o controlan a través de las acciones que se llevan a cabo mediante el manejo agronómico. Como ejemplo de ellos son la humedad del suelo, presencia de plagas, malezas y enfermedades, disponibilidad nutrimental, entre otros.

Las variables agrupadas en dichos factores son de naturaleza distinta, cuyo predominio estará sujeto a las condiciones edafoclimáticas que prevalezcan y la eficacia del manejo que se lleve a cabo para modificar el efecto negativo que pudiesen ocasionar sobre la rentabilidad de los cultivos de interés.

Diversos estudios realizados sobre el efecto de las sales sobre las plantas, han concluido que en la medida que se incrementa la salinidad en el suelo, disminuyen los rendimientos, aunque su impacto es diferente y depende de la edad de las plantas, del método de riego, de siembra y especialmente de la especie de que se trate. (Waisel, 1972; Munns *et al.*, 1983)

Es importante tener presente que la respuesta de las plantas a la salinidad del suelo se deben a diferentes efectos de la misma: efecto osmótico, efecto de toxicidad por algún ión específico y efectos indirectos causados por la abundancia de sodio (Badia, 1992).

Efecto osmótico: La presencia de sales en la solución del suelo reduce la disponibilidad hídrica para la planta al incrementar la presión osmótica. Llega un momento en que será tal la cantidad de sales que, a pesar de que el suelo contenga agua, la planta no podrá extraerla y sufrirá un estrés hídrico (sequia fisiológica).

Efecto de ion específico. Adicional al efecto osmótico derivado de la acción conjunta de las sales en solución, se puede incluir la acción tóxica de determinados iones. Este efecto puede ser debido por la acumulación de un determinado ión, por la formación de productos tóxicos para la planta y por su efecto en el equilibrio nutritivo de la misma.

Efecto del sodio intercambiable. La abundancia de sodio en relación al calcio y magnesio absorbido en las arcillas del suelo puede determinar la individualización y dispersión de estas partículas (suelo alcalino o sódico). Bajo estas condiciones, la aireación puede ser deficiente, originando problemas de germinación y/o pudrición de las plantas.

La tolerancia a la salinidad difiere ampliamente entre especies de plantas. Las halofitas, plantas nativas de ambientes salinos, son las más tolerantes. Las glicófitas, que incluyen la mayoría de las especies, son relativamente menos tolerantes a las sales. La tolerancia a las sales es una característica compleja de la planta con funciones fisiológicas y bioquímicas controlada por numerosos genes. Muchos factores como la temperatura, humedad, etapa de desarrollo de la planta, humedad del suelo, textura, compactación, tipo de sales y fertilidad, afectan la respuesta de la planta a la salinidad. Dado que estos factores y sus interacciones afectan la respuesta de la planta, es difícil establecer una escala uniforme a la tolerancia de sales. El rendimiento de los cultivos generalmente no disminuye significativamente hasta que la conductividad eléctrica del extracto de saturación excede cierto límite llamado umbral de conductividad eléctrica del cultivo. El valor del umbral varía ampliamente de un cultivo a otro. Maas y Hoffman (1977), obtuvieron una ecuación para estimar el rendimiento potencial de los cultivos en función de la conductividad eléctrica del extracto de saturación del suelo y del umbral de CEe del cultivo.

$$Y = 100 - B (ECe - A) \tag{1}$$

Donde:

Y: Producción relativa (%)

CEe: Conductividad eléctrica del extracto de saturación (dS m⁻¹)

B: Disminución del rendimiento por unidad de aumento en la salinidad por encima del umbral crítico.

A: Umbral crítico de la salinidad (dS m⁻¹)

En el Cuadro 1 se presentan los valores de A y B de la ecuación (1) para diferentes cultivos de acuerdo a Maas y Hoffman (1977), Maas (1984) y Rhoades et al. (1992).

Cuadro 1. Tolerancia de algunos cultivos a las sales (Maass y Hoffman, 1977).

Cultivo	Nivel critico ds m ⁻¹ (A)	Disminución (%) en el rendimiento / unidad de aumento en la salinidad mas allá de nivel crítico (B)	Clasificación
Alfalfa	2.0	7.3	MS
Almendro	1.5	19.0	S
Aguacate			S
Albaricoque	1.6	24.0	S
Algodón	7.7	5.2	Т
Arroz	3.0	12.0	MS
Brócoli	2.8	9.2	MS
Uva	1.5	9.6	MS
Zanahoria	1.0	14.0	S
Cebada (Gano)	8.0	5.0	Т
Caupí	1.3	14.0	MS
Cebolla	1.2	16.0	S
Ciruela	1.5	18.0	S
Dátil	4.0	3.6	Т
Espinaca	2.0	7.6	MS
Trigo	6.0	7.1	MT
Fresa	1.0	33.0	S
Frijol	1.0	19.0	S
Limón			S
Lechuga	1.3	13.0	MS

Cultivo	Nivel critico ds m ⁻¹ (A)	Disminución (%) en el rendimiento / unidad de aumento en la salinidad mas allá de nivel crítico (B)	Clasificación
Soya	5.0	20.0	MT
Maní	3.2	29.0	MS
Maíz Dulce	1.7	12.0	MS
Naranja	1.7	16.0	S
Toronja	1.8	16.0	S
Tomate	2.5	9.9	MS
Pimienta		14.0	MS
Papa	1.7	12.0	MS
Pasto Bermuda	6.9	6.9	Т
Ryegrass perenne	5.6	7.6	MT
Pasto Rhoades			MS
Pasto Sudan	2.8	4.3	MT
Rábano	1.2	13.0	MS
Repollo	1.8	9.7	MS
Remolacha	4.0	9.0	MT

S = Susceptible, MS = Medianamente Susceptible, MT = Medianamente Tolerante, T = Tolerante

En el Cuadro 2, se incluyen algunas especies y los niveles de salinidad que afectan su rendimiento. Sobre esta clasificación es importante señalar, que corresponde al comportamiento general de estas especies; sin embargo, en algunas plantas se han realizado mejoras genéticas que los hacen más tolerantes, específicamente en algunas gramíneas como trigo y sorgo, así como en algunas especies hortícolas, tomate principalmente. Por lo anterior, es importante identificar las características de salinidad de suelos y establecer los cultivos que mejor se adapten a cada condición de acuerdo a su tolerancia a la salinidad.

Cuadro 2. Tolerancia y rendimiento potencial de cultivos por influencia de la salinidad del agua de riego (CE_w) o salinidad del suelo (CE_e)

CULTIVOS DE CAMPO			000/		750/		500/		0%	
		%	90%	90 /6		75%		50%		"Máximo"
	CE _e	CEw	CE _e	CEw	CE _e	CEw	CE _e	CEw	CE _e	CEw
Cebada (Hordeum vulgare) ⁴	8.0	5.3	10	6.7	13	8.7	18	12	28	19
Algodón (Gossypium hirsutum)	7.7	5.1	9.6	6.4	13	8.4	17	12	27	18
Remolacha azucarera (Beta vulgaris) ⁵	7.0	4.7	8.7	5.8	11	7.5	15	10	24	16
El sorgo (Sorghum bicolor)	6.8	4.5	7.4	5.0	8.4	5.6	9.9	6.7	13	8.7
Trigo (Triticum aestivum) ⁴ , ⁶	6.0	4.0	7.4	4.9	9.5	6.3	13	8.7	20	13
Trigo, trigo duro (Triticum turgidum)	5.7	3.8	7.6	5.0	10	6.9	15	10	24	16
Soja (Glycine max)	5.0	3.3	5.5	3.7	6.3	4.2	7.5	5.0	10	6.7
Caupí (Vigna unguiculata)	4.9	3.3	5.7	3.8	7.0	4.7	9.1	6.0	13	8.8
Cacahuete (maní) (Arachis hypogaea)	3.2	2.1	3.5	2.4	4.1	2.7	4.9	3.3	6.6	4.4
Arroz (cáscara) (Oriza sativa)	3.0	2.0	3.8	2.6	5.1	3.4	7.2	4.8	11	7.6
La caña de azúcar (Saccharum officinarum)	1.7	1.1	3.4	2.3	5.9	4.0	10	6.8	19	12
Maíz (maíz) (Zea mays)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7
Lino (Linum usitatissimum)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7
Broadbean (Vicia faba)	1.5	1.1	2.6	1.8	4.2	2.0	6.8	4.5	12	8.0
Frijol (Phaseolus vulgaris)	1.0	0.7	1.5	1.0	2.3	1.5	3.6	2.4	6.3	4.2
CULTIVOS VEGETALES										
Squash, calabacín (calabacín) (melopepo Cucurbita pepo)	4.7	3.1	5.8	3.8	7.4	4.9	10	6.7	15	10
Remolacha, roja (Beta vulgaris) ⁵	4.0	2.7	5.1	3.4	6.8	4.5	9.6	6.4	15	10
Squash, vieira (melopepo Cucurbita pepo)	3.2	2.1	3.8	2.6	4.8	3.2	6.3	4.2	9.4	6.3
El brócoli (Brassica oleracea botrytis)	2.8	1.9	3.9	2.6	5.5	3.7	8.2	5.5	14	9.1
Tomate (Lycopersicon esculentum)	2.5	1.7	3.5	2.3	5.0	3.4	7.6	5.0	13	8.4
Pepino (Cucumis sativus)	2.5	1.7	3.3	2.2	4.4	2.9	6.3	4.2	10	6.8
La espinaca (Spinacia oleracea)	2.0	1.3	3.3	2.2	5.3	3.5	8.6	5.7	15	10
Apio (Apium graveolens)	1.8	1.2	3.4	2.3	5.8	3.9	9.9	6.6	18	12
Col (Brassica oleracea capitata)	1.8	1.2	2.8	1.9	4.4	2.9	7.0	4.6	12	8.1
Patata (Solanum tuberosum)		1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7
Maíz, dulce (maíz) (Zea mays)	1.7	1.1	2.5	1.7	3.8	2.5	5.9	3.9	10	6.7
La batata (Ipomoea batatas)	1.5	1.0	2.4	1.6	3.8	2.5	6.0	4.0	11	7.1
Pimiento (Capsicum annuum)	1.5	1.0	2.2	1.5	3.3	2.2	5.1	3.4	8.6	5.8
Lechugas (Lactuca sativa)	1.3	0.9	2.1	1.4	3.2	2.1	5.1	3.4	9.0	6.0

			90%		750/		500 /		0%	
CULTIVOS DE CAMPO		/o	90%		75%		50%		"Máximo'	
	CE _e	CEw								
Rábano (Raphanus sativus)	1.2	0.8	2.0	1.3	3.1	2.1	5.0	3.4	8.9	5.9
Cebolla (Allium cepa)	1.2	0.8	1.8	1.2	2.8	1.8	4.3	2.9	7.4	5.0
Zanahoria (Daucus carota)	1.0	0.7	1.7	1.1	2.8	1.9	4.6	3.0	8.1	5.4
Frijol (Phaseolus vulgaris)	1.0	0.7	1.5	1.0	2.3	1.5	3.6	2.4	6.3	4.2
Nabo (Brassica rapa)	0.9	0.6	2.0	1.3	3.7	2.5	6.5	4.3	12	8.0
El pasto de trigo, alto (Agropyron elongatum)	7.5	5.0	9.9	6.6	13	9.0	19	13	31	21
El pasto de trigo, fairway crestado (Agropyron cristatum)	7.5	5.0	9.0	6.0	11	7.4	15	9.8	22	15
Pasto bermuda (Cynodon dactylon) ¹	6.9	4.6	8.5	5.6	11	7.2	15	9.8	23	15
Cebada (forraje) (Hordeum vulgare) 4	6.0	4.0	7.4	4.9	9.5	6.4	13	8.7	20	13
Ryegrass perenne (Lolium perenne)	5.6	3.7	6.9	4.6	8.9	5.9	12	8.1	19	13
Loto de los prados, narrowleaf ⁸ (Lotus corniculatus tenuifolium)	5.0	3.3	6.0	4.0	7.5	5.0	10	6.7	15	10
Harding grass (Phalaris tuberosa)	4.6	3.1	5.9	3.9	7.9	5.3	11	7.4	18	12
Festuca, alta (Festuca elatior)	3.9	2.6	5.5	3.6	7.8	5.2	12	7.8	20	13
El pasto de trigo, cresta estándar (Agropyron sibiricum)	3.5	2.3	6.0	4.0	9.8	6.5	16	11	28	19
Arveja, común (Vicia angustifolia)	3.0	2.0	3.9	2.6	5.3	3.5	7.6	5.0	12	8.1
Pasto del Sudán (Sorghum sudanense)	2.8	1.9	5.1	3.4	8.6	5.7	14	9.6	26	17
Wildrye, imberbe (triticoides Elymus)	2.7	1.8	4.4	2.9	6.9	4.6	11	7.4	19	13
Caupí (forraje) (Vigna unguiculata)	2.5	1.7	3.4	2.3	4.8	3.2	7.1	4.8	12	7.8
Trébol, grande (Lotus uliginosus)	2.3	1.5	2.8	1.9	3.6	2.4	4.9	3.3	7.6	5.0
Sesbania (Sesbania exaltata)	2.3	1.5	3.7	2.5	5.9	3.9	9.4	6.3	17	11
Sphaerophysa (Sphaerophysa salsula)	2.2	1.5	3.6	2.4	5.8	3.8	9.3	6.2	16	11
La alfalfa (Medicago sativa)	2.0	1.3	3.4	2.2	5.4	3.6	8.8	5.9	16	10
Lovegrass (Eragrostis sp.) 9	2.0	1.3	3.2	2.1	5.0	3.3	8.0	5.3	14	9.3
El maíz (forraje) (maíz) (Zea mays)	1.8	1.2	3.2	2.1	5.2	3.5	8.6	5.7	15	10
Trébol, trébol de Alejandría (Trifolium alexandrinum)	1.5	1.0	3.2	2.2	5.9	3.9	10	6.8	19	13
Pasto ovillo (Dactylis glomerata)	1.5	1.0	3.1	2.1	5.5	3.7	9.6	6.4	18	12
La cola de zorra, prado (Alopecurus pratensis)	1.5	1.0	2.5	1.7	4.1	2.7	6.7	4.5	12	7.9
Clover, rojo (Trifolium pratense)	1.5	1.0	2.3	1.6	3.6	2.4	5.7	3.8	9.8	6.6
Trébol, trébol híbrido (Trifolium hybridum)	1.5	1.0	2.3	1.6	3.6	2.4	5.7	3.8	9.8	6.6
Clover, ladino (Trifolium repens)	1.5	1.0	2.3	1.6	3.6	2.4	5.7	3.8	9.8	6.6

	1000	·/	000/		750/		E00/		0%	
CULTIVOS DE CAMPO	100% 9		90%		75%		50%		"Máximo"	
	CE _e	CEw								
Clover, fresa (Trifolium fragiferum)	1.5	1.0	2.3	1.6	3.6	2.4	5.7	3.8	9.8	6.6
FRUTALES 10										
Palmera datilera (Phoenix dactylifera)	4.0	2.7	6.8	4.5	11	7.3	18	12	32	21
La toronja (Citrus paradisi) 11	1.8	1.2	2.4	1.6	3.4	2.2	4.9	3.3	8.0	5.4
Naranja (Citrus sinensis)	1.7	1.1	2.3	1.6	3.3	2.2	4.8	3.2	8.0	5.3
Melocotón (Prunus persica)	1.7	1.1	2.2	1.5	2.9	1.9	4.1	2.7	6.5	4.3
Albaricoque (Prunus armeniaca) 11	1.6	1.1	2.0	1.3	2.6	1.8	3.7	2.5	5.8	3.8
Uva (Vito. sp) 11	1.5	1.0	2.5	1.7	4.1	2.7	6.7	4.5	12	7.9
Almendra (Prunus dulcis) 11	1.5	1.0	2.0	1.4	2.8	1.9	4.1	2.8	6.8	4.5
Plum, ciruela (Prunus domestica) 11	1.5	1.0	2.1	1.4	2.9	1.9	4.3	2.9	7.1	4.7
Blackberry (Rubus sp.)	1.5	1.0	2.0	1.3	2.6	1.8	3.8	2.5	6.0	4.0
Mora (Rubus ursinus)	1.5	1.0	2.0	1.3	2.6	1.8	3.8	2.5	6.0	4.0
Fresa (Fragaria sp.)	1.0	0.7	1.3	0.9	1.8	1.2	2.5	1.7	4	2.7

4.2.3. Criterios de clasificación de la salinidad del suelo

Los suelos afectados por sales se pueden caracterizar como salinos, salino-sódicos y sódicos. Para ello es necesario la medición de tres parámetros que son: la conductividad eléctrica (CE) del extracto de saturación, el porcentaje de sodio intercambiable (PSI) y el pH.

Suelos salinos: Contienen suficiente sales como para limitar el crecimiento de algunos cultivos por disminución en el potencial hídrico total, provando: plantas con síntomas de estrés hídrico, desbalances nutricionales y toxicidad de algunos iones. Su CE es mayor a 4 mmhos/cm a 25°C, su PSI menor de 15 y generalmente pH menor de 8.5. Los suelos salinos casi siempre están floculados por el exceso de sales y la falta de sodio intercambiable, por lo que la permeabilidad es igual o mayor a la de suelos similares no salinos. El mejoramiento de estos suelos se puede lograr mediante simple lavado, cuando se cuente con drenaje adecuado.

Suelos sódicos: Contienen cantidades excesivas de sodio (N_a) en los sitios de intercambio, las cuales dispersan las partículas de suelo, generando dispersión de la materia orgánica y arcillas. Limitan el movimiento de aire y agua, mediante mecanismo de dispersión de sodio reemplaza cationes divalentes, el sodio adsorbido esta hidratado y aumenta la electronegatividad hasta que las partículas se repelen. La CE de estos suelos es menor de 4 mmhos/cm a 25°C, su PSI es mayor a 15 y su pH varía entre 8.5 a 14. Su mejoramiento implica el uso de mejoradores químicos como el yeso agrícola o el ácido sulfúrico, según haya ausencia o no de carbonatos de calcio y magnesio en el suelo.

Suelos salino-sódicos: Son suelos que contiene suficientes sales como para limitar el crecimiento de algunos cultivos y que contienen cantidades excesivas de Na en los sitios de intercambio. Los cultivos pueden ser afectados por exceso de sales y Na, pero usualmente drenan muy bien, las sales proveen cationes en exceso que se adsorben a coloides negativamente cargadas, reduciendo la tendencia a dispersarse. Estos se pueden convertir en suelos sódicos fácilmente a consecuencia de lavados que elimina sales, provocando elevación de pH, deflocula el suelo y lo convierte desfavorable para la infiltración y las labores agrícolas. Para mejorar este tipo de suelos será necesario la incorporación de yeso y el lavado. Si el suelo contiene yeso, solo es necesario el lavado y drenaje.

Suelos calcáreos: Contienen CaCO₃ libre, y no necesariamente son salinos ni salinosódicos, la presencia de carbonatos libres influye en ciertas prácticas de manejo como el uso de herbicidas, aplicación de fósforo y la disponibilidad de micronutrientes. Reducir el pH de estos suelos usualmente no es económico pero se utilizaría azufre.

Existen diferentes clasificaciones que agrupa a los suelos en diferentes categorías considerando su nivel de salinidad y/o su efecto en los cultivos agrícolas. Uno de las más reconocidas y usadas es el citado por Abrol *et al.* (1988), que clasifica a los suelos salinos en cinco categorías basada en el efecto de la salinidad sobre las plantas. Esta clasificación se presenta en el Cuadro 3.

Cuadro 3. Clases de las salinidad del suelo y un efecto en el crecimiento de los cultivos

Clases de Salinidad en Suelos	Extracto de Conductividad de Salinidad (ds / m ⁻¹)	Efectos sobre plantas de cultivos
Sin Sales	0 - 2	Efectos de salinidad insignificante
Ligeramente Salino	2 -4	Los rendimientos de los cultivos sensibles restringirse
Moderadamente Salino	4 - 8	Los rendimientos de muchos cultivos se limitan
Fuertemente Salino	8 - 16	Sólo cultivos tolerantes rinden satisfactoriamente
Muy Fuertemente Salino	> 16	Sólo unos pocos cultivos muy tolerantes rinden satisfactoriamente

Fuente: Abrol et al. (1988)

Por otra parte la SEMARNAT (2002), en su NOM-021-SEMARNAT-2000, establece seis categorías de la salinidad de los suelos en función de la conductividad eléctrica del extracto de saturación del suelo (Cuadro 4).

Cuadro 4. Categorías de salinidad del suelo de acuerdo a SEMARNAT (2002).

CE ds m ⁻¹ a 25° C	Efectos
< 1.0	Efectos despreciables de la salinidad
1.1 - 2.0	Muy ligeramente salino
2.1 - 4.0	Moderadamente salino
4.1 - 8.0	Suelo salino
8.1 - 16.0	Fuertemente salino
> 16.0	Muy fuertemente salino

4.2.4. Técnicas de recuperación de suelos salinos

Para la recuperación de suelos salinos y/o alcalinos según Pizarro, 1977, comúnmente se utilizan dos técnicas fundamentales: lavado de sales y aplicación de enmiendas químicas.

Además de estas dos técnicas básicas, se deben utilizar algunas prácticas complementarias tales como subsoleos, incorporación de materia orgánica, etc., cuya función principal es aumentar la eficiencia de las técnicas básicas.

a) Métodos de Lavado

Un procedimiento que se utiliza comúnmente para evacuar las sales de los suelos salinos es su lavado, que consiste en hacer pasar a través del suelo una cierta cantidad de agua que arrastra las sales existentes fuera de la zona radicular.

Para tal efecto se pueden realizar dos tipos de lavados que se denominan de mantenimiento, y que consisten en:

- Aprovechar el riego para lavar el suelo, añadiendo en cada aplicación agua en exceso.
- Realizar lavados periódicos independientes del riego. Estos lavados pueden tener una frecuencia anual, semestral, etc., en función de los factores que influyen en la salinización y en función también de otros factores como épocas de cosecha, disponibilidades de agua, etc.

El primer paso que se requiere para la corrección de suelos salinos es la instalación de drenes (abiertos o subterráneos) para evacuar las sales solubles y el segundo paso es la corrección de los suelos salinos añadiendo un exceso de agua para lavar las sales.

Para realizar el lavado de sales, se recomienda primero nivelar el terreno, cuidando de eliminar los pequeños montículos. Luego se forma alrededor de las parcelas niveladas

los camellones. Previamente conviene eliminar de la parcelas la vegetación y dar un subsolado o laboreo de 25-30 cm, con objeto de facilitar la infiltración del agua.

La altura de los camellones depende de la cantidad de agua a aplicar, ya que cuanto mayor sea la lámina de agua más efectivo será el lavado (Pizarro, 1997).

Para lograr la máxima efectividad del lavado es importante fraccionar el agua en varias aplicaciones:

- En la primera aplicación se añade el agua necesaria para elevar la humedad del suelo a capacidad de campo (CC).
- La segunda se realiza dos o tres días después, es decir, luego de que el agua de la primera aplicación ha disuelto gran cantidad de sales, que son fácilmente eliminadas en las aplicaciones posteriores.

A medida que las aguas van pasando por el perfil del suelo, se van lavando las sales más solubles (cloruros de sodio y magnesio y sulfato de magnesio), mientras que el sulfato sódico tarda más en disolverse, sobre todo en aguas frías. El yeso presente en el suelo no es afectado prácticamente por los lavados.

En general, la eficiencia de los lavados es mayor cuando se efectúan en la estación cálida, debido a que la solubilidad de las sales aumenta con la temperatura. En el caso del sulfato sódico, su lavado es muy difícil a temperaturas bajas, porque la sal forma precipitados que no son arrastrados por el agua.

Sin embargo, los lavados aplicados al suelo, no solo lavan las sales sino pueden ocasionar pérdidas de algunos nutrientes importantes (uno de los elementos más expuesto a estas pérdidas es el nitrógeno). En ese sentido es necesario compensar estas pérdidas mediante la aplicación de fertilizantes.

Si bien este método de lavado puede ser eficiente, si se dispone de suficiente cantidad de agua y medios para su implementación, en condiciones del altiplano es más complicado, por los costos, tenencia de la tierra, calidad y escases de agua, entre otros

En ese sentido, el agua de lluvia puede cumplir este papel, debido a que prácticamente no contiene sales. Su eficiencia depende de que la mayor parte de las lluvias torrenciales no escurran y más bien se infiltren favoreciendo el lavado. Para este efecto es condición de que el suelo tenga buen drenaje.

b) Lavados aplicados con el riego

Cuando se trata de terrenos ya desalinizados en los que se pretende evitar la resalinización, las necesidades de lavado se suelen expresar como un porcentaje del agua de riego aplicada. En general, el agua necesaria para el lavado se aplica junto con la del riego, añadiendo una cantidad excesiva, de forma que una vez que el suelo alcanza la capacidad de campo, el exceso de agua percole las sales hacia las capas más profundas.

Uno de los problemas que se tiene para poder lavar adecuadamente los suelos salinos, es que no se disponga de suficiente cantidad de agua y/o que se tengan problemas de calidad de las aguas.

Para determinar la eficiencia del lavado es conveniente analizar las aguas de drenaje y determinar la cantidad relativa de sales eliminadas en comparación a las aguas añadidas al terreno, así mismo es necesario muestrear el suelo hasta una profundidad de aproximadamente 1.8 m para determinar los elementos que la conforman.

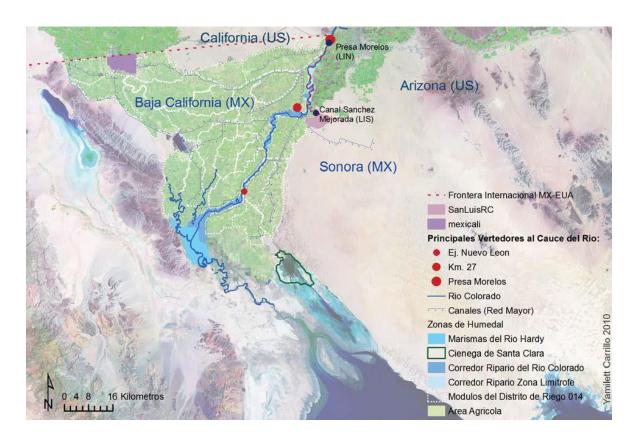
Los cálculos de agua que se deben añadir al suelo, se basan principalmente en las cantidades de agua requeridas por los cultivos, la capacidad de agua que se puede almacenar en el suelo y la cantidad de agua necesaria para lavar las sales hasta una profundidad definida.

c) Aplicación de enmiendas químicas

La corrección de los suelos sódicos es más complicada que en los suelos salinos (Thorne y Peterson, 1963), en razón de que no solo se requiere reemplazar el sodio intercambiable con calcio, sino mejorar sus propiedades físicas para promover el lavado del sodio.

El calcio necesario para reemplazar el sodio intercambiable puede provenir del suelo, del agua de riego o de las enmiendas añadidas. La aplicación de enmiendas químicas (mejoradores) en los suelos alcalinos tiene como objetivo favorecer la sustitución del Na intercambiable por el Ca de la enmienda. La aplicación de las enmiendas se realiza cuando hay un exceso de Na en el suelo y por lo tanto presentan un PSI elevado (>15 %).

Existen diversos tipos de enmiendas químicas que se pueden utilizar en la recuperación de suelos sódicos, que pueden agruparse en: sales solubles (yeso, cloruro cálcico), ácidos o formadores de ácidos (azufre, poli sulfuró de calcio, ácido sulfúrico, sulfatos de hierro y aluminio), sales de calcio de baja solubilidad (caliza) y residuos industriales (espuma de ingenios azucareros, otros).


La elección de una u otra enmienda dependerá en gran medida de las características fisicoquímicas del suelo, disponibilidad de la enmienda y de los recursos disponibles.

5. Metodología

5.1. Marco Físico

5.1.1. Ubicación del área de estudio

El área de estudio se localiza en el ámbito del Distrito de Riego 014 Río Colorado, el cual se ubica entre los municipios de Mexicali, B.C. y San Luis Río Colorado, Son. La orografía del municipio de Mexicali está caracterizada por un conjunto de sierras que cubren 30% de su territorio, siendo las de mayor altura la de Juárez y la de San Pedro Mártir (3,300 y 2,800 msnm, respectivamente). El resto son de menor altitud y llegan como máximo a 1000 msnm. En lo que corresponde al municipio de San Luis Río Colorado, forma parte del desierto de Altar y está delimitado por las serranías de El Tule, El Zumbador, El Rosario, Las Pintas, La Tinaja y Malpaís. En la Figura 2 se presenta un mapa esquemático de la zona de estudio.

Figura 2. Ubicación el Distrito de Riego 014 Río Colorado, B.C. y Son. *Fuente: Las Cuencas Hidrográficas de México*

El Río Colorado es la principal corriente de agua superficial, proviene de los Estados Unidos y desemboca en el Golfo de California. Su flujo anual es de 1.85 Hm³, el cual está regulado a través de un tratado firmado entre los Estados Unidos y México. Se emplea para dotar de agua potable a las ciudades de Mexicali y Tijuana, las áreas urbanas del valle de Mexicali y como fuente de riego para el Distrito de Riego 014. Otras corrientes las constituyen el Río Hardy y el Río Nuevo, ambos conducen el drenaje proveniente de la actividad agropecuaria, urbana e industrial.

Dadas las condiciones de clima de la región, el ecosistema del Valle de Mexicali corresponde al de las zonas semidesérticas con especies silvestres xerofitas, matorrales esclerófilos y del tipo escuamifolio. En las sierras altas se encuentran bosques de pino, cedro y madroño. En San Luis Río Colorado predomina la vegetación de desiertos arenosos como gobernadora, nopal, mezquite, entre otros.

5.1.2. Características climáticas del Distrito de riego 014

El tipo de clima que predomina en el municipio de Mexicali corresponde al grupo de secos-áridos con escasa precipitación y presenta cuatro variantes: a) cálido seco, que es el que corresponde al Valle donde se encuentra la zona agrícola; b) semicálido, que se refiere a la parte central del municipio; c) templado seco en el oeste del municipio; d) templado semiseco, zona central oeste, comprendiendo parte de las sierras de Juárez y San Pedro Mártir. En San Luis Río Colorado se tiene un clima muy seco del tipo BW(h')hs(x')(e')

Los vientos circulan en dirección noroeste-suroeste durante la mayor parte del año, con una precipitación pluvial anual promedio alrededor de 130 mm, la cual se presenta normalmente en invierno. En Mexicali la temperatura media anual es de 19°C, aunque las más altas suelen superar los 30°C entre mayo y septiembre y la más baja en enero con 5°C o menos. Las temperaturas máximas extremas llegan a 45°C entre julio y agosto. En San Luis Río Colorado, la temperatura media anual es de 22.8°C, siendo la media máxima en julio y agosto con 33.7°C, mientras que la media mínima en diciembre y enero es 12.5°C. Las lluvias ocurren entre octubre y enero, con una

precipitación media anual de 27.4 mm. En la Figura 3 se presenta la variación de la temperatura media mensual en el Distrito de Riego 014 Río Colorado.

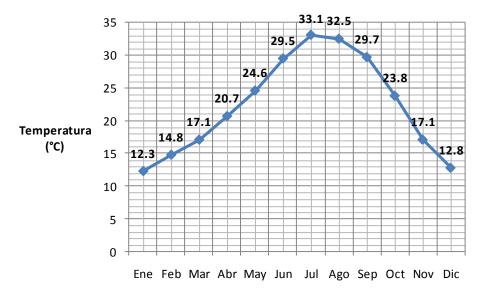
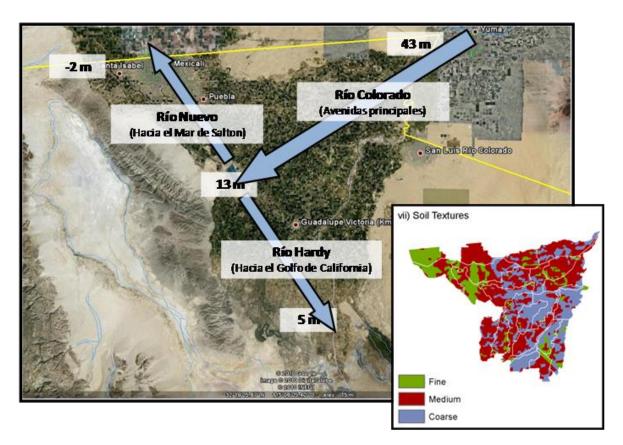


Figura 3. Temperatura media mensual en el Distrito de Riego 014 Río Colorado, B.C. y Son.


Debido a la condición árida de la región, la pérdida de agua por evaporación y transpiración resulta ser una variable preponderante en el sistema agrícola, ya que debe reponerse en cantidades apropiadas a través del riego si se desea mantener una alta productividad.

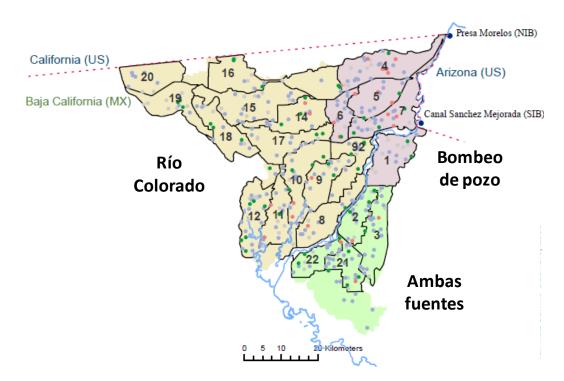
5.1.3. Características edáficas

Los procesos que dieron lugar a la formación de los suelos hacen que sean de tipo aluvial reciente con un origen mineralógico muy diverso, como consecuencia de las acumulaciones sucesivas de materiales en suspensión y de aquellos que fueron arrastrados por las avenidas del Río Colorado. Esto dio lugar a las planicies de inundación que contienen capas con distintos materiales, según los depósitos ocurridos hasta antes de que se controlaran las incursiones del Río Colorado (Figura 4).

Por esta razón, en el noroeste del valle predominan suelos arcillosos muy profundos, indicando que esta zona estuvo mucho tiempo bajo el agua con muy baja velocidad. En el suroeste fue menos intenso dicho proceso y en el sureste aunque también hay

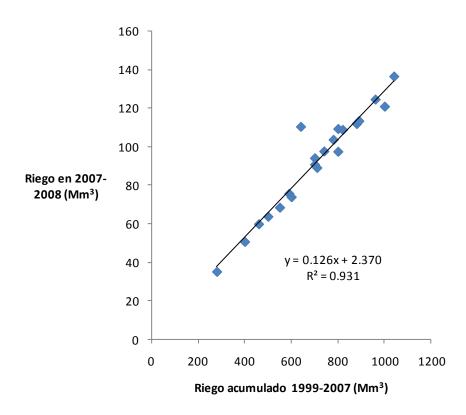
acumulación de arcillas, son menos compactas respecto a las del noroeste. Entonces, los suelos con más arena están en la cercanía de la actual ribera del Río Colorado y los arcillosos en las partes más alejadas.

Figura 4. Flujo de las avenidas del Río Colorado en el Distrito de Riego 014 Río Colorado, B.C. y Son., antes de que se estableciera su control. El mapa de texturas fue tomado de Carrillo-Guerrero (2009).


Dada la vegetación natural y el tipo de manejo predominante, hace que estos suelos tengan un escaso contenido de materia orgánica. Sin embargo, la actividad agrícola es intensa y con altos rendimientos, donde la mecanización de la región se caracteriza por estar entre los más avanzados en el país.

5.1.4. Fuentes de agua de riego

El riego que se suministra a los cultivos de la zona de estudio proviene de tres fuentes principales:


- a) extracción del agua de pozos agrícolas
- b) directamente de los canales en los que se conduce el Río Colorado
- c) la combinación de ambos aprovechamientos.

En la Figura 5 se presenta un esquema que muestra los módulos del Valle y la fuente de abastecimiento del agua de riego.

Figura 5. Módulos del Distrito de Riego 014 Río Colorado, B.C. y Son. y sus principales fuentes de abastecimiento de agua para el riego. El mapa base se tomó de Carrillo-Guerrero (2009).

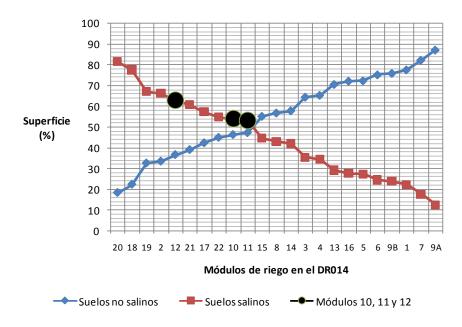

La cantidad de agua que se ha empleado para el riego agrícola en los módulos del Distrito de Riego 014 se ha mantenido razonablemente constante, lo cual se hace evidente en la Figura 6.

Figura 6. Relación entre el riego acumulado entre 1999 y 2007, respecto al practicado durante el ciclo 2007-2008 en los módulos del Distrito de Riego 014 Río Colorado, B.C. y Son.

El uso del agua en cada módulo varía con base en diversos aspectos, como son su extensión o superficie, cultivos establecidos, asignación del recurso, entre otros, pero en todo caso, se ha mantenido el flujo sin cambios significativos excepto en el módulo 16, el cual colinda al este con la ciudad de Mexicali.

El contenido de sales en los suelos del Valle es muy variable lo cual, es consecuencia de la calidad del agua empleada para el riego y su manejo, así como el tipo de suelo. Para ver con mayor claridad las diferencias entre los módulos se evaluó la proporción de suelos salinos y no salinos (Figura 7).

Figura 7. Proporción de suelos no salinos y salinos en los distintos módulos del Distrito de Riego 014 Río Colorado, B.C. y Son.

Los mayores problemas de sales se encuentran en la zona occidental y sur del Valle de Mexicali, donde se emplea como fuente de riego las aguas del Río Colorado y en el caso de los módulos 10, 11 y 12 su combinación con la que se extrae de pozos que emanan agua enriquecida con sales por los procesos ya discutidos.

5.1.5. Principales cultivos del Distrito de Riego 014

Mexicali fue fundado el 14 de marzo de 1903 y San Luis Río Colorado en 1918 como colonia agrícola militar, por lo que la historia de la producción de cultivos en el Valle sólo tiene alrededor de un siglo. Durante dicho lapso, esta región del país se convirtió en una zona de alta rentabilidad en la explotación agropecuaria, con diversas especies de interés económico que se destinan al abastecimiento del mercado nacional y de exportación (Cuadro 5).

Cuadro 5. Cultivos producidos en el Distrito de Riego 014 Río Colorado, B.C. y Son., según la información publicada por el SIAP (2008).

Cereales:

Cebada grano, Maíz grano, Trigo grano

Cultivos destinados a la alimentación animal:

Alfalfa verde, Avena forrajera, Bermuda, Cebada forrajera, Maíz forrajero, Nabo forrajero, Pastos, Remolacha forrajera, Rye grass, Sorgo forrajero, Sorgo grano, Zacate.

Frutales:

Aceituna, Dátil, Durazno, Higo, Limón, Mandarina, Manzana, Naranja, Toronja, Uva para fruta, Otros frutales.

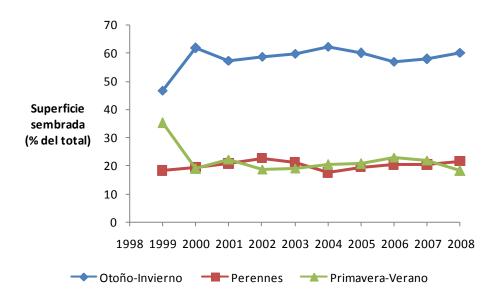
Hortalizas:

Acelga, Ajo, Alcachofa, Apio, Bell peper, Berenjena, Betabel, Brócoli, Calabacita, Cebolla, Cebollín, Chile verde, Cilantro, Col, Coliflor, Elote, Esparrago, Espinaca, Fresa, Jalapeño, Jitomate, Lechuga, Melón, Nabo, Nopalitos, Pepino, Perejil, Quelite, Rábano, Sandia, Tomate verde, Tomillo, Zanahoria

Leguminosas:

Cacahuate, Chícharo, Ejote, Frijol, Garbanzo

Oleaginosas:


Ajonjolí, Algodón hueso, Cártamo

Otros cultivos:


Boi choi, Daikon, Eucalipto, Flor kale, Gailan, Kale, Kay laan, Kohlrabi, Leek, Mostaza, Napa, Palma de ornato (planta), Rapini, Sorgo escobero, Uva pasa

El ambiente climático en el Valle de Mexicali es muy seco (130 mm de lluvia promedio anual), con temperaturas extremas durante el año (>35°C en verano y <5°C en invierno) y además presenta condiciones salinas tanto en los suelos agrícolas como en el agua de riego.

Sin embargo, la disponibilidad del riego hace que sea posible la producción agrícola de manera sostenida durante todo el año, siendo el ciclo otoño-invierno el más importante desde el punto de vista de la superficie que ocupa y en su impacto económico (Figura 8).

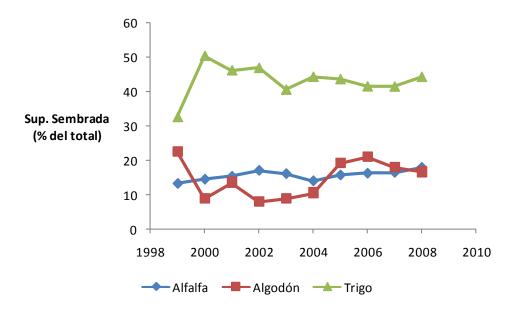


Figura 8. Porcentaje de la superficie total sembrada entre 1999 y 2008 por ciclo de cultivo en el Distrito de Riego 014 Río Colorado, B.C. y Son., según datos del SIAP (2010).

Figura 9. Valor de la producción (%) de la superficie total sembrada entre 1999 y 2008 por ciclo de cultivo en el Distrito de Riego 014 Río Colorado, B.C. y Son. (SIAP, 2010).

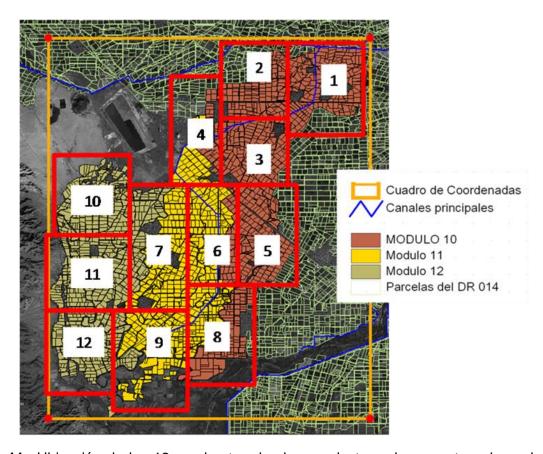
Con el propósito de evaluar qué cultivos son los más importantes desde el punto de vista de la superficie sembrada en el Distrito de Riego 014, se elaboró la Figura 10, en la que se presenta la proporción que ocupan algunos de ellos respecto al resto de los producidos en la región.

Figura 10. Proporción de la superficie sembrada en algunos cultivos respecto al total producido entre 1999 y 2008 en el Distrito de Riego 014 Río Colorado, B.C. y Son. (SIAP, 2010).

De acuerdo con la citada figura, el trigo, la alfalfa y el algodón abarcan en promedio entre 1999 y 2008, 43%, 16% y 15%, respectivamente, lo que en conjunto equivale a 74% de la superficie cultivada en el Distrito de Riego 014 y con una alta productividad y razonablemente constante.

Por otra parte, el espárrago es una especie muy tolerante a las condiciones salinas, siendo viable su producción en ambientes cuya conductividad eléctrica esté entre 8.1 y 16.0 dS m⁻¹ medidos en el extracto de saturación del suelo, por lo que no sorprende el interés en la región por esta especie hortícola. En contraste, la lechuga y la cebolla son moderadamente sensibles a la salinidad ya que se adaptan a valores de conductividad eléctrica en el extracto de saturación entre 2.1 y 4.0 dS m⁻¹, por lo que llama la atención que la cebolla y el cebollín abarquen la mayor extensión del área dedicada a la siembra de hortalizas en el Distrito de Riego 014.

5.2. Muestreo de suelos en campo

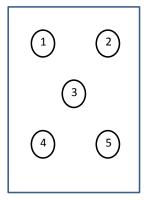

5.2.1. Delimitación del área de estudio

De acuerdo a los reportes preliminares, los suelos que resultaron más afectados por el evento telúrico ocurrido el 4 de abril de 2010 fueron los ubicados en la zona del Nuevo Delta y que incluye los módulos de riego 10, 11 y 12 del Distrito de Riego 014 Río Colorado, B.C. y Son., y fueron los incluidos en el presente estudio.

Los resultados del diagnóstico se integraron como una capa en el Modelo de Sistema de Información Geográfica que ya realizó en un estudio previo el Colegio de Postgraduados, con la idea de que dicha información sea empleada por CONAGUA para tomar decisiones sobre la elaboración de proyectos y programas relacionados con la recuperación de suelos, instalación de sistemas de drenaje, modernización de la infraestructura, tecnificación del riego, entre otros aspectos.

5.2.2. Determinación de los sitios de muestreo

Se colectaron un total de 600 muestras de suelo en los módulos 10, 11 y 12 del Distrito de Riego 014 (Figura 11), de las cuales 300 se tomaron a una profundidad de 0-30 cm y las 300 restantes de 30-60 cm. Con fines de una mejor distribución de los sitio de muestreo los módulos de riego 10, 11 y 12 se dividieron en 12 cuadrantes y la cantidad de muestras en cada uno se indica en el Cuadro 6.


Figura 11. Ubicación de los 12 cuadrantes donde se colectaron las muestras de suelo en los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora.

Cuadro 6. Distribución del muestreo para evaluar la salinidad y capacidad productiva de los suelos del Nuevo Delta en el Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadrante	Número c colectada	de muestras s
	0-30 cm	30-60 cm
1 2	25 20	25 20
3	25	25
4	20	20
5	25	25
6	25	25
7	30	30
8	25	25
9	25	25

Cuadrante	Número de muestra colectadas						
	0-30 cm	30-60 cm					
10	25	25					
11	30	30					
12	25	25					
Total	300	300					

Cada sitio que se seleccionó para tomar una muestra de suelo correspondió a una parcela agrícola. Para ello, se recorrió el terreno colectando cinco submuestras y se colocaron en la misma bolsa para formar una muestra compuesta (Figura 12).

Figura 12. Ubicación de las cinco submuestras para formar la muestra compuesta en cada parcela seleccionada para colectar el suelo.

Las muestras de suelo colectadas se distribuyeron de forma razonablemente homogénea, esto es, se aseguró de abarcar toda el área de cada cuadrante, con un espaciamiento lo más equidistante posible entre cada sitio de muestreo (parcela agrícola). En cada sitio de muestreo se tomó la siguiente información:

- a) Referencias geográficas (latitud, longitud y altura)
- b) Si visualmente se apreciaban sales sobre la superficie del terreno o por lo contrario, que aparentemente no hubiese manchones de esta naturaleza.
- c) Tipo de cultivo presente al momento del terreno o si está en descanso.

En cada punto se tomaron cinco fotografías con cámara digital en la parte central de la parcela, una por cada punto cardinal (norte, sur, este y oeste), así como la del hoyo y la submuestra colectada en la zona central. Se aseguró de identificar de manera clara la posición de cada fotografía, así como su correspondencia con la muestra compuesta colectada.

Se evitó colectar muestras en los siguientes casos: a) siembras recientes (mes o mes y medio a la fecha del muestreo); b) donde haya sido muy evidente la presencia de agroquímicos o fertilizantes aplicados al suelo en días previos a la fecha del muestreo; c) que la condición del sitio haya sido totalmente distinta a lo que se aprecia en la parcela (por ejemplo al lado de un galpón, corrales, viviendas, caminos, excretas de animales, entre otros aspectos).

5.2.3. Colecta de las muestras

El procedimiento para colectar las muestras de suelo se esquematiza en la Figura 13. Se empleó una pala recta limpia y libre de cualquier tipo de materia que pudiese contaminar la muestra. Se raspó la superficie del terreno para quitar material vegetal, piedras o terrones (Figura 13.1). Se hizo un hoyo de tal manera que se aseguró meter la pala al suelo perpendicularmente a la superficie del terreno para colectar la muestra (Figura 13.2). Se tomó una cara del hoyo y se colocó en una bolsa de plástico lo suficientemente grande para que cupiera el suelo de manera holgada (Figuras 13.3 y 13.4).

Figura 13. Procedimiento de colecta de muestras de suelo

Cada submuestra colectada consistió únicamente de la parte central del suelo sacada con la pala, desechando los laterales (Figura 14). Este procedimiento se repitió cinco veces en cada parcela como se indicó en la Figura 13, obtenida una de muestra compuesta colectada de a 1.5 kilogramos de suelo. Cada muestra compuesta se identificó escribiendo en la bolsa su código correspondiente con un marcador de tinta indeleble y además, se colocó en el interior de la bolsa una etiqueta con el mismo código, registrando la misma información en la libreta de campo.

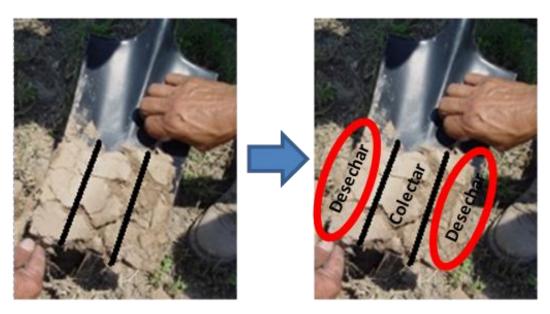


Figura 14. Procedimiento para colectar una submuestra de suelo.

5.3. Análisis de laboratorio

Para la preparación de las muestras y un análisis en laboratorio, se procedió de acuerdo con la Norma Oficial Mexicana NOM-021-RECNAT-2000 en la que se establecen las especificaciones para estudios, muestreo y análisis de fertilidad, salinidad y clasificación de suelos.

Las determinaciones analíticas para evaluar la fertilidad edáfica y la salinidad de los suelos que se consideraron son las siguientes:

5.3.1. Preparación de la muestra (método AS-01)

La preparación de las muestras de suelo con el propósito de caracterizarlo o almacenarlo para posteriormente utilizarlo se realizo atendiendo el método AS-01. Una vez obtenido, la muestra de suelo debe ser llevada al laboratorio en donde deberá ser preparada, para posteriormente someterla a los procesos de análisis correspondientes. La preparación de la muestra es tan importante como el muestreo y análisis de la

misma, ya que los errores cometidos en este proceso pueden invalidar el resultado del análisis químico.

La preparación de la muestra de suelo incluye el traslado, recepción, conservación. Con el propósito de evitar la contaminación de la muestra de suelo y asegurar mayor precisión y exactitud en el resultado del análisis, se deberá realizar esta operación en un lugar especial y limpio. Al momento de hacer la colecta y preparar la muestra de suelo es necesario considerar el análisis de metales tóxicos, se evitara el uso de material metálico en mal estado o deteriorado, así como el que contiene pintura como protección, dado que son fuente de contaminación con zinc, cadmio y plomo.

Los procedimientos que se utilizan para la preparación son: traslado de la muestra al laboratorio, recepción y registro, secado, molienda, tamizado, homogenizado, pesado y almacenamiento.

Antes del traslado de la muestra al laboratorio, es necesario deshacer las partículas más grandes, durante el traslado es necesario evitar ciertos factores como la humedad del exterior, calor, luz, recipientes que se oxigene, cintas adhesivas y otros materiales que pueden cambiar la naturaleza de la muestra.

Cuando la muestra llegue al laboratorio esta deberá ser registrada con ciertas características de campo, para reconocer de donde procede, la fecha de cuando se recolecto la muestra, un numero asignado por el laboratorio de la muestra o submuestra, la profundidad que se colecto, la pendiente del terreno, la utilidad del terreno, y se pueden estar agregando mas series o datos al registro de la muestra.

La muestra de suelo se secara al ambiente, con el propósito de disminuir los cambios químicos indeseables, esto debe ser extendida en un recipiente no contaminado como puede ser de material de plástico, vidrio, aluminio, fibra de vidrio o sobre una superficie de papel, en el lugar de ambiente donde se tiene que poner es en una sombra a una temperatura no mayo a 35° C y una humedad relativa entre 30 y 70%.

Al realizar la molienda, se debe retira todo aquel objeto que pueda alterar la muestra, y después se realiza la molienda con un mazo de madera.

Después de realizar la molienda, la muestra debe de pasar por un tamiz con abertura de 2 mm de diámetro, esta malla debe de ser de acero inoxidable, este grado de fineza es conveniente para la mayoría de los análisis que son requeridos, después de tamizarlo se va a separar 1.5 kg, esta cantidad va hacer suficiente para la determinaciones químicas y físicas.

Al homogeneizar es necesario utilizar bolsas de plástico, para evitar sesgo en la selección de la submuestra que va a ser destinada para las determinaciones analíticas.

Después de tamizar y debidamente homogeneizada la muestra de suelo se extrae la submuestra que va a ser utilizada para cada una de las determinaciones analíticas. Esto debe realizarse con espátulas y con la ayuda de pinceles de pelo de camello para limpiar completamente la espátula. La submuestra extraída debe ser pesada con balanza de precisión, de preferencia con aproximación de 0.1%, con respecto a la magnitud de la pesada que se desea realizar.

Por último, después de realizar todas las determinaciones analíticas, las muestras deben almacenarse para posteriores comprobaciones u otros usos. Es recomendable guardar las muestras en frascos de vidrio o plástico preferentemente cerrados, para disminuir los cambios químicos que pueden ocasionar en las muestras.

5.3.2. Determinaciónes físico-quimicas.

a) Determinación de la textura del suelo (método AS-09)

La determinación de la textura del suelo por este método emplea el procedimiento de Bouyoucos. La textura del suelo se define como la proporción relativa de grupos dimensionales de partículas. Proporciona una idea general de las propiedades físicas del suelo. Su determinación es rápida y aproximada. En general el problema es separar

los agregados y analizar sólo las partículas. En este método se elimina la agregación debida a materia orgánica y la floculación debida a los cationes calcio y magnesio. No se eliminan otros cementantes como carbonatos. El tiempo de lectura se ha escogido de 40 segundos para la separación de partículas mayores de 0.05 mm (arena) y de 2 horas para partículas de diámetro mayores de 0.002 mm (limo y arena). Estos límites han sido establecidos por el Departamento de Agricultura de Estados Unidos y se han usado para construir el triángulo de texturas.

b) Obtención del extracto de saturación (método AS-16)

Método para la obtención del extracto de saturación por filtración con vacío de la pasta saturada de suelo. Este método se aplica para la obtención del extracto de saturación de muestras de suelo. El término extracto de saturación se usa en este método para designar al extracto acuoso que se obtiene por filtración al vacío de una pasta de suelo saturado hecha con agua destilada. El término sales solubles del suelo se usa en este método para referirnos a los constituyentes inorgánicos del suelo que son apreciablemente solubles en el agua. El extracto de saturación es una solución acuosa importante porque muchas propiedades del suelo como la composición de las sales solubles y la conductividad eléctrica del extracto de saturación están relacionadas con la respuesta de los cultivos a la salinidad.

c) Determinación del porcentaje de saturación (método AS-17)

Este método se emplea para la determinación del porcentaje de saturación del suelo por el método gravimétrico. El porcentaje de saturación es la cantidad de agua que un suelo retiene a saturación e indica los gramos de agua que existen en un suelo a saturación, por cada 100 gramos masa de sólidos.

Una pasta de suelo saturado es una mezcla particular de agua y suelo, por ejemplo la pasta de suelo brilla cuando refleja luz; fluye ligeramente cuando el recipiente se inclina y resbala libremente desde una espátula, excepto para aquellos suelos con alto contenido de arcilla.

Esta relación suelo agua se usa porque representa la más baja relación reproducible, de la cual puede obtenerse por vacío bastante extracto para el análisis de cationes y aniones solubles y porque esta relación con frecuencia está implicada de una manera predecible con el contenido de humedad o capacidad de campo.

Después de la preparación de una pasta de saturación se obtiene un extracto acuoso que se usa en una serie de análisis químicos como pH, iones solubles y conductividad eléctrica.

La información del PS se utiliza también para estimar la textura y la salinidad del suelo a diferentes contenidos de humedad en el campo.

Se realiza una determinación de la humedad inicial del suelo seco al aire, para calcular el peso de sólidos del contenido en la pasta de saturación.

El porcentaje de saturación se calcula a partir del peso de suelo seco a la estufa y la suma de los pesos de agua agregada y la presente inicialmente en la muestra seca al aire.

Se prepara una pasta saturada agregando agua a una muestra de suelo y agitando la mezcla con una espátula hasta que la mezcla reúna el criterio de saturación.

d) Determinación de pH medido en el extracto de saturación (método AS-02)

Método electrométrico para la determinación del pH en muestras de suelo en una solución de agua pura. La evaluación electrométrica del pH se basa en la determinación de la actividad del ion H mediante el uso de un electrodo cuya membrana es sensitiva al H. En el caso de los suelos el pH se mide potenciométricamente en la suspensión sobrenadante de una mezcla de relación suelo: agua 1:2.

El pH es una de las mediciones más comunes e importantes en los análisis químicos rutinarios de suelo, ya que controla reacciones químicas y biológicas en el suelo. La determinación del pH es afectada por varios factores tales como: el tipo y cantidad de constituyentes orgánicos e inorgánicos que contribuyen a la acidez del suelo, la

concentración de sales en la solución, la relación suelo: solución, la presión parcial de bióxido de carbono y el efecto de la suspensión asociado con el potencial de unión, etc.

e) Medición de la conductividad eléctrica (método AS-18)

Método para la determinación de la conductividad eléctrica del extracto de saturación de un suelo por medición electrolítica y una celda de conductividad como sensor.

La conductividad eléctrica es una medida de la capacidad de un material para transportar la corriente eléctrica. Una solución acuosa que contiene iones tiene esa habilidad. La conductividad de una solución electrolítica depende de la concentración total de iones presentes en agua, de la movilidad de cada uno de los iones disueltos, su valencia y de la temperatura a la que se hace la determinación.

La conductividad eléctrica o conductancia específica de una solución es el recíproco de la resistencia específica de una corriente alterna medida entre las caras opuestas de un centímetro cúbico de una solución acuosa a una temperatura específica. La conductividad eléctrica del extracto de saturación (CEe) es uno de los índices más difundidos para evaluar la concentración salina del suelo a nivel de laboratorio. El método es aplicable a suelos con un amplio rango de valores de conductividad eléctrica del extracto de saturación. El extracto se puede diluir si el valor de la conductividad está fuera del rango de medición del conductímetro usado.

El principio por el cual los instrumentos miden conductividad es simple: dos placas de conductividad o electrodos se sumergen en la muestra, se aplica un potencial o voltaje a través de las placas y se mide la corriente que fluye entre las placas. La conductancia eléctrica (C) se determina a partir de los valores del voltaje (V) y la corriente (I). La conductividad eléctrica (CE) se calcula multiplicando la conductancia medida por la constante de celda (L/A):

$$CE = C \times (L/A) \tag{2}$$

Donde:

L = Longitud de la columna de líquido entre los electrodos (cm).

A = Area de los electrodos (cm₂).

La conductividad eléctrica del extracto de saturación (CE) se reporta en decisiemens por metro (dS m⁻¹).

f) Determinación de cationes solubles (calcio, magnesio, sodio y potasio) en el extracto de saturación (método AS-19.)

Este método es el empleado para determinar los cationes solubles (Ca, Mg, Na y K) en el extracto de saturación por medición en un aparato de absorción atómica (Ca y Mg) y en un espectrofotómetro de flama (Na y K). El calcio y el magnesio solubles son medidos por espectrofotometría de absorción atómica y el potasio y el sodio por espectrofotometría de emisión atómica en los extractos diluidos. Las interferencias en las mediciones son eliminadas con lantano (La) y cesio (Cs) respectivamente.

g) Determinación de aniones solubles (carbonatos, bicarbonatos, cloruros y sulfatos) en el extracto de saturación (método AS-20)

Es el método para determinar los aniones solubles (cloruros, carbonatos, bicarbonatos y sulfatos) en el extracto de saturación, por titulación volumétrica, los tres primeros y por turbidimetría, el último. Los aniones que se encuentran principalmente en extractos acuosos de suelos (aniones solubles) son los carbonatos, bicarbonatos, sulfatos y cloruros y en menor cantidad nitratos, silicatos y fosfatos. Para la determinación de C_3^{2-} Y Cl⁻ se pueden utilizar métodos volumétricos con una cierta exactitud. Los pueden ser determinados por gravimetría o turbidimetría.

h) AS-21 Determinación del porcentaje de sodio intercambiable (PSI).

Método para determinar el porcentaje de saturación de bases, relación de adsorción de sodio (RAS) y porcentaje de sodio intercambiables (PSI), por medio de un cálculo matemático. En taxonomía de suelos se utiliza como uno de los criterios para definir algunos horizontes (mólico y úmbrico y las subdivisiones eutrico y dístrico). Para esta determinación se utiliza una fórmula matemática en la cual se sustituyen los valores de las bases extraídas con acetato de amonio 1 N pH 7, así como la CIC obtenida con el mismo reactivo.

Finalmente, y con el propósito de comparar los resultados obtenidos en este estudio con el realizado en 2003-2004 por CONAGUA, se clasificó la afectación por sales en seis categorías, siguiendo la propuesta de la Organización Mundial para la Alimentación (FAO) para el diagnóstico de la salinidad de suelos agrícolas.

i) Determinación de la capacidad de intercambio catiónico y cationes intercambiables (calcio, magnesio, sodio y potasio) en suelos calcáreos (método AS-13).

Este método se emplea para determinar la Capacidad de Intercambio Catiónico (CIC) y bases intercambiables (Ca, Mg, Na y K) de los suelos ácidos y calcáreos, empleando tiourea de plata (Ag TU) 0.01 M como solución saturante. El procedimiento consiste en equilibrar una muestra de suelos con una solución de Ag TU 0.01M. La afinidad de este reactivo por las cargas negativas de las partículas del suelo permite una completa saturación, aun cuando el suelo contenga relativamente altas concentraciones de otras sales. Esto requiere de una sola etapa, o sea, la extracción y centrifugación para que el intercambio sea completo. Por lo tanto el sobrenadante contendrá todos los cationes intercambiables.

6. Resultados y Discusión

6.1. Textura del suelo

El efecto de las sales solubles sobre las condiciones edáficas y la productividad de los cultivos variarán de acuerdo al tipo de suelo, principalmente por el tipo y cantidad de arcillas presentes en el medio edáfico, ya que de ello depende del tiempo de residencia de las sales en el perfil. En los Cuadros 7 y 8 se presenta los resultados a dos profundidades (0-30 y 30-60 cm) de la variación del contenido de arena, limo y arcilla de las muestras colectadas en la zona del Nuevo Delta.

Cuadro 7. Valor mínimo, mediana, promedio y máximo de arena, limo y arcilla determinadas a las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable		ena %)		cilla (%)	Limo (%)		
	0-30 30-60		0-30	30-60	0-30	30-60	
Mínimo	2	7	4	0	34	8	
Mediana	17	17	25	22	57	58	
Promedio	20	21	23	21	57	58	
Máximo	57	80	39	39 40		82	

Cuadro 8. Distribución de frecuencia de los valores de arena, limo y arcilla determinadas a las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

	Arena			Arcilla		Limo			
%	0-30	30-60	%	0-30	30-60	%	0-30	30-60	
<10	9	8	<10	22	29	<50	10	14	
10 a 20	49	56	10 a 20	18	19	50 a 60	58	44	
20 a 30	25	20	20 a 30	24	16	60 a 70	28	32	
>30	17	16	>30	36	36	>70	4	10	
Total	100	100	Total	100	100	Total	100	100	

En la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora se encuentran suelos desde muy arenosos hasta arcillosos, siendo estos últimos los que más abundan tanto en la capa arable como en los siguientes 30 cm de profundidad del

perfil, razón por la cual es viable prever que pudiesen existir problemas de acumulación de sales.

6.2. El pH y la conductividad eléctrica

Cuando en un suelo se encuentran concentraciones de sales solubles que alteran de manera desfavorable su capacidad productividad, se clasifica como suelo salino. Si las sales en la solución edáfica ocasionan la reducción del flujo de agua que por ósmosis es absorbida por las plantas, se inducen condiciones de déficit hídrico en los cultivos que no están adaptados a dicho ambiente, incluso aunque exista suficiente humedad en el suelo, llegando a ser tóxicos algunos iones como es el caso del sodio, cloruro y sulfato.

Es frecuente encontrar suelos salinos en áreas con drenaje restringido y de climas áridos y semiáridos, puesto que sólo se lleva a cabo un lavado parcial de las sales solubles y estas se acumulan en la zona de exploración de las raíces. La evaporación hace que se concentren las sales en los estratos superiores del suelo y en el agua superficial, donde la salinidad es consecuencia del ascenso capilar desde los mantos freáticos salobres cercanos a la superficie.

En los Cuadros 9 y 10 se presentan los resultados a dos profundidades (0-30 y 30-60 cm) de la variación del pH y conductividad eléctrica medidos en el extracto de la pasta de saturación, de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 9. Valor mínimo, mediana, promedio y máximo de pH y conductividad eléctrica del extracto de saturación, de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	р	Н	CE dS m ⁻¹			
	0-30	30-60	0-30	30-60		
Mínimo	7.6	7.4	0.9	0.5		
Mediana	8.1	8.0	3.9	5.2		
Promedio	8.1	8.0	5.6	6.5		
Máximo	8.6	8.8	55	41		

Cuadro 10. Distribución de frecuencia de los valores de pH y conductividad eléctrica del extracto de saturación), de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

	рН		CE				
	0-30	30-60	dS m ⁻¹	0-30	30-60		
<7.9	6	13	<2	21	18		
7.9 a 8.1	37	67	2 a 4	31	20		
8.1 a 8.4	49	19	4 a 8	28	31		
8.4 a 8.6	8	1	>8	20	31		
Total	100	100	Total	100	100		

Las sales solubles a concentraciones muy elevadas se cristalizan en la superficie de los terrenos y en las partes altas del microrrelieve durante el desecamiento del suelo, a lo que se le conoce como eflorescencias salinas. Bajo estas condiciones, es factible observar en las parcelas el exceso de sales. La conductividad eléctrica medida en el extracto de la pasta saturada estima la concentración de sales en el agua del suelo, la cual está relacionada con la presión osmótica de la solución, que determina la facilidad con que las raíces absorben el agua del suelo.

De acuerdo a los resultados mostrados en los cuadros 9 y 10, el 52% de los suelos del Nuevo Delta se ubican en la primera categoría que agrupa los suelos con una CE menor a 4 dS m⁻¹, el 28% presentan CE entre 4 y 8 dS m⁻¹, mientras que el 20% resulto con conductividades mayores a 8 dS m⁻¹.

6.3. Contenido de sodio y sodio intercambiable

En los Cuadros 11 y 12 se presenta los resultados a dos profundidades (0-30 y 30-60 cm) de la variación del sodio intercambiable, así como de la clasificación de la conductividad eléctrica y porcentaje de sodio intercambiable (PSI) según FAO, que se evaluaron en las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 11. Valor mínimo, mediana, promedio y máximo de sodio intercambiable, y clasificación según FAO, de los suelos de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable		Na	(CE	PSI			
variable	m	g kg ⁻¹	Clasificación					
	0-30	30-60	0-30	30-60	0-30	30-60		
Mínimo	99 95		1	1	1	1		
Mediana	881	1023	1	2	1	1		
Promedio	1165 1445		2	2	1	2		
Máximo	7492	6842	6	6	4	5		

Cuadro 12. Distribución de frecuencia de los valores de sodio intercambiable, y clasificación de la conductividad eléctrica y porcentaje de sodio intercambiable (PSI) según FAO, en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

N	а			CE		PSI			
mg Kg ⁻¹	0-30	30-60	Clas	0-30	30-60	Clas	0-30	30-60	
<500	29	25	2	79	69	<2	78	82	
500 a 1000	27	23	3 a 4	13	22	3	12	15	
1000 a 1500	19	13	5	5	7	4	9	3	
>1500	25	39	6	3	2	>5	1	1	
Total	100	100	Total	100	100	Total	100	100	

Los suelos salino sódicos son aquellos en que la concentración de sodio intercambiable (o sodio más magnesio) afecta en algún grado el crecimiento de las plantas cultivables, incluso aunque no se encuentren en el suelo sales solubles en cantidades abundantes. El PSI en estos suelos es mayor a 15%.

Los resultados mostrados en los cuadros 11 y 12 indican que para la profundidad 0-30 cm la mediana de los suelos se ubica en el grupo de la primera categoría de la FAO (CE= $3.9 \le 4$ dS m⁻¹) y el promedio ($4.0 < 5.2 \le 8$ dS m⁻¹) en la segunda categoría, mientras que el máximo obtenido se ubica al sitio enla sexta categoría (CE=55.0 > 30 dS m⁻¹).

Para la profundidad 30-60 cm tanto la media y la mediana de la conductividad electica del extracto de extracción (5.2 y 6.5 dS m⁻¹, respectivamente) ubica a los suelos del área

en la segunda categoría para dicha profundidad. El valor máximo obtenido en este profundidad fue de 41 dS m⁻¹ que se ubica al sitio de muestreo correspondiente en la mixta categoría (CE>30 dS m⁻¹). Así mismo, para la profundidad 0-30 cm el 79% de los sitios muestreados se ubican en la categoría 1 y 2 y el 69% de los sitios de las profundidades 30-60 cm se ubican en dichas categorías.

En lo que corresponde al PSI a la profundidad 0-30 cm la mediana y promedio de los sitios muestreados ubican a los suelos en la primera categoría (PSI<15%) y el valor máximo obtenido se ubica en el sitio correspondiente en la categoría cuatro según este criterio. Para la profundidad 30-60 cm la mediana del PSI se ubica a los suelos en la primera categoría, mientras que al considerar el valor promedio asociado del PSI, los suelos muestreados se incluyen en la segunda categoría. De este modo, el 78% de los suelos se ubican en la categoría 1 y 2 de acuerdo a los valores de PSI a la profundidad 0-30 cm, mientras que para la profundidad 30-60 cm el 82% de los sitios muestreados se clasifican en la categoría 1 y 2.

La alta concentración de sodio intercambiable propicia la dispersión y expansión por hidratación de los minerales arcillosos, ocasionando la disminución del flujo del agua y aire a través de los poros del suelo, con el consecuente abatimiento de la tasa de infiltración y conductividad hidráulica. La dispersión de los coloides (orgánicos e inorgánicos) induce un taponamiento de la superficie porosa y el efecto de expansión hace que disminuya su tamaño. Este efecto es menos pronunciado en suelos donde predominan arcillas del tipo de las caolinitas y se incrementa en el de las esmectitas, siendo estas las que en mayor proporción se encuentran en los suelos del área de estudio.

Los suelos con valores superiores a 15% de sodio intercambiable presentan características plásticas cuando están cercanos a capacidad de campo o valores superiores de humedad en el suelo y, cuando están secos, se tornan excesivamente duros, dificultando el manejo de este tipo de suelo y propicia la formación de costras sobre la superficie del terreno. Esta situación hace que la reducción del rendimiento de los cultivos en suelos sódicos sea consecuencia del deterioro de las condiciones físicas

del suelo y no tanto por la posible toxicidad que les cause a las plantas un exceso de sodio.

6.4. Contenido de aniones y cationes

En las partículas coloidales (arcillas y materiales orgánicos) se presenta un predominio de cargas eléctricas negativas, por lo que los cationes son adsorbidos en la superficie de dichos materiales organominerales, donde se lleva a cabo un equilibrio dinámico con las especies iónicas de la solución del suelo y este continuo reemplazo entre los iones de ambas fases se conoce como intercambio catiónico, donde los que están adsorbidos se relacionan con los de la solución del suelo, cuya velocidad de reacción dependerá del contenido de humedad, temperatura y concentración de las sales.

En los suelos donde no hay condiciones salinas o abundancia de sodio, el calcio y el magnesio son las especies iónicas que predominan tanto en la solución del suelo como en la superficie de los coloides (sitios de intercambio iónico), pero cuando se incrementa la concentración de sales solubles, la proporción del sodio presente en el complejo sorbente se incrementa significativamente. Más aún, cuando el agua disminuye del medio edáfico por efecto de la evaporación o transpiración, aumenta la concentración de sales en la solución y propicia las condiciones para que se precipiten sulfatos y carbonatos de calcio o magnesio, por lo que se incrementará el porcentaje del sodio que reemplazara a los cationes bivalentes en los sitios de intercambio.

En los Cuadros 13 y 14 se presentan los resultados a dos profundidades (0-30 y 30-60 cm) de la variación del contenido de carbonatos, bicarbonatos, cloruros y sulfatos medidos en el extracto de la pasta de saturación, de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 13. Valor mínimo, mediana, promedio y máximo de aniones (carbonatos, bicarbonatos, cloruros y sulfatos) del extracto de saturación de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	CO ₃ ²⁻ me L ⁻¹			HCO ₃ - me L ⁻¹	r	CI ⁻ ne L ⁻¹	SO₄²⁻ me L ⁻¹	
	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60
Mínimo	0	0	0.5	0.8	1.8	0.7	4	2.3
Mediana	0	0	2.7	1.6	14	15	28	55
Promedio	0.1	0	2.9	1.8	29	28	33	53
Máximo	3.4	0.9	9.8	22	471	290	185	389

Cuadro 14. Distribución de frecuencia de los valores de aniones (carbonatos, bicarbonatos, cloruros y sulfatos) del extracto de saturación de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

CO ₃ ²⁻			Н	HCO ₃			CI			SO ₄ ²⁻		
me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60	
<0.1	66	92	<2.5	39	92	<10	39	40	<10	19	12	
0.1 a 0.3	17	3	2.5 a 3.5	39	6	10 a 20	26	20	10 a 20	21	13	
0.3 a 0.5	14	1	3.5 a 4.5	15	1	20 a 30	10	13	20 a 30	14	7	
>0.5	3	3	>4.5	8	0	>30	25	27	>30	46	68	
Total	100	100	Total	100	100	Total	100	100	Total	100	100	

De las especies aniónicas en la solución del suelo, abundan principalmente los sulfatos y en menor grado los cloruros. Esta última es importante de considerar por su alta toxicidad sobre todo para cultivos hortícolas y frutales, que presentan poca tolerancia a elevadas concentraciones de dicho anión.

En los Cuadros 15 y 16 se presenta los resultados a dos profundidades (0-30 y 30-60 cm) de la variación del contenido de calcio, magnesio, sodio y potasio medidos en el extracto de la pasta de saturación, de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 15. Valor mínimo, mediana, promedio y máximo de cationes analizados en el extracto de saturación de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	Ca ²⁺ me L ⁻¹			Mg²⁺ me L⁻¹		K ⁺ me L ⁻¹		Na ⁺ me L ⁻¹	
	0-30	30-60	0-30 30-60		0-30	30-60	0-30	30-60	
Mínimo	2.5	1.4	1.5	0.9	0.1	0.1	4	0	
Mediana	14	21	8	12	0.6	20	20	0.4	
Promedio	17	18	10	12	0.8	31	32	13	
Máximo	135	53	79	99	9.7	204	397	301	

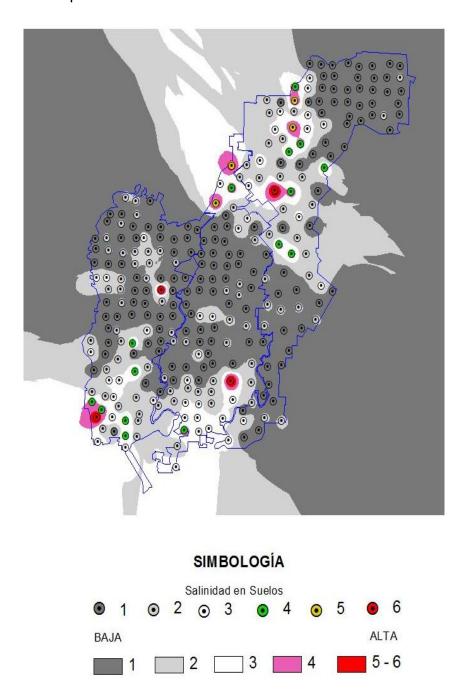
Cuadro 16. Distribución de frecuencia de los valores de cationes analizados en el extracto de saturación de las muestras colectadas en la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

	Ca ²⁺ Mg ²⁺					K⁺		Na⁺			
me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60	me L ⁻¹	0-30	30-60
<10	38	27	<5	31	24	<0.3	16	10	<10	23	83
10 a 20	21	18	5 a 10	28	16	0.3 a 0.6	35	5	10 a 20	27	3
20 a 30	29	47	10 a 15	23	37	0.6 a 0.9	22	3	20 a 30	15	2
>30	12	9	>15	18	23	>0.9	27	82	>30	34	12
Total	100	100	Total	100	100	Total	100	100	Total	100	100

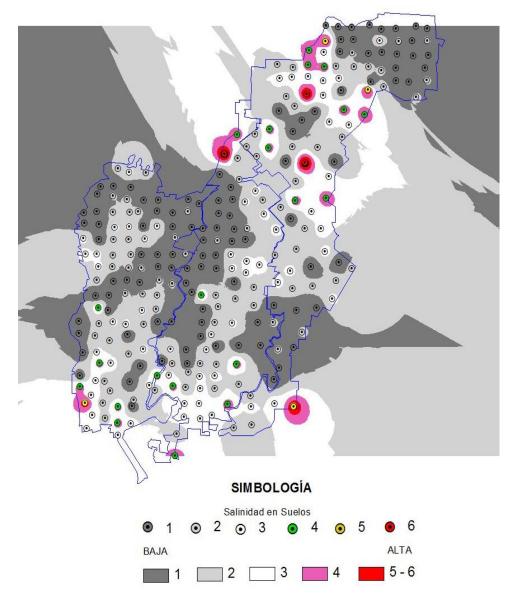
El potasio soluble se encuentra distribuido en diferentes concentraciones en el suelo, lo cual es más probable que se deba a la cantidad de minerales arcillosos y no tanto por efecto de la fertilización potásica, lo cual se aprecia con mayor claridad en las altas concentraciones que se exhiben a profundidades entre 30 y 60 cm, ya que una lixiviación de este catión es poco probable por el tipo de balance hídrico que prevalece en la zona. Lo anterior también es coincidente con la cantidad de sodio, donde la mayor parte se concentra en la capa arable de los terrenos agrícolas, haciendo más evidente la dificultad con la que se desplazan los cationes en este ambiente edáfico en particular.

6.5. Salinidad del suelo

Se elaboró un mapa de salinidad del área de estudio con base en la clasificación propuesta por FAO, en la que se subdivide la información en seis categorías según los valores de conductividad eléctrica en el extracto de la pasta de saturación y del porcentaje de sodio intercambiable, como se muestra en el Cuadro 17.


Cuadro 17. Clasificación de los suelos por su salinidad

Variable	Primera	Segunda	Tercera	Cuarta	Quinta	Sexta
C.E.	<u><</u> 4	4 a 8	8 a 12	12 a 20	20 a 30	<u>></u> 30
PSI	<u>≤</u> 15	15 a 20	20 a 30	30 a 40	40 a 50	<u>></u> 50


C.E. (Conductividad Eléctrica, dS m⁻¹)

PSI (Porcentaje de Sodio Intercambiable, %)

En la Figura 15 se presenta el mapa de salinidad generado que representa la variación de la salinidad en el suelo a una profundidad de 0 a 30 cm en los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora, y en la Figura 16 se muestra el correspondiente a la profundidad 30-60 cm.

Figura 15. Mapa de salinidad en los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora, de acuerdo a la clasificación propuesta por FAO (profundidad 0-30 cm)

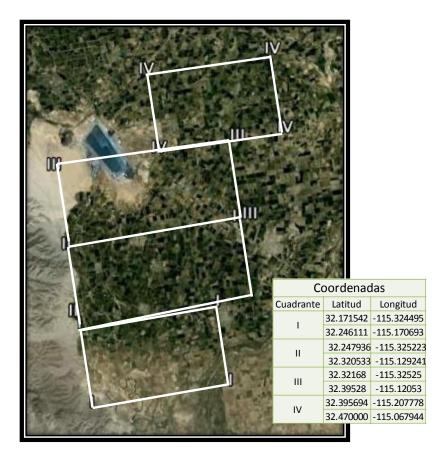


Figura 16. Mapa de salinidad en los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora, de acuerdo a la clasificación propuesta por FAO (profundidad 30-60 cm).

6.6. Análisis de la salinidad por cuadrante

Con el propósito de facilitar la evaluación de la salinidad en los suelos de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, y a su vez comparar la información generada en el presente estudio con la reportada en el trabajo

llevado a cabo por CONAGUA en 2003-2004, se trazaron cuatro cuadrantes, cuya ubicación espacial y coordenadas se muestran en la Figura 17.

Figura 17. Subdivisión de los módulos 10, 11 y 12 del Distrito de Riego 014, Río Colorado, B.C. y Sonora, en cuatro cuadrantes con sus respectivas coordenadas.

Es frecuente que la fuente principal de las sales en los suelos provenga de los minerales primarios, los cuales son los que forman las rocas que se encuentran en los estratos superficiales de la corteza terrestre. A través de los procesos de intemperización química como es la hidrólisis, hidratación, solución, oxidación, entre otros, las rocas liberan sales paulatinamente y a través del tiempo se acumulan las sales primarias en regiones muy áridas como pudiese ser el caso del Valle de Mexicali, donde la precipitación no es lo suficientemente abundante como para lixiviar las sales del perfil, aun suponiendo que se tuviese un buen drenaje. Sin embargo, la colecta de suelos que se hizo en áreas no cultivadas demostró que no hay presencia de sales

solubles en cantidades significativas, por lo que en este caso en particular no sería viable suponer que el exceso de sales en los terrenos agrícolas provenga primordialmente de la descomposición de los minerales edáficos parámetros.

Los suelos salinos se originan casi exclusivamente por acumulación de sales acarreadas por el agua y es a lo que se le denomina sales secundarias, ya sea que provenga de los mantos freáticos o por la irrigación, lo cual se acentúa en áreas deprimidas y donde el drenaje esté restringido, condición que es más frecuente encontrar en el área de estudio. Las aguas actúan como fuente de sales en las zonas de riego, sobre todo si no hay un drenaje apropiado, por lo que la irrigación inducirá la salinización del suelo.

6.6.1. Cuadrante I

En los Cuadros 18 y 19 se presenta la comparación de los resultados a dos profundidades (0-30 y 30-60 cm) de la variación de la conductividad eléctrica extracto de la pasta de saturación, porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO, de los estudios de 2003-2004 (CONAGUA) y el reportado en el presente documento, de los suelos ubicados en el Cuadrante I de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Aparentemente hubo un incremento en los valores de la conductividad eléctrica y del porcentaje de sodio intercambiable, sobre todo en el estrato de 30 a 60 cm de profundidad, sin embargo esto no impactó significativamente en la clasificación del suelo de la capa arable de acuerdo con la propuesta FAO para el diagnóstico de la salinidad.

Cuadro 18. Conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, en el Cuadrante I de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	Latitud	Latitud Longitud		CE (dS m ⁻¹)		SI (%)	FA	0
0-30 cm			2003	2010	2003	2010	2003	2010
Mínimo	32.2	115.2	0.7	1.4	0.1	4.3	1	1
Promedio	32.2	115.3	5.4	7.6	11.9	13.9	1.9	2.3
Máximo	32.2	115.3	30.3	36.9	50.2	36.9	6	6
Observaciones	110	110	39	71	39	71	39	71
30-60 cm								
Mínimo	32.2	115.2	0.8	1.4	0.2	4.8	1	1
Promedio	32.2	115.3	3.9	8.2	11.5	17.1	1.6	2.5
Máximo	32.2	115.3	14.4	25.9	39.4	35.9	4	5
Observaciones	110	110	39	67	39	67	39	67

Cuadro 19. Distribución de frecuencia de la conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, en el Cuadrante I de la zona del Nuevo Delta del Distrito de Riego 014.

Cuad I	Cotomorío	0-	30	30	-60
Cuadi	Categoría	2003	2010	2003	2010
CE	<4	55	28	68	21
	4 a 8	33	37	15	28
	8 a 12	8	24	10	34
(dS m ⁻¹)	12 a 20	0	8	8	13
	20 a 30	3	0	0	3
	>30	3	3	0	0
PSI	<15	83	65	78	37
	15 a 20	3	15	10	28
	20 a 30	8	18	8	30
(%)	30 a 40	5	1	5	4
	40 a 50	0	0	0	0
	>50	3	0	0	0
	1	50	27	65	21
	2	28	35	10	28
FAO	3	15	27	15	34
FAU	4	3	8	10	13
	5	3	0	0	3
	6	3	3	0	0

El análisis de la distribución de frecuencia de los valores citados hace ver que hubo una redistribución de las sales, disminuyendo los suelos no salinos e incrementándose los que se encuentran en las categorías 2 y 3 en ambas profundidades del perfil (0-30 y 30-60 cm). Con el propósito de evaluar espacialmente la variación de la salinidad se elaboró la Figura 18, en la que se representa las áreas con distinto nivel de sales solubles en el Cuadrante I de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm).

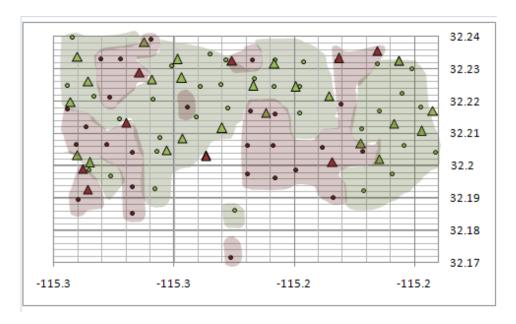


Figura 18. Variación de la salinidad en el Cuadrante I de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6. Los círculos representan los resultados obtenidos en este estudio 2010 y los triángulos al realizado en 2003-2004 por CONAGUA.

En la figura referida, se ordenaron las categorías 1 y 2 en un mismo grupo y en otro las categorías de la 3 a la 6, ya que las primeras incluyen a las condiciones menos salinas y las segundas a las que presentan problemas importantes por la concentración de sales en el suelo. Con ello se aprecia que la distribución de las sales en ambos estudios es muy similar en cuanto a la concentración de la salinidad, por lo que no hay evidencias de que hubiese un avance real de esta condición edáfica. Desde luego, es

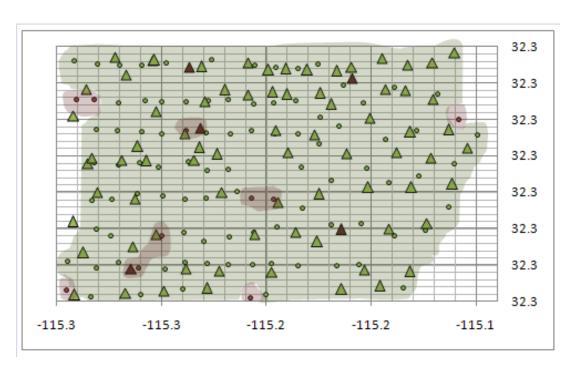
posible que dicha situación se deba a un posible avance de la salinidad en esta área del Nuevo Delta, pero también puede ser atribuible a un efecto de la densidad del muestreo, ya que en este estudio se colectaron muestras de parcelas agrícolas que no fueron consideradas en el estudio realizado en 2003-2004, ya que donde sí hubo coincidencias los valores fueron similares en ambos trabajos.

6.6.2. Cuadrante II

En los Cuadros 20 y 21 se presenta la comparación de los resultados a dos profundidades (0-30 y 30-60 cm) de la variación de la conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y el reportado en el presente documento, de los suelos ubicados en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 20. Conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	Latitud	Longitud	(CE	F	PSI	F.	AO
variable	0-30	0-30	2003	2010	2003	2010	2003	2010
0-30 cm			dS m ⁻¹			%		
Mínimo	32.2	115.1	0.9	0.9	0.3	2.7	1	1
Promedio	32.3	115.2	3.4	4.2	8.5	9.8	1.3	1.5
Máximo	32.3	115.8	13	31.6	19.2	23.1	4	6
Observaciones	184	184	85	99	85	99	85	99
30-60 cm								
Mínimo	32.2	115.1	0.8	8.0	0.6	3.3	1	1
Promedio	32.3	115.2	5.1	5.3	11.3	12.1	1.7	1.8
Máximo	32.3	115.3	47.7	16.4	97.1	23.7	6	4
Observaciones	184	184	85	93	85	93	85	93


En este Cuadrante II resaltan dos aspectos: a) Existen una mayor concentración de sales en la parte inferior de la capa arable (30-60 cm) en comparación con la de la

superficie (0-30 cm); b) no se aprecian diferencias significativas en el avance de la salinidad entre los años 2003-2004 y 2010, puesto que los indicadores de la presencia de sales solubles en el medio edáfico fueron aparentemente similares.

Cuadro 21. Distribución de frecuencia de la conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuad II	Catamanía	0-	30	30	-60
Cuad II	Categoría	2003	2010	2003	2010
CE	<4	69	62	54	40
	4 a 8	25	29	32	40
(dS m ⁻¹)	8 a 12	5	7	9	18
	12 a 20	1	1	2	2
	20 a 30	0	0	1	0
	>30	0	1	1	0
PSI	<15	93	85	88	70
	15 a 20	7	12	6	24
	20 a 30	0	3	2	6
(%)	30 a 40	0	0	2	0
	40 a 50	0	0	0	0
	>50	0	0	1	0
	1	73	61	52	40
	2	21	29	33	38
FAO	3	5	8	11	20
	4	1	1	2	2
	5	0	0	0	0
	6	0	1	2	0

En la Figura 19 se presenta la variación de la salinidad en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm). En dicha figura se ordenaron las categorías 1 y 2 en un mismo grupo y en otro las categorías de la 3 a la 6, ya que las primeras se refieren a las condiciones menos salinas y las segundas a las que presentan problemas por la concentración de sales en el suelo.

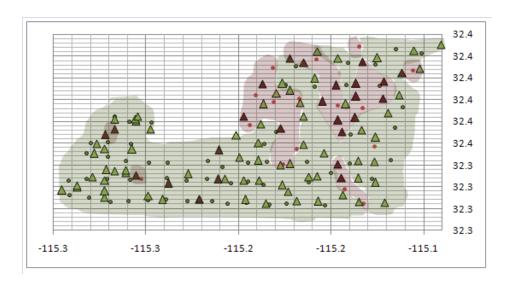
Figura 19. Variación de la salinidad en el Cuadrante II de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6. Los círculos representan los resultados obtenidos en este estudio 2010 y los triángulos al realizado en 2003-2004 por CONAGUA.

Con base en lo que se aprecia en la citada figura, se destaca que en el Cuadrante II, excepto en parcelas específicas, prácticamente no hay problemas de salinidad y tampoco hubo diferencias significativas entre las parcelas analizadas en este estudio 2010 respecto a lo que se detectó en el estudio realizado en 2003-2004.

6.6.3. Cuadrante III

En los Cuadros 22 y 23 se presenta la comparación de los resultados a dos profundidades (0-30 y 30-60 cm) de la variación de la conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y el reportado en el presente documento, de los suelos ubicados en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 22. Conductividad eléctrica (extracto de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.


Variable	Latitud	Longitud	CE		PSI		FAO	
variable	0-30	0-30	2003	2010	2003	2010	2003	2010
0-30 cm			dS	m ⁻¹		%		
Mínimo	32.3	115.1	0.5	0.9	0.2	3	1	1
Promedio	32.3	115.2	13.5	6.4	17.9	11	2.3	1.9
Máximo	32.4	115.3	318.8	55	96.4	39.1	6	6
Observaciones	169	169	94	75	94	75	94	75
30-60 cm								
Mínimo	32.3	115.1	0.7	0.5	0.2	3.6	1	1
Promedio	32.3	115.2	7.8	6.5	14.8	12.7	2.1	2
Máximo	32.4	115.3	97	40.5	83.6	47.6	6	6
Observaciones	169	169	94	71	94	72	94	72

Cuadro 23. Distribución de frecuencia de la conductividad eléctrica (extracto de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuad III	Categoría	0-	30	3	30-60
Guau III	Categoria	2003	2010	2003	2010
CE	<4	49	51	48	42
	4 a 8	23	28	29	30
	8 a 12	10	9	9	18
(dS m ⁻¹)	12 a 20	6	8	5	7
	20 a 30	4	3	6	0
	>30	7	1	3	3
PSI	<15	77	80	77	72
	15 a 20	6	11	5	18
	20 a 30	2	7	9	6
(%)	30 a 40	2	3	3	3
	40 a 50	1	0	1	1
	>50	12	0	5	0
	1	49	49	49	43
	2	24	29	28	29
FAO	3	6	9	9	18
FAU	4	6	8	4	7
	5	0	3	2	0
	6	14	1	9	3

Si la discusión la centramos en los promedios de los diferentes indicadores, se podría inferir que hubo una recuperación de la condición salina de los suelos ubicados en este cuadrante; sin embargo, esto no se refleja claramente en los valores de FAO para el diagnóstico de suelos salinos.

En la Figura 20 se presenta la variación de la salinidad en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación de FAO (0-30 cm). En dicha figura se ordenaron las categorías 1 y 2 en un mismo grupo y en otro las categorías de la 3 a la 6, ya que las primeras se refieren a las condiciones menos salinas y las segundas a las que presentan problemas por la concentración de sales en el suelo.

Figura 20. Salinidad en el Cuadrante III de la zona del Nuevo Delta del Distrito de Riego 014 con base en la clasificación FAO (0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6. Círculos resultados de este estimado (2010); triángulos al realizado en 2003-2004 por CONAGUA.

Una vez más se aprecian coincidencias en el estudio realizado en 2003-2004 con el del 2010, puesto que a pesar de que en el trabajo de CONAGUA hubo suelos con alta concentración de sales, estos se ubican en las mismas áreas con problemas que se detectaron en las muestras que se reportan en el presente documento.

6.6.4. Cuadrante IV

En los Cuadros 24 y 25 se presenta la comparación de los resultados a dos profundidades (0-30 y 30-60 cm) de la variación de la conductividad eléctrica (extracto de la pasta de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y el reportado en el presente documento, de los suelos ubicados en el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cuadro 24. Conductividad eléctrica (extracto de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Variable	Latitud	Longitud	CE	1	Р	SI	F	AO
variable	0-30	0-30	2003	2010	2003	2010	2003	2010
0-30 cm			dS m	dS m ⁻¹ 9		%		
Mínimo	32.4	115.1	0.7	0.9	0.1	3.4	1	1
Promedio	32.4	115.1	7.7	4.7	21.4	8.9	2.4	1.6
Máximo	32.5	115.2	66.5	25.8	95.2	30.9	6	5
Observaciones	124	124	69	55	69	55	69	55
30-60 cm								
Mínimo	32.4	115.1	0.6	8.0	0.9	3.7	1	1
Promedio	32.4	115.1	5.8	6.5	23	12.3	2.6	2.1
Máximo	32.5	115.2	28.2	40.5	107.6	47.6	6	6
Observaciones	124	124	69	55	69	55	69	55

La distribución de las sales tanto en la capa arable (0-30 cm) como en el estrato inferior a ella (30-60 cm) fue similar al comparar los resultados obtenidos en 2003-2004 con los del presente trabajo. Llama la atención que en algunos casos se detectaron condiciones muy salinas hace siete años, lo cual no se manifestó en las parcelas que se estudiaron en esta ocasión.

Cuadro 25. Distribución de frecuencia de la conductividad eléctrica (extracto de saturación), porcentaje de sodio intercambiable (PSI) y categoría de salinidad del suelo según FAO de los estudios de 2003-2004 (CONAGUA) y 2010, de los suelos ubicados en el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, B.C. y Sonora.

Cued IV	Catagoría	0	-30	30)-60
Cuad IV	Categoría	2003	2010	2003	2010
CE	<4	65	67	57	49
	4 a 8	17	13	20	22
(dS m ⁻¹)	8 a 12	3	13	7	15
(dS m ⁻¹)	12 a 20	3	4	12	9
	20 a 30	6	4	4	4
	>30	6	0	0	2
PSI	<15	71	82	68	71
	15 a 20	3	11	4	13
	20 a 30	6	5	7	15
(%)	30 a 40	4	2	1	0
	40 a 50	0	0	3	2
	>50	16	0	16	0
	1	57	67	48	45
	2	16	13	16	25
FAO	3	3	13	7	15
	4	1	4	7	9
	5	0	4	4	4
	6	23	0	17	2

En la Figura 21 se presenta la variación de la salinidad en el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm). En dicha figura se ordenaron las categorías 1 y 2 en un mismo grupo y en otro las categorías de la 3 a la 6, ya que las primeras se refieren a las condiciones menos salinas y las segundas a las que presentan problemas por la concentración de sales en el suelo.

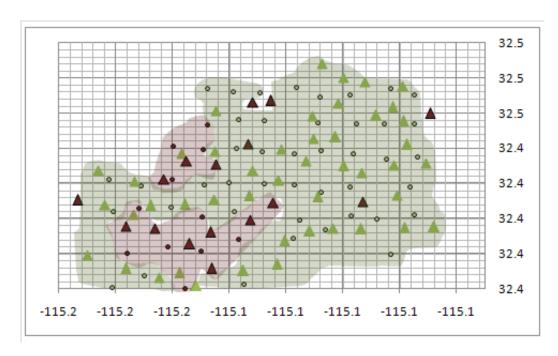


Figura 21. Variación de la salinidad en el Cuadrante IV de la zona del Nuevo Delta del Distrito de Riego 014, Río Colorado, B.C. y Sonora, con base en la clasificación propuesta por FAO (profundidad 0-30 cm). Verde= categorías 1 y 2; Rojo= Categorías 3 a la 6. Los círculos representan los resultados obtenidos en este estudio 2010 y los triángulos al realizado en 2003-2004 por CONAGUA.

La distribución de la condición actual de la salinidad en los terrenos agrícolas que se ubican en esta área de la zona del Nuevo Delta del Valle de Mexicali demuestra que prácticamente no hubo variación respecto a la que se detectó hace siete años.

6.7. Análisis del efecto de la salinidad del suelo en la productividad agrícola

La tolerancia de los cultivos a la salinidad del suelo difiere ampliamente entre especies de plantas. La magnitud de la tolerancia es una característica compleja que combina funciones fisiológicas y bioquímicas controladas por numerosos genes. Otros Muchos factores como la temperatura, humedad, etapa de desarrollo de la planta, humedad del suelo, textura, compactación, tipo de sales y fertilidad, afectan la respuesta de la planta a la salinidad. Dado que estos factores y sus interacciones afectan la respuesta de la planta, es difícil establecer una escala uniforme a la tolerancia de sales. El rendimiento de los cultivos generalmente no disminuye significativamente hasta que la

conductividad eléctrica del extracto de saturación excede cierto límite llamado umbral de conductividad eléctrica del cultivo. El valor del umbral varía ampliamente de un cultivo a otro. Maas y Hoffman (1977), propusieron una ecuación para estimar el rendimiento potencial de los cultivos en función de la conductividad eléctrica del extracto de saturación del suelo y del umbral de CEe del cultivo, dada por la ecuación (1)

$$Y = 100 - B (ECe - A) \tag{1}$$

Donde:

Y: Producción relativa (%)

CEe: Conductividad eléctrica del extracto de saturación (dS m⁻¹)

B: Disminución del rendimiento por unidad de aumento en la salinidad por encima del umbral crítico.

A: Umbral crítico de la salinidad (dS m⁻¹)

Se obtuvieron mapas de productividad de los principales cultivos establecidos en la zona del nuevo delta, utilizando la expresión anterior. Para ser precisos, los mapas corresponden a la reducción del rendimiento potencial de los cultivos, al considerar la segunda parte de la ecuación [B(ECe – A)].

6.7.1. Mapas de productividad de alfalfa

Se elaboró el mapa de reducción del rendimiento potencial del cultivo de la alfalfa en función de la salinidad de los suelos. La alfalfa es un cultivo moderadamente sensible a la salinidad, el valor crítico o umbral de la conductividad eléctrica (CEe) a partir de la cual el cultivo empieza a disminuir su rendimiento es de A= 2.0 dS m⁻¹, y el porcentaje de reducción por unidad de conductividad eléctrica por arriba del umbral es de B=7.3%. El mapa de reducción del rendimiento potencial se elaboró para las profundidades 0-30 cm y 30-60 cm. En los gráficos generados se puede apreciar que el módulo en el que

se tiene un mayor potencial de producción para el cultivo de la alfalfa es el Módulo 11, que solo presenta limitaciones en su porción sur. El Módulo 12 también presenta adaptabilidad para este cultivo con restricciones al sur del módulo. En contraparte, el Módulo 10 presenta restricciones importantes para el desarrollo de la alfalfa siendo apto solo en la parte sur y norte del módulo.

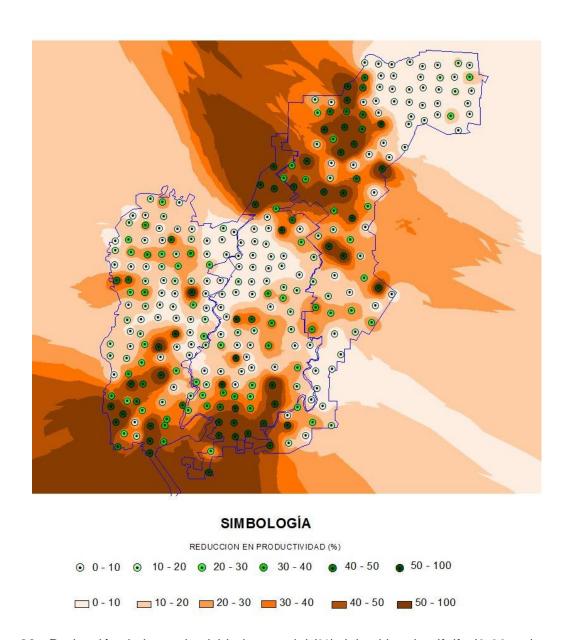


Figura 22. Reducción de la productividad potencial (%) del cultivo de alfalfa (0-30 cm)

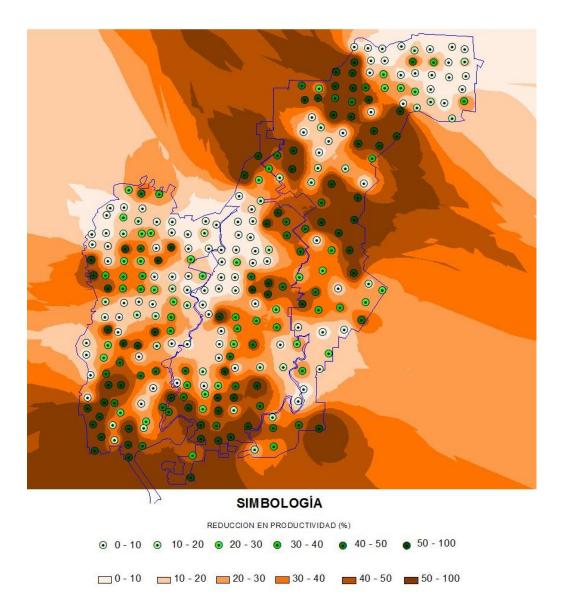


Figura 23. Reducción de la productividad potencial (%) del cultivo de Alfalfa (30-60 cm)

6.7.2. Mapas de productividad de algodón

El algodón se clasifica en el grupo de cultivos tolerantes a las condiciones de salinidad del suelo, presentando un umbral crítico de A=7.7 dS m⁻¹ a partir del cual tiene una reducción de 5.2% de su rendimiento potencial por cada unidad de incremento de la conductividad eléctrica del extracto de saturación del suelo. En las siguientes figuras se

presentan los mapas de reducción del rendimiento potencial del cultivo para las profundidades 0-30 y 30-60 cm, estimados a partir de los valores de salinidad del suelo. De los gráficos, se puede afirmar que el algodón puede encontrar las condiciones propicias para su desarrollo en prácticamente toda el área de estudio (Módulos 10, 11 y 12), a excepción de zonas aisladas dispersas en donde la salinidad del suelo es muy alto.

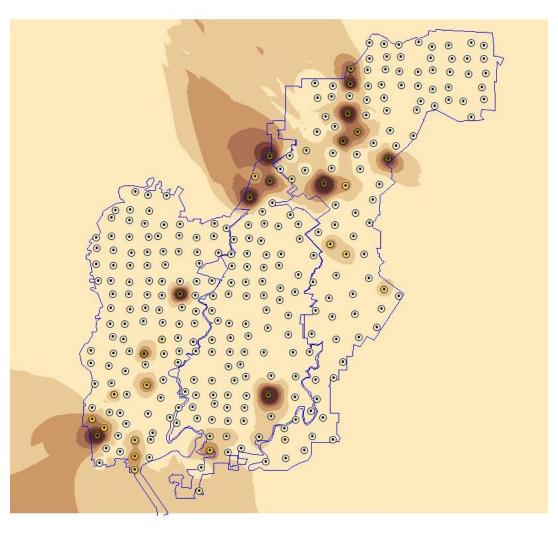


Figura 24. Reducción de la productividad potencial (%) del cultivo de Algodón (0-30 cm)

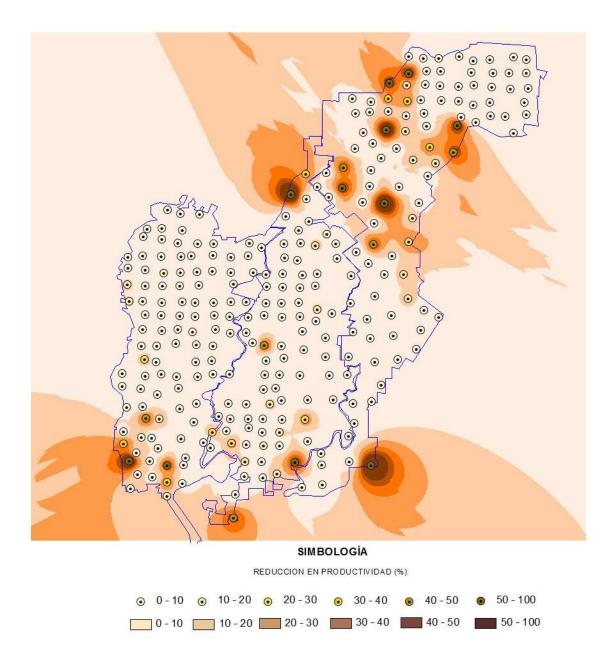


Figura 25. Reducción de la productividad potencial (%) del cultivo de Algodón (30-60 cm)

6.7.3. Mapas de productividad de cebolla

La cebolla es un cultivo sensible a las condiciones de salinidad del suelo y su rendimiento potencial se empiezan a afectar a partir de una salinidad equivalente a A=1.2 dS m⁻¹, a partir del cual se rendimiento se ve reducido en B=16% por unidad de CEe incrementado. En los mapas de reducción del rendimiento potencial generados se observa que este cultivo tiene limitaciones muy fuertes para su desarrollo en la mayor parte la superficie de estudio, encontrando condiciones propicias solo en dos zonas aisladas que tienen suelos menos salinos.

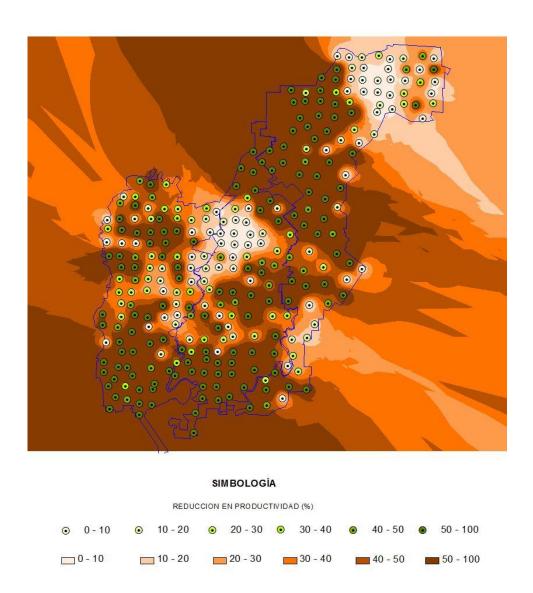


Figura 26. Reducción de la productividad potencial (%) del cultivo de Cebolla (0-30 cm)

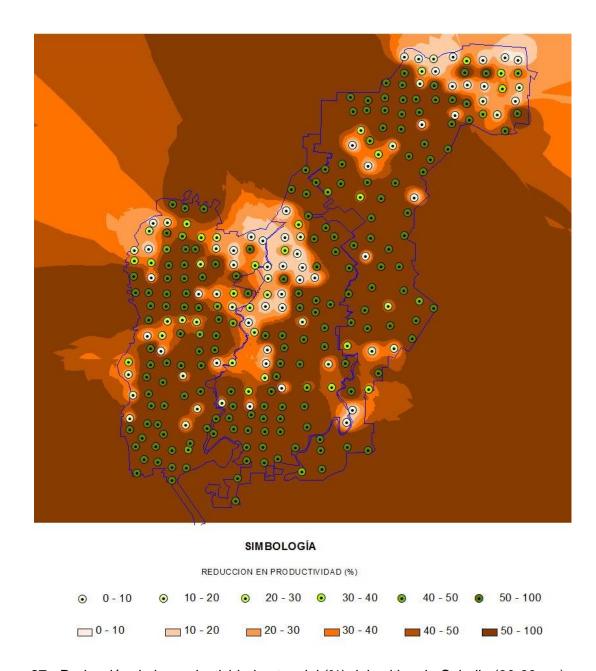


Figura 27. Reducción de la productividad potencial (%) del cultivo de Cebolla (30-60 cm)

6.7.4. Mapas de productividad de espárragos

El espárrago es un cultivo tolerante a las condiciones de salinidad del suelo y de acuerdo al mapa generado, este cultivo puede encontrar las condiciones propicias para su desarrollo en la mayor parte de la zona de estudio, con excepción de algunas áreas aisladas dispersas que se corresponden con las áreas de mayor salinidad del suelo.

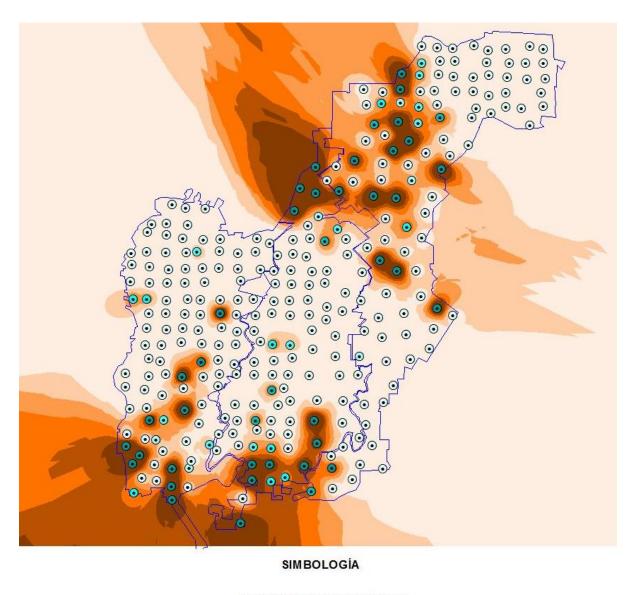


Figura 28. Reducción de la productividad potencial (%) del cultivo de Espárrago (0-30 cm)

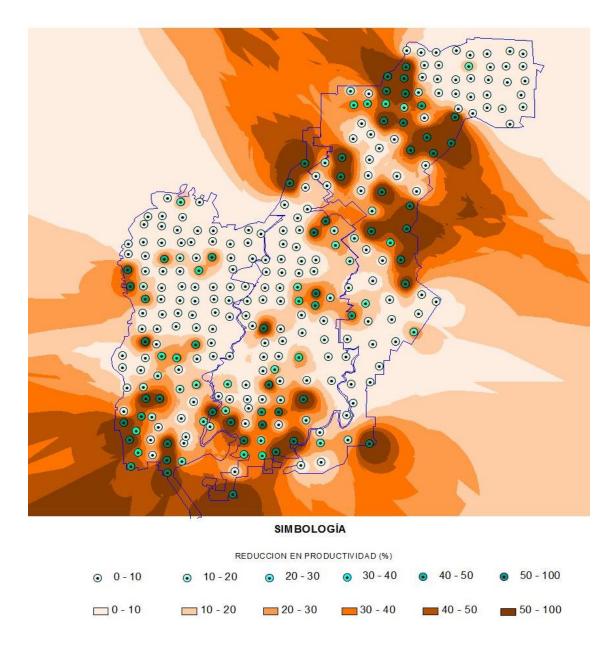


Figura 29. Reducción de la productividad potencial (%) del cultivo del Espárrago (30-60 cm)

6.7.5. Mapas de productividad de lechuga

La lechuga se clasifica en el grupo de cultivos medianamente susceptible a las condiciones de salinidad del suelo, presentando un nivel crítico de A=1.3 dS m⁻¹ a partir del cual tiene una reducción de 13% de su rendimiento potencial por cada unidad de incremento de la conductividad eléctrica del extracto de saturación del suelo. En las

siguientes figuras se presentan los mapas de reducción del rendimiento potencial del cultivo para las profundidades 0-30 y 30-60 cm, estimados a partir de los valores de salinidad del suelo. Se observa que este cultivo presenta limitaciones importantes para su desarrollo y producción en gran parte de la superficie de estudio, encontrando condiciones propicias para su desarrollo solo en la parte central del Módulo 11 y al norte del Módulo 10.

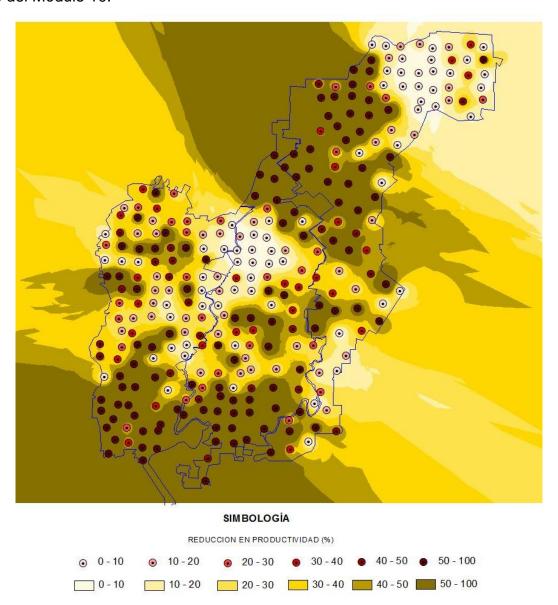


Figura 30. Reducción de la productividad potencial (%) del cultivo de la Lechuga (0-30 cm)

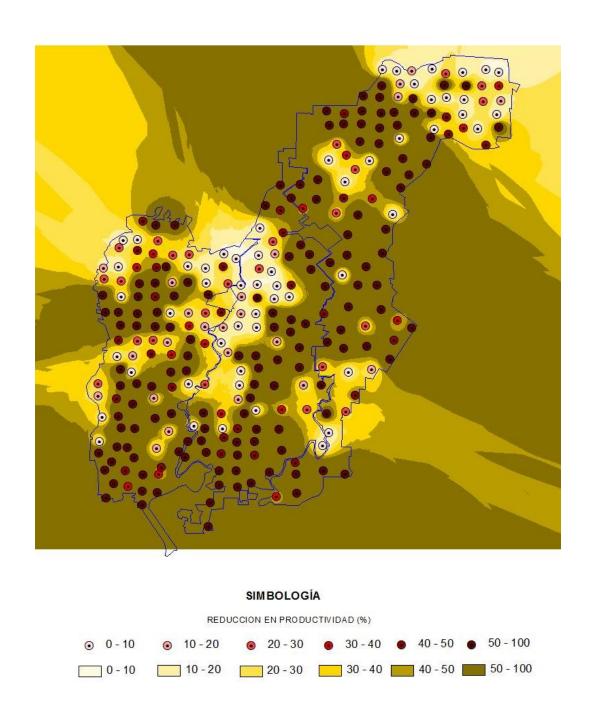


Figura 31. Reducción de la productividad potencial (%) del cultivo de la Lechuga (30-60 cm)

6.7.6. Mapas de productividad de trigo

El trigo se clasifica en el grupo de cultivos medianamente tolerante a las condiciones de salinidad del suelo, presentando un nivel crítico de A=6.0 dS m⁻¹ a partir del cual tiene una reducción de 7.1% de su rendimiento potencial por cada unidad de incremento de

la conductividad eléctrica del extracto de saturación del suelo. En las siguientes figuras se presentan los mapas de reducción del rendimiento potencial del cultivo para las profundidades 0-30 y 30-60 cm, estimados a partir de los valores de salinidad del suelo. El Trigo puede desarrollarse adecuadamente en casi toda la superficie del área de estudio expresando su mayor potencial productivo, teniendo limitaciones solo en pequeñas zonas localizadas dispersas en el área de estudio.

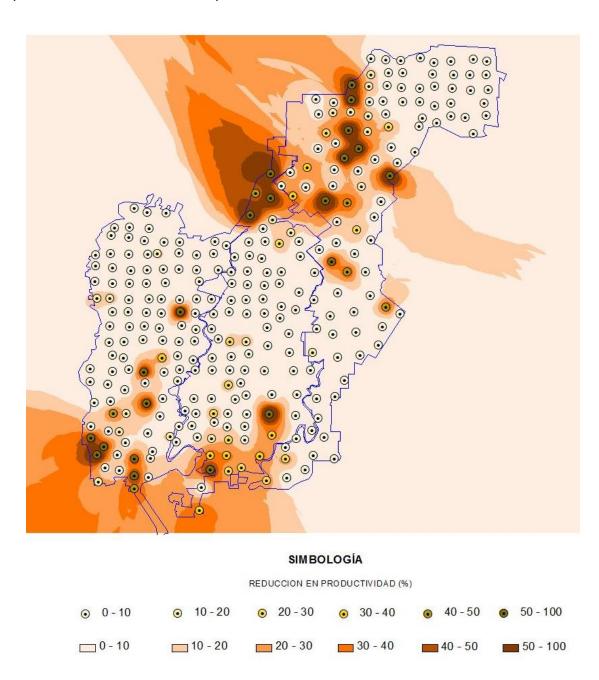


Figura 32. Reducción de la productividad potencial (%) del cultivo del Trigo (0-30 cm)

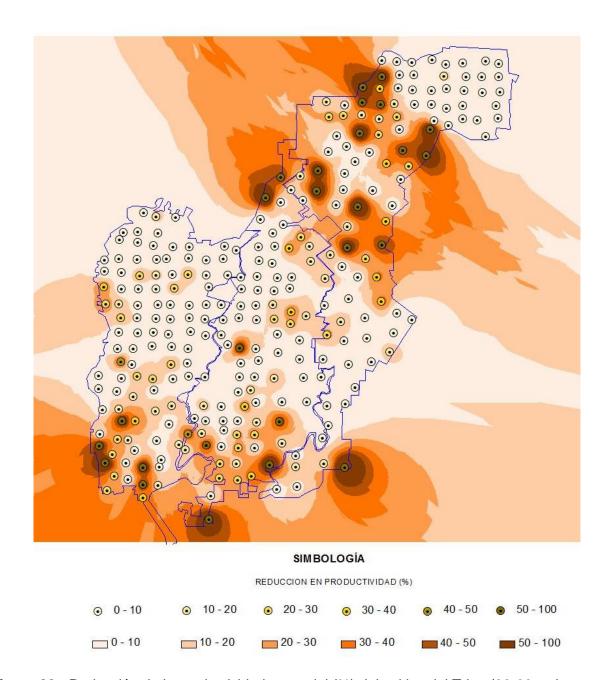


Figura 33. Reducción de la productividad potencial (%) del cultivo del Trigo (30-60 cm)

7. Conclusiones y Recomendaciones

En el Valle de Mexicali la actividad sísmica es un fenómeno recurrente, donde en un lapso de 100 años se han registrado ocho temblores de alta intensidad con más de 6.5 grados en la escala de Richter. Como consecuencia del terremoto del 4 de abril de 2010, se dañó la infraestructura de los canales y carreteras del Valle de Mexicali. Además, hubo emanación súbita de líquido, lo cual se atribuye al fenómeno de licuefacción y que los productores responsabilizan de un incremento de las condiciones salinas de sus parcelas.

El Valle de Mexicali corresponde a una llanura deltaica con una profundidad al basamento de varios kilómetros, cuyas cotas medias extremas varían entre dos metros abajo del nivel del mar (oeste del Valle) hasta 43 msnm en el este. Por ello en el noroeste del Valle predominan suelos arcillosos muy profundos, al igual que en el suroeste y sureste aunque menos compactas. Los suelos arenosos están en la cercanía de la actual ribera del Río Colorado y los arcillosos en las partes más alejadas.

En el estudio realizado, se identificó que los suelos de la zona del Nuevo Delta del Distrito de Riego 014 Río Colorado, son de diferente grupo textural predominando los arcillosos, lo que favorece un mayor tiempo de residencia de las sales en la zona de actividad de las raíces en relación a si se tratase de suelos arenosos.

Al comparar los resultados obtenidos en este estudio con los reportados en 2003-2004 por CONAGUA, se detectó una distribución similar de la concentración de sales solubles en la región del Nuevo Delta en ambos trabajos, por lo que no se encontraron evidencias de un avance de la salinidad de los suelos y, por lo mismo, el fenómeno de la licuefacción que se manifestó durante el evento telúrico del 4 de abril de 2010 no afectó la capacidad productiva edáfica del área evaluada.

A pesar de las condiciones salinas, los mapas de productividad indican que el medio edáfico es propicio para el buen desarrollo de cultivos tolerantes a la presencia de sales solubles como es el caso del algodón, el trigo y espárrago, mientras que las áreas para la producción de alfalfa y hortalizas más sensibles a las condiciones salinas está más restringida en gran parte de esta región.

La distribución espacial de la salinidad de los suelos puede ser atribuible como consecuencia de las actividades antropogénicos sostenidas y de algunos factores naturales, coincidiendo con lo encontrado por otros investigadores.

Entre las causas que han fomentado la acumulación de sales en los suelos del Valle se atribuye al empleo de aguas salobres, ya que la entrega de este tipo de aguas se resolvió parcialmente a partir de 1973. La acumulación de sales se exacerba en la franja occidental y sur del Valle de Mexicali, conocida como "la ruta de la sal" coincidiendo con tres factores: a) mayor presencia de suelos arcillosos en los que se incrementa el tiempo de residencia de las sales solubles; b) cotas más bajas, lo cual pudiese asociarse con problemas de drenaje; c) uso de aguas con alto contenido de sales como fuente principal de abastecimiento para el riego.

La aridez y salinidad de la región no ha sido obstáculo para la producción agrícola porque la frecuencia o índice de siniestros en la zona es prácticamente nula. La actividad agropecuaria representa 77% de los ingresos para los habitantes de la región. Por su extensión (43%) el trigo es el principal cultivo que se produce en la región, el cual ha tenido un incremento considerable en el precio por tonelada de grano. El algodón también ocupa una amplia superficie (15% del total) con la ventaja de que tiene capacidad para desarrollarse bien aún en ambientes salinos. Por su importancia en la explotación pecuaria resulta relevante la alfalfa (16%) y por el ingreso económico se destacan las hortalizas, sobre todo la cebolla y cebollín en áreas sin problemas de sales o el espárrago por su adaptación a suelos donde haya acumulación de sales solubles.

Recomendaciones:

El Distrito de Riego 014 está entre las zonas agrícolas más extensas del país y resalta por la cantidad de terrenos con riego; sin embargo, con su escasa tecnificación donde predominan los canales de tierra y los revestidos, sólo 4% cuenta con sistemas de riego presurizado. Para promover la sustentabilidad de la región, es indispensable la tecnificación del riego para incrementar significativamente la eficiencia del uso del agua. Esto coadyuvaría a disminuir los problemas de salinidad, donde el manejo actual y la aridez de la región los exacerban, puesto que favorecen la evaporación del agua y la acumulación de sales en el suelo.

En base a los resultados obtenidos, se recomienda definir los cultivos más apropiados a establecer en la zona de estudio tomando en consideración el grado de salinidad del suelo y su variabilidad espacial, por lo que previo a su siembra se deberán elaborar mapas de productividad para delimitar las áreas en donde los cultivos puedan alcanzar su máximo potencial productivo.

8. Literatura citada

- Abrol, I.P., Yadar, J.S.P., Massoud, F.I. 1988. Salt-Affected Soils and their Management. FAO soils Bulletin 39. Rome.
- Ayers, R.S., Westcot, D.W. 1994. Water quality for agricultura. FAO Irrigation and Drainage Paper. Rome.
- Badia, D. (1992). Suelos afectados por sales in:. Soc. Cat. Ciên., Vol. XIII. 609-629.
- Carrillo-Guerrero, Y. K. 2009. Water conservation, wetland restoration, and agriculture in the Colorado River delta, México. Thesis. Doctor of Philosophy. Faculty of the School of Natural Resources. The University of Arizona.
- Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE. 2010. La presencia de pequeños volcanes y agua sulfurosa se debe a un fenómeno de licuefacción. http://www.dicyt.com/noticias/
- Cervantes, R.M. 1983. La lixiviación de sales en suelos salinos y salino sódicos del valle de Mexicali durante el proceso de lavado. Tesis de Maestría, Colegio de Postgraduados.
- Corwin, D.L., and Rhoades, J.D., 1984. Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Sci. Soc. Am. J., 48: 288–291.
- Eick MJ, DL. Sparks, A. Bar-Tal and S. Feigenbaum. 1995. Analyses of Adsorption Kinetics Using a Stirred-Flow Chamber: II. Potassium-Calcium Exchange on Clay Minerals. Soil Sci Soc Am J 59:760-765
- Enciclopedia de los Municipios de México. 2005. Instituto Nacional para el Federalismo y el Desarrollo Municipal (INAFED). Secretaría de Gobernación, México.
- FAO. 1979. Soil Survey Investigations for Irrigation. Soil Bulletin No 42. Rome, Italy.
- FAO. 1985. Guidelines: land evaluation for irrigated agriculture, Soil Bulletin No 55. Rome, Italy.
- Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

- IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis (Summary for policy makers). IPPC Secretariat, WMO, Geneva, Switzerland, p 21
- Kijne JW (2006) Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Res 97:3–18.
- Kostoglodov, V. y Pacheco, J.F. 1999. Cien años de sismicidad en México. Instituto de Geofísica. UNAM. http://tlacaelel.igeofcu.unam.mx/
- Maas E.V. 1984 Salt tolerance of plants. In: The Handbook of Plant Science in Agriculture. B.R. Christie (ed). CRC Press, Boca Raton, Florida.
- Maas, E.V., and Hoffman, G.H., 1977. Crop salt tolerance and current assessment. J. Irrig. Drainage Div. ASCE., 103: 115–134.
- Melloul A, Collin M (2006) Hydrogeological changes in coastal aquifers due to sea level rise.

 Ocean Coastal Management 49:281–297.
- México desconocido. 2010. Visiones de la costa bajacaliforniana de Google. http://www.mexicodesconocido.com.mx/notas/3518
- Munns R. (1993) Physiological pocesses limiting plant growth in saline soil: some dogmas and hypotheses. Plant cell and Environment 16, 15-24.
- Norma Oficial Mexicana NOM-021-RECNAT-2000. 2002. Especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación (México).
- Rhoades, J.D., Kandiah, A., Mashali, A.M. 1992. The use of saline waters for crop production FAO irrigation and drainage paper 48. Rome.
- Teakle, L. 1937. The salt content (sodium chloride) of rain water. West Austral Dept. Agr. J. Serv. 2(14):115-123.
- Vadas PA. and J. Thomas Sims. 2002. Predicting Phosphorus Desorption from Mid-Atlantic Coastal Plain Soils. Soil Sci. Soc. Am. J. 66:623–631

- Wang, Jim J. Dustin L. Harrell, and Paul F. Bell. 2004. Potassium Buffering Characteristics of Three Soils Low in Exchangeable Potassium Soil Sci. Soc. Am. J. 68: 654-661.
- Wang JJ and Dustin L. Harrell, 2005. Effect of Ammonium, Potassium, and Sodium Cations and Phosphate, Nitrate, and Chloride Anions on Zinc Sorption and Lability in Selected Acid and Calcareous Soils Soil Sci. Soc. Am. J. 69: 1036-1046.
- Waysel, Y. (1972). Biology of halophytes. Academic Press. New York.
- Winicov, I., Bastola, D.R. Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiologiae Plantarum. Vol. 19. No. 4. 1997: 435-439.
- Zhou L. X., and J. W. C. Wong. 2000. Microbial Decomposition of Dissolved Organic Matter and Its Control during a Sorption Experiment. J. Environ. Qual. 29:1852-1856.

9. Anexos

9.1. Ubicación e identificación de muestras

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
1	587	M001B1	2198	-115.31981053	32.18957537	6	DESCANSO	0-30
301	587	M001B1	1	-115.31981053	32.18957537	6	DESCANSO	30-60
260	16	M001B2	2358	-115.07479358	32.45526737	16	ALFALFA	0-30
560	16	M001B2	212	-115.07479358	32.45526737	16	ALFALFA	30-60
2	588	M002B1	2199	-115.31546669	32.19856110	3	DESCANSO	0-30
302	588	M002B1	2	-115.31546669	32.19856110	3	DESCANSO	30-60
261	18	M002B2	2359	-115.08302123	32.45687211	19	SORGO	0-30
561	18	M002B2	213	-115.08302123	32.45687211	19	SORGO	30-60
3	589	M003B1	2200	-115.30656268	32.19675321	4	DESCANSO	0-30
303	589	M003B1	3	-115.30656268	32.19675321	4	DESCANSO	30-60
262	20	M003B2	2360	-115.09743973	32.45529167	18	SORGO	0-30
562	20	M003B2	214	-115.09743973	32.45529167	18	SORGO	30-60
4	590	M004B1	2201	-115.29731501	32.18514989	7	DESCANSO	0-30
304	590	M004B1	4	-115.29731501	32.18514989	7	DESCANSO	30-60
263	22	M004B2	2361	-115.10790118	32.45459924	16	DESCANSO	0-30
563	22	M004B2	215	-115.10790118	32.45459924	16	DESCANSO	30-60
5	591	M005B1	2202	-115.29739397	32.19352844	3	DESCANSO	0-30
305	591	M005B1	5	-115.29739397	32.19352844	3	DESCANSO	30-60
264	23	M005B2	2362	-115.11639548	32.45744448	12	CEBOLLIN	0-30
564	23	M005B2	216	-115.11639548	32.45744448	12	CEBOLLIN	30-60
6	592	M006B1	2203	-115.28802434	32.19279469	3	DESCANSO	0-30
306	592	M006B1	6	-115.28802434	32.19279469	3	DESCANSO	30-60
265	24	M006B2	2363	-115.12917479	32.45591009	12	SIN CULTIVO	0-30
565	24	M006B2	217	-115.12917479	32.45591009	12	SIN CULTIVO	30-60
7	593	M007B1	2204	-115.28710091	32.20444537	6	DESCANSO	0-30
307	593	M007B1	7	-115.28710091	32.20444537	6	DESCANSO	30-60
266	25	M007B2	2364	-115.14775000	32.45711000	6	ALFALFA	0-30
566	25	M007B2	226	-115.14775000	32.45711000	6	ALFALFA	30-60
8	594	M008B1	2205	-115.28579383	32.20867647	8	DESCANSO	0-30
308	594	M008B1	8	-115.28579383	32.20867647	8	DESCANSO	30-60
267	26	M008B2	2365	-115.14784548	32.44673409	11	DESCANSO	0-30
567	26	M008B2	218	-115.14784548	32.44673409	11	DESCANSO	30-60
9	599	M009B1	2206	-115.27466769	32.21831490	15	DESCANSO	0-30
309	599	M009B1	9	-115.27466769	32.21831490	15	DESCANSO	30-60
268	27	M009B2	2366	-115.14912087	32.43949732	11	DESCANSO	0-30
568	27	M009B2	219	-115.14912087	32.43949732	11	DESCANSO	30-60
10	595	M010B1	2207	-115.30673811	32.22108328	9	DESCANSO	0-30

ODD	ID-	MULCEDA	NLob	LONGITUD	LATITUD	ALTHRA	CULTIVO	DDOE
ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
310	595	M010B1	10	-115.30673811	32.22108328	9	DESCANSO	cm 30-60
269	28	M010B1	2367	-115.13765000	32.43996000	14	DESCANSO	0-30
569	28	M010B2	220	-115.13765000	32.43996000	14	DESCANSO	30-60
11	596	M011B1	2208	-115.29723907	32.20403382	4	DESCANSO	0-30
311	596	M011B1	11	-115.29723907	32.20403382	4	DESCANSO	30-60
270	29	M011B2	2368	-115.13672110	32.44807112	14	DESCANSO	0-30
570	29	M011B2	221	-115.13672110	32.44807112	14	DESCANSO	30-60
12	597	M012B1	2209	-115.30277414	32.21461245	10	DESCANSO	0-30
312	597	M012B1	12	-115.30277414	32.21461245	10	DESCANSO	30-60
271	30	M012B2	2369	-115.07484773	32.44698051	11	SORGO	0-30
571	30	M012B2	222	-115.07484773	32.44698051	11	SORGO	30-60
13	598	M013B1	2210	-115.31336728	32.22151671	9	DESCANSO	0-30
313	598	M013B1	13	-115.31336728	32.22151671	9	DESCANSO	30-60
272	31	M013B2	2370	-115.08545570	32.44694028	15	ALFALFA	0-30
572	31	M013B2	223	-115.08545570	32.44694028	15	ALFALFA	30-60
14	600	M014B1	2211	-115.31653279	32.21206586	12	DESCANSO	0-30
314	600	M014B1	14	-115.31653279	32.21206586	12	DESCANSO	30-60
273	32	M014B2	2371	-115.09540376	32.44681581	13	CEBOLLIN	0-30
573	32	M014B2	224	-115.09540376	32.44681581	13	CEBOLLIN	30-60
15	601	M015B1	2212	-115.30793019	32.20663967	9	DESCANSO	0-30
315	601	M015B1	15	-115.30793019	32.20663967	9	DESCANSO	30-60
274	33	M015B2	2372	-115.10750000	32.43949000	13	SORGO	0-30
574	33	M015B2	225	-115.10750000	32.43949000	13	SORGO	30-60
16	602	M016B1	2213	-115.32092021	32.20671250	9	DESCANSO	0-30
316	602	M016B1	16	-115.32092021	32.20671250	9	DESCANSO	30-60
275	34	M016B2	2373	-115.10897214	32.44724387	12	ALFALFA	0-30
575	34	M016B2	236	-115.10897214	32.44724387	12	ALFALFA	30-60
17	603	M017B1	2214	-115.32449467	32.21742349	15	DESCANSO	0-30
317	603	M017B1	17	-115.32449467	32.21742349	15	DESCANSO	30-60
276	35	M017B2	2374	-115.12781110	32.44799211	13	DESCANSO	0-30
576	35	M017B2	241	-115.12781110	32.44799211	13	DESCANSO	30-60
18	604	M018B1	2215	-115.31228718	32.24034221	18	DESCANSO	0-30
318	604	M018B1	18	-115.31228718	32.24034221	18	DESCANSO	30-60
277	36	M018B2	2375	-115.12858420	32.43888351	12	ALFALFA	0-30
577	36	M018B2	237	-115.12858420	32.43888351	12	ALFALFA	30-60
19	605	M019B1	2216	-115.32252174	32.23987601	13	DESCANSO	0-30
319	605	M019B1	19	-115.32252174	32.23987601	13	DESCANSO	30-60
278	37	M019B2	2376	-115.11703846	32.43848260	14	ALFALFA	0-30
578	37	M019B2	238	-115.11703846	32.43848260	14	ALFALFA	30-60
20	606	M020B1	2217	-115.32441000	32.22478000	9	DESCANSO	0-30
320	606	M020B1	20	-115.32441000	32.22478000	9	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
		MOLOTIVA	TV EUD			, LETOTIA		cm
279	38	M020B2	2377	-115.12761852	32.42983692	13	DESCANSO	0-30
579	38	M020B2	239	-115.12761852	32.42983692	13	DESCANSO	30-60
21	610	M021B1	2218	-115.27919644	32.24224465	9	DESCANSO	0-30
321	610	M021B1	21	-115.27919644	32.24224465	9	DESCANSO	30-60
280	39	M021B2	2378	-115.11704081	32.42971522	9	SORGO	0-30
580	39	M021B2	242	-115.11704081	32.42971522	9	SORGO	30-60
22	608	M022B1	2219	-115.28089595	32.23098398	9	DESCANSO	0-30
322	608	M022B1	22	-115.28089595	32.23098398	9	DESCANSO	30-60
281	43	M022B2	2661	-115.10765391	32.42734808	16	ALFALFA	0-30
581	43	M022B2	2715	-115.10765391	32.42734808	16	ALFALFA	30-60
23	609	M023B1	2220	-115.28943812	32.23919003	6	DESCANSO	0-30
323	609	M023B1	23	-115.28943812	32.23919003	6	DESCANSO	30-60
282	44	M023B2	2662	-115.09738650	32.42885599	20	DESCANSO	0-30
582	44	M023B2	2716	-115.09738650	32.42885599	20	DESCANSO	30-60
24	611	M024B1	2221	-115.30219009	32.23297996	7	DESCANSO	0-30
324	611	M024B1	24	-115.30219009	32.23297996	7	DESCANSO	30-60
283	45	M024B2	2663	-115.09727226	32.42064315	18	DESCANSO	0-30
583	45	M024B2	2717	-115.09727226	32.42064315	18	DESCANSO	30-60
25	612	M025B1	2222	-115.28869263	32.22060467	5	DESCANSO	0-30
325	612	M025B1	25	-115.28869263	32.22060467	5	DESCANSO	30-60
284	46	M025B2	2664	-115.08818636	32.41990152	9	ALFALFA	0-30
584	46	M025B2	2718	-115.08818636	32.41990152	9	ALFALFA	30-60
26	613	M026B1	2223	-115.31056847	32.23305834	5	DESCANSO	0-30
326	613	M026B1	26	-115.31056847	32.23305834	5	DESCANSO	30-60
285	47	M026B2	2665	-115.07502518	32.42107666	10	DESCANSO	0-30
585	47	M026B2	2719	-115.07502518	32.42107666	10	DESCANSO	30-60
27	614	M027B1	2224	-115.32522306	32.25302051	13	DESCANSO	0-30
327	614	M027B1	27	-115.32522306	32.25302051	13	DESCANSO	30-60
286	48	M027B2	2666	-115.07383319	32.43750008	16	ALFALFA	0-30
586	48	M027B2	2720	-115.07383319	32.43750008	16	ALFALFA	30-60
28	615	M028B1	2225	-115.32516346	32.26097669	7	DESCANSO	0-30
328	615	M028B1	28	-115.32516346	32.26097669	7	DESCANSO	30-60
287	49	M028B2	2667	-115.07633192	32.42884819	16	ALFALFA	0-30
587	49	M028B2	2721	-115.07633192	32.42884819	16	ALFALFA	30-60
29	616	M029B1	2226	-115.30328058	32.24793630	5	DESCANSO	0-30
329	616	M029B1	29	-115.30328058	32.24793630	5	DESCANSO	30-60
288	50	M029B2	2668	-115.08483728	32.43694268	20	ALFALFA	0-30
588	50	M029B2	2722	-115.08483728	32.43694268	20	ALFALFA	30-60
30	617	M030B1	2227	-115.31376081	32.25134094	7	DESCANSO	0-30
330	617	M030B1	30	-115.31376081	32.25134094	7	DESCANSO	30-60
289	51	M030B2	2669	-115.09645100	32.43839149	18	ALFALFA	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
589	51	M030B2	2723	-115.09645100	32.43839149	18	ALFALFA	30-60
31	618	M031B1	2228	-115.31100199	32.25931247	8	DESCANSO	0-30
331	618	M031B1	31	-115.31100199	32.25931247	8	DESCANSO	30-60
290	52	M031B2	2670	-115.13855145	32.45614755	10	TRIGO	0-30
590	52	M031B2	2724	-115.13855145	32.45614755	10	TRIGO	30-60
32	619	M032B1	2229	-115.31106000	32.26976000	6	DESCANSO	0-30
332	619	M032B1	32	-115.31106000	32.26976000	6	DESCANSO	30-60
291	53	M032B2	2671	-115.11538630	32.41964746	11	DESCANSO	0-30
591	53	M032B2	2725	-115.11538630	32.41964746	11	DESCANSO	30-60
33	694	M033B1	2230	-115.29027513	32.25202214	5	DESCANSO	0-30
333	694	M033B1	33	-115.29027513	32.25202214	5	DESCANSO	30-60
292	54	M033B2	2672	-115.13834392	32.42195785	12	ALFALFA	0-30
592	54	M033B2	2726	-115.13834392	32.42195785	12	ALFALFA	30-60
34	621	M034B1	2231	-115.30082577	32.26062809	8	DESCANSO	0-30
334	621	M034B1	34	-115.30082577	32.26062809	8	DESCANSO	30-60
293	56	M034B2	2673	-115.14941120	32.42060100	6	ALFALFA	0-30
593	56	M034B2	2727	-115.14941120	32.42060100	6	ALFALFA	30-60
35	622	M035B1	2232	-115.29131969	32.25909554	7	DESCANSO	0-30
335	622	M035B1	35	-115.29131969	32.25909554	7	DESCANSO	30-60
294	57	M035B2	2674	-115.17194395	32.42284834	2	DESCANSO	0-30
594	57	M035B2	2728	-115.17194395	32.42284834	2	DESCANSO	30-60
36	623	M036B1	2233	-115.27860000	32.25888000	3	DESCANSO	0-30
336	623	M036B1	36	-115.27860000	32.25888000	3	DESCANSO	30-60
295	58	M036B2	2675	-115.18078778	32.42200672	0	DESCANSO	0-30
595	58	M036B2	2729	-115.18078778	32.42200672	0	DESCANSO	30-60
37	624	M037B1	2234	-115.26981000	32.25350000	5	DESCANSO	0-30
337	624	M037B1		-115.26981000	32.25350000	5	DESCANSO	30-60
296	59	M037B2	2676	-115.18259902	32.43126369	0	DESCANSO	0-30
596	59	M037B2	2730	-115.18259902	32.43126369	0	DESCANSO	30-60
38	625	M038B1	2235	-115.26873000	32.26061000	8	DESCANSO	0-30
338	625	M038B1	37	-115.26873000	32.26061000	8	DESCANSO	30-60
297	60	M038B2	2677	-115.14864528	32.42969686	7	SORGO	0-30
597	60	M038B2	2731	-115.14864528	32.42969686	7	SORGO	30-60
39	626	M039B1	2236	-115.26968205	32.26906263	11	DESCANSO	0-30
339	626	M039B1	38	-115.26968205	32.26906263	11	DESCANSO	30-60
298	61	M039B2	2678	-115.14019850	32.43030522	13	DESCANSO	0-30
598	61	M039B2	2732	-115.14019850	32.43030522	13	DESCANSO	30-60
40	627	M040B1	2237	-115.27975400	32.26799528	12	DESCANSO	0-30
340	627	M040B1	39	-115.27975400	32.26799528	12	DESCANSO	30-60
299	62	M040B2	2679	-115.15965910	32.44049787	2	DESCANSO	0-30
599	62	M040B2	2733	-115.15965910	32.44049787	2	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
OKD	טו	WIOLSTRA	IN Lab	LONGITOD_X	LAIIIOD_1	ALTUKA	COLIIVO	cm
41	628	M041B1	2238	-115.30425757	32.26815102	15	DESCANSO	0-30
341	628	M041B1	40	-115.30425757	32.26815102	15	DESCANSO	30-60
300	64	M041B2	2680	-115.16055210	32.42315764	1	DESCANSO	0-30
600	64	M041B2	2734	-115.16055210	32.42315764	1	DESCANSO	30-60
42	629	M042B1	2239	-115.31305000	32.27787000	3	DESCANSO	0-30
342	629	M042B1	41	-115.31305000	32.27787000	3	DESCANSO	30-60
43	630	M043B1	2240	-115.31245650	32.28813289	9	DESCANSO	0-30
343	630	M043B1	42	-115.31245650	32.28813289	9	DESCANSO	30-60
44	631	M044B1	2241	-115.30040299	32.28746493	8	DESCANSO	0-30
344	631	M044B1	43	-115.30040299	32.28746493	8	DESCANSO	30-60
45	632	M045B1	2242	-115.30359000	32.27802000	0	DESCANSO	0-30
345	632	M045B1	44	-115.30359000	32.27802000	0	DESCANSO	30-60
46	633	M046B1	2243	-115.26902307	32.27804644	9	DESCANSO	0-30
346	633	M046B1	45	-115.26902307	32.27804644	9	DESCANSO	30-60
47	634	M047B1	2244	-115.26733462	32.28842936	12	DESCANSO	0-30
347	634	M047B1	46	-115.26733462	32.28842936	12	DESCANSO	30-60
48	635	M048B1	2245	-115.28155000	32.28682000	18	DESCANSO	0-30
348	635	M048B1	47	-115.28155000	32.28682000	18	DESCANSO	30-60
49	636	M049B1	2246	-115.29180000	32.27950000	3	DESCANSO	0-30
349	636	M049B1	48	-115.29180000	32.27950000	3	DESCANSO	30-60
50	637	M050B1	2247	-115.29061000	32.28816000	5	DESCANSO	0-30
350	637	M050B1	49	-115.29061000	32.28816000	5	DESCANSO	30-60
51	639	M051B1	2248	-115.27926609	32.27895906	7	DESCANSO	0-30
351	639	M051B1	50	-115.27926609	32.27895906	7	DESCANSO	30-60
52	640	M052B1	2249	-115.26830072	32.29700513	8	DESCANSO	0-30
352	640	M052B1	51	-115.26830072	32.29700513	8	DESCANSO	30-60
53	641	M053B1	2250	-115.28008425	32.29612914	15	DESCANSO	0-30
353	641	M053B1	52	-115.28008425	32.29612914	15	DESCANSO	30-60
54	692	M054B1	2251	-115.28935078	32.29649501	12	DESCANSO	0-30
354	692	M054B1	53	-115.28935078	32.29649501	12	DESCANSO	30-60
55	643	M055B1	2252	-115.31103292	32.29718341	12	DESCANSO	0-30
355	643	M055B1	54	-115.31103292	32.29718341	12	DESCANSO	30-60
56	644	M056B1	2253	-115.28800000	32.30530000	13	DESCANSO	0-30
356	644	M056B1	55	-115.28800000	32.30530000	13	DESCANSO	30-60
57	645	M057B1	2254	-115.28005000	32.30501000	10	DESCANSO	0-30
357	645	M057B1	56	-115.28005000	32.30501000	10	DESCANSO	30-60
58	646	M058B1	2255	-115.26848000	32.30495000	10	DESCANSO	0-30
358	646	M058B1	57	-115.26848000	32.30495000	10	DESCANSO	30-60
59	647	M059B1	2256	-115.32059306	32.30554000	13	DESCANSO	0-30
359	647	M059B1	58	-115.32059306	32.30554000	13	DESCANSO	30-60
60	648	M060B1	2257	-115.31242096	32.30557303	14	DESCANSO	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
360	648	M060B1	59	-115.31242096	32.30557303	14	DESCANSO	30-60
61	695	M061B1	2258	-115.30064472	32.30469922	9	DESCANSO	0-30
361	695	M061B1	60	-115.30064472	32.30469922	9	DESCANSO	30-60
62	650	M062B1	2259	-115.30105351	32.29708518	1	DESCANSO	0-30
362	650	M062B1	61	-115.30105351	32.29708518	1	DESCANSO	30-60
63	651	M063B1	2260	-115.27769000	32.31561000	9	DESCANSO	0-30
363	651	M063B1	62	-115.27769000	32.31561000	9	DESCANSO	30-60
64	652	M064B1	2261	-115.28934206	32.31503922	4	DESCANSO	0-30
364	652	M064B1	63	-115.28934206	32.31503922	4	DESCANSO	30-60
65	653	M065B1	2262	-115.30015589	32.31502522	9	DESCANSO	0-30
365	653	M065B1	64	-115.30015589	32.31502522	9	DESCANSO	30-60
66	655	M066B1	2263	-115.31082840	32.31514608	5	DESCANSO	0-30
366	655	M066B1	65	-115.31082840	32.31514608	5	DESCANSO	30-60
67	656	M067B1	2264	-115.32142195	32.32618648	12	DESCANSO	0-30
367	656	M067B1	66	-115.32142195	32.32618648	12	DESCANSO	30-60
68	693	M068B1	2265	-115.26918333	32.32419728	10	DESCANSO	0-30
368	693	M068B1	67	-115.26918333	32.32419728	10	DESCANSO	30-60
69	658	M069B1	2266	-115.27899359	32.32392328	7	DESCANSO	0-30
369	658	M069B1	68	-115.27899359	32.32392328	7	DESCANSO	30-60
70	659	M070B1	2267	-115.28922522	32.32365129	1	DESCANSO	0-30
370	659	M070B1	69	-115.28922522	32.32365129	1	DESCANSO	30-60
71	660	M071B1	2268	-115.29935340	32.32310252	0	DESCANSO	0-30
371	660	M071B1	70	-115.29935340	32.32310252	0	DESCANSO	30-60
72	661	M072B1	2269	-115.32201279	32.31611738	3	DESCANSO	0-30
372	661	M072B1	71	-115.32201279	32.31611738	3	DESCANSO	30-60
73	662	M073B1	2270	-115.31083996	32.32508836	17	DESCANSO	0-30
373	662	M073B1	72	-115.31083996	32.32508836	17	DESCANSO	30-60
74	663	M074B1	2271	-115.31225240	32.33375936	1	DESCANSO	0-30
374	663	M074B1	73	-115.31225240	32.33375936	1	DESCANSO	30-60
75	664	M075B1	2272	-115.32160585	32.33292410	15	DESCANSO	0-30
375	664	M075B1	74	-115.32160585	32.33292410	15	DESCANSO	30-60
76	665	M076B1	2273	-115.26882000	32.33424000	0	DESCANSO	0-30
376	665	M076B1	75	-115.26882000	32.33424000	0	DESCANSO	30-60
77	666	M077B1	2274	-115.28248000	32.33376000	7	DESCANSO	0-30
377	666	M077B1	76	-115.28248000	32.33376000	7	DESCANSO	30-60
78	667	M078B1	2275	-115.28857000	32.33348000	3	DESCANSO	0-30
378	667	M078B1	77	-115.28857000	32.33348000	3	DESCANSO	30-60
79	668	M079B1	2276	-115.30083968	32.33348988	6	DESCANSO	0-30
379	668	M079B1	78	-115.30083968	32.33348988	6	DESCANSO	30-60
80	669	M080B1	2277	-115.26834397	32.34125990	13	DESCANSO	0-30
380	669	M080B1	79	-115.26834397	32.34125990	13	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
	טו	MOLSTINA	IV Lab			ALIONA	COLITYO	cm
81	670	M081B1	2278	-115.27849160	32.34117785	14	DESCANSO	0-30
381	670	M081B1	80	-115.27849160	32.34117785	14	DESCANSO	30-60
82	671	M082B1	2279	-115.29082742	32.34183457	0	DESCANSO	0-30
382	671	M082B1	81	-115.29082742	32.34183457	0	DESCANSO	30-60
83	691	M083B1	2280	-115.30065000	32.34398000	31	DESCANSO	0-30
383	691	M083B1	82	-115.30065000	32.34398000	31	DESCANSO	30-60
84	673	M084B1	2281	-115.31198000	32.34555000	0	DESCANSO	0-30
384	673	M084B1	83	-115.31198000	32.34555000	0	DESCANSO	30-60
85	674	M085B1	2282	-115.30952442	32.35027229	3	DESCANSO	0-30
385	674	M085B1	84	-115.30952442	32.35027229	3	DESCANSO	30-60
86	675	M086B1	2283	-115.29702000	32.36234000	7	DESCANSO	0-30
386	675	M086B1	85	-115.29702000	32.36234000	7	DESCANSO	30-60
87	676	M087B1	2284	-115.28896244	32.35989380	10	DESCANSO	0-30
387	676	M087B1	86	-115.28896244	32.35989380	10	DESCANSO	30-60
88	677	M088B1	2290	-115.30041975	32.35065099	8	DESCANSO	0-30
388	677	M088B1	87	-115.30041975	32.35065099	8	DESCANSO	30-60
89	678	M089B1	2285	-115.28788000	32.34981000	8	DESCANSO	0-30
389	678	M089B1	88	-115.28788000	32.34981000	8	DESCANSO	30-60
90	679	M090B1	2286	-115.27707431	32.35952617	9	DESCANSO	0-30
390	679	M090B1	89	-115.27707431	32.35952617	9	DESCANSO	30-60
91	696	M091B1	2287	-115.24638028	32.34175050	10	DESCANSO	0-30
391	696	M091B1	90	-115.24638028	32.34175050	10	DESCANSO	30-60
92	681	M092B1	2288	-115.25788402	32.33280567	0	DESCANSO	0-30
392	681	M092B1	91	-115.25788402	32.33280567	0	DESCANSO	30-60
93	682	M093B1	2289	-115.24707000	32.33366000	4	DESCANSO	0-30
393	682	M093B1	92	-115.24707000	32.33366000	4	DESCANSO	30-60
94	683	M094B1	2291	-115.25765444	32.32358272	9	DESCANSO	0-30
394	683	M094B1	93	-115.25765444	32.32358272	9	DESCANSO	30-60
95	684	M095B1	2292	-115.25619000	32.31633000	6	ALFALFA	0-30
395	684	M095B1	94	-115.25619000	32.31633000	6	DESCANSO	30-60
96	685	M096B1	2293	-115.25779224	32.30511697	9	DESCANSO	0-30
396	685	M096B1	95	-115.25779224	32.30511697	9	ALFALFA	30-60
97	686	M097B1	2294	-115.25862004	32.29633978	10	DESCANSO	0-30
397	686	M097B1	96	-115.25862004	32.29633978	10	DESCANSO	30-60
98	687	M098B1	2295	-115.25825794	32.28591696	9	DESCANSO	0-30
398	687	M098B1	97	-115.25825794	32.28591696	9	DESCANSO	30-60
99	688	M099B1	2296	-115.24823000	32.28640000	8	DESCANSO	0-30
399	688	M099B1	98	-115.24823000	32.28640000	8	DESCANSO	30-60
100	689	M100B1	2297	-115.24711051	32.29593040	6	DESCANSO	0-30
400	689	M100B1	99	-115.24711051	32.29593040	6	DESCANSO	30-60
101	690	M101B1	2298	-115.24835573	32.30539575	1	DESCANSO	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
401	690	M101B1	100	-115.24835573	32.30539575	1	DESCANSO	30-60
102	697	M102B1	2299	-115.25894324	32.27845003	6	DESCANSO	0-30
402	697	M102B1		-115.25894324	32.27845003	6	DESCANSO	30-60
103	698	M103B1	2300	-115.24804000	32.26779000	5	DESCANSO	0-30
403	698	M103B1		-115.24804000	32.26779000	5	DESCANSO	30-60
104	699	M104B1	2301	-115.25849381	32.26042852	6	DESCANSO	0-30
404	699	M104B1	101	-115.25849381	32.26042852	6	DESCANSO	30-60
105	700	M105B1	2302	-115.25990000	32.26651000	4	DESCANSO	0-30
405	700	M105B1		-115.25990000	32.26651000	4	DESCANSO	30-60
106	701	M106B1	2303	-115.24813394	32.26019835	4	DESCANSO	0-30
406	701	M106B1		-115.24813394	32.26019835	4	DESCANSO	30-60
107	702	M107B1	2304	-115.23692558	32.26015686	3	DESCANSO	0-30
407	702	M107B1	102	-115.23692558	32.26015686	3	DESCANSO	30-60
108	703	M108B1	2305	-115.24418000	32.28013000	3	ALFALFA	0-30
408	703	M108B1	103	-115.24418000	32.28013000	3	DESCANSO	30-60
109	704	M109B1	2306	-115.23600482	32.32248151	4	DESCANSO	0-30
409	704	M109B1	104	-115.23600482	32.32248151	4	ALFALFA	30-60
110	705	M110B1	2307	-115.23397000	32.33167000	30	DESCANSO	0-30
410	705	M110B1		-115.23397000	32.33167000	30	DESCANSO	30-60
111	706	M111B1	2308	-115.22586222	32.32278225	22	ALFALFA	0-30
411	706	M111B1	105	-115.22586222	32.32278225	22	DESCANSO	30-60
112	707	M112B1	2309	-115.22463913	32.33267139	22	ALGODON	0-30
412	707	M112B1	106	-115.22463913	32.33267139	22	ALFALFA	30-60
113	708	M113B1	2310	-115.22560079	32.31437612	2	ALFALFA	0-30
413	708	M113B1	107	-115.22560079	32.31437612	2	ALGODON	30-60
114	709	M114B1	2311	-115.23551314	32.31495062	3	DESCANSO	0-30
414	709	M114B1	108	-115.23551314	32.31495062	3	ALFALFA	30-60
115	710	M115B1	2312	-115.23606501	32.30436503	2	DESCANSO	0-30
415	710	M115B1	109	-115.23606501	32.30436503	2	DESCANSO	30-60
116	711	M116B1	2313	-115.22672161	32.30468388	0	DESCANSO	0-30
416	711	M116B1	110	-115.22672161	32.30468388	0	DESCANSO	30-60
117	712	M117B1	2314	-115.22629732	32.29591322	0	DESCANSO	0-30
417	712	M117B1	111	-115.22629732	32.29591322	0	DESCANSO	30-60
118	713	M118B1	2315	-115.23740100	32.29690866	0	DESCANSO	0-30
418	713	M118B1	112	-115.23740100	32.29690866	0	DESCANSO	30-60
119	714	M119B1	2316	-115.23610407	32.26886750	3	DESCANSO	0-30
419	714	M119B1	113	-115.23610407	32.26886750	3	DESCANSO	30-60
120	715	M120B1	2317	-115.22506000	32.27039000	4	DESCANSO	0-30
420	715	M120B1	114	-115.22506000	32.27039000	4	DESCANSO	30-60
121	716	M121B1	2318	-115.22754799	32.26030648	3	DESCANSO	0-30
421	716	M121B1	115	-115.22754799	32.26030648	3	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
122	717	M122B1	2319	-115.23013000	32.25201000	2	DESCANSO	0-30
422	717	M122B1	116	-115.23013000	32.25201000	2	DESCANSO	30-60
123	718	M123B1	2320	-115.23761239	32.25102318	0	ALGODON	0-30
423	718	M123B1	117	-115.23761239	32.25102318	0	DESCANSO	30-60
124	719	M124B1	2321	-115.25943283	32.24233886	0	DESCANSO	0-30
424	719	M124B1	118	-115.25943283	32.24233886	0	ALGODON	30-60
125	720	M125B1	2322	-115.25830404	32.23277930	16	DESCANSO	0-30
425	720	M125B1	119	-115.25830404	32.23277930	16	DESCANSO	30-60
126	721	M126B1	2323	-115.24724000	32.23275000	13	ALGODON	0-30
426	721	M126B1	120	-115.24724000	32.23275000	13	DESCANSO	30-60
127	722	M127B1	2324	-115.23804104	32.23277109	5	DESCANSO	0-30
427	722	M127B1	121	-115.23804104	32.23277109	5	ALGODON	30-60
128	723	M128B1	2325	-115.22669000	32.24437000	4	DESCANSO	0-30
428	723	M128B1	122	-115.22669000	32.24437000	4	DESCANSO	30-60
129	724	M129B1	2326	-115.23839000	32.22449000	2	DESCANSO	0-30
429	724	M129B1	123	-115.23839000	32.22449000	2	DESCANSO	30-60
130	725	M130B1	2327	-115.23362000	32.24202000	5	DESCANSO	0-30
430	725	M130B1	124	-115.23362000	362000 32.24202000 5		DESCANSO	30-60
131	726	M131B1	2328	-115.24827040	27040 32.24205203		DESCANSO	0-30
431	726	M131B1	125	-115.24827040	32.24205203	0	DESCANSO	30-60
132	727	M132B1	2329	-115.23891000	32.33908000	6	ALFALFA	0-30
432	727	M132B1	126	-115.23891000	32.33908000	6	DESCANSO	30-60
133	728	M133B1	2330	-115.22486737	32.34113032	13	DESCANSO	0-30
433	728	M133B1	127	-115.22486737	32.34113032	13	ALFALFA	30-60
134	729	M134B1	2331	-115.24409000	32.32340000	13	DESCANSO	0-30
434	729	M134B1	128	-115.24409000	32.32340000	13	DESCANSO	30-60
135	730	M135B1	2332	-115.22657393	32.27801953	10	DESCANSO	0-30
435	730	M135B1	129	-115.22657393	32.27801953	10	DESCANSO	30-60
136	731	M136B1	2333	-115.23705130	32.27827007	6	DESCANSO	0-30
436	731	M136B1	130	-115.23705130	32.27827007	6	DESCANSO	30-60
137	732	M137B1	2334	-115.22627939	32.23228393	2	ALFALFA	0-30
437	732	M137B1	131	-115.22627939	32.23228393	2	DESCANSO	30-60
138	733	M138B1	2335	-115.22760658	32.22456018	0	DESCANSO	0-30
438	733	M138B1	132	-115.22760658	32.22456018	0	ALFALFA	30-60
139	734	M139B1	2336	-115.23782906	32.21616880	13	DESCANSO	0-30
439	734	M139B1	133	-115.23782906	32.21616880	13	DESCANSO	30-60
140	735	M140B1	2337	-115.22761965	32.21630232	6	DESCANSO	0-30
440	735	M140B1	134	-115.22761965	32.21630232	6	DESCANSO	30-60
141	736	M141B1	2338	-115.24833000	32.21710000 7 DESCA		DESCANSO	0-30
441	736	M141B1	135	-115.24833000	32.21710000	7	DESCANSO	30-60
142	737	M142B1	2339	-115.24656000	32.22715000	4	DESCANSO	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
442	737	M142B1	136	-115.24656000	32.22715000	4	DESCANSO	30-60
143	738	M143B1	2340	-115.25754000	32.21793000	0	DESCANSO	0-30
443	738	M143B1	137	-115.25754000	32.21793000	0	DESCANSO	30-60
144	739	M144B1	2341	-115.26063000	32.22514000	3	DESCANSO	0-30
444	739	M144B1	138	-115.26063000	32.22514000	3	DESCANSO	30-60
145	740	M145B1	2342	-115.27064061	32.21499592	8	DESCANSO	0-30
445	740	M145B1	139	-115.27064061	32.21499592	8	DESCANSO	30-60
146	741	M146B1	2343	-115.24929852	32.20632283	5	DESCANSO	0-30
446	741	M146B1	140	-115.24929852	32.20632283	5	DESCANSO	30-60
147	742	M147B1	2344	-115.23887998	32.20628972	0	DESCANSO	0-30
447	742	M147B1	141	-115.23887998	32.20628972	0	DESCANSO	30-60
148	743	M148B1	2345	-115.24948988	32.19731882	0	DESCANSO	0-30
448	743	M148B1	142	-115.24948988	32.19731882	0	DESCANSO	30-60
149	744	M149B1	2346	-115.23792990	32.19638374	0	DESCANSO	0-30
449	744	M149B1	143	-115.23792990	32.19638374	0	DESCANSO	30-60
150	745	M150B1	2347	-115.22941000	32.19867000	5	DESCANSO	0-30
450	745	M150B1	144	-115.22941000	32.19867000	5	DESCANSO	30-60
151	746	M151B1	2348	-115.25501000	32.18631000 0		DESCANSO	0-30
451	746	M151B1	145	-115.25501000	32.18631000 0		DESCANSO	30-60
152	747	M152B1	2349	-115.25625248	32.17154204	0	DESCANSO	0-30
452	747	M152B1	146	-115.25625248	32.17154204	0	DESCANSO	30-60
153	748	M153B1	2350	-115.26913000	32.22468000	0	DESCANSO	0-30
453	748	M153B1	147	-115.26913000	32.22468000	0	DESCANSO	30-60
154	749	M154B1	2351	-115.26523000	32.23456000	0	DESCANSO	0-30
454	749	M154B1	148	-115.26523000	32.23456000	0	DESCANSO	30-60
155	750	M155B1	2352	-115.21332000	32.32191000	7	ALFALFA	0-30
455	750	M155B1	149	-115.21332000	32.32191000	7	DESCANSO	30-60
156	751	M156B1	2353	-115.21663000	32.33084000	11	ALGODON	0-30
456	751	M156B1	150	-115.21663000	32.33084000	11	ALFALFA	30-60
157	752	M157B1	2354	-115.21480422	32.34168311	3	ALGODON	0-30
457	752	M157B1	151	-115.21480422	32.34168311	3	ALGODON	30-60
158	753	M158B1	2355	-115.22392315	32.35821440	7	DESCANSO	0-30
458	753	M158B1	152	-115.22392315	32.35821440	7	ALGODON	30-60
159	754	M159B1	2356	-115.21586814	32.34958531	0	DESCANSO	0-30
459	754	M159B1	153	-115.21586814	32.34958531	0	DESCANSO	30-60
160	755	M160B1	2357	-115.20572000	32.34015000	2	DESCANSO	0-30
460	755	M160B1	154	-115.20572000	32.34015000	2	DESCANSO	30-60
161	756	M161B1	2562	-115.20431704	32.32251487	7	DESCANSO	0-30
461	756	M161B1	155	-115.20431704	32.32251487	7	DESCANSO	30-60
162	757	M162B1	2563	-115.20557089	32.31522119	8	ALFALFA	0-30
462	757	M162B1	156	-115.20557089	32.31522119	8	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
163	758	M163B1	2564	-115.21506121	32.31385619	13	ALFALFA	0-30
463	758	M163B1	157	-115.21506121	32.31385619	13	ALFALFA	30-60
164	759	M164B1	2565	-115.21602941	32.30508747	8	DESCANSO	0-30
464	759	M164B1	158	-115.21602941	32.30508747	8	ALFALFA	30-60
165	760	M165B1	2566	-115.21521075	32.29603744	11	DESCANSO	0-30
465	760	M165B1	159	-115.21521075	32.29603744	11	DESCANSO	30-60
166	761	M166B1	2567	-115.20452000	32.30068000	0	DESCANSO	0-30
466	761	M166B1	160	-115.20452000	32.30068000	0	DESCANSO	30-60
167	762	M167B1	2568	-115.21339000	32.28701000	2	DESCANSO	0-30
467	762	M167B1	161	-115.21339000	32.28701000	2	DESCANSO	30-60
168	763	M168B1	2569	-115.18335700	32.32167668	5	DESCANSO	0-30
468	763	M168B1	162	-115.18335700	32.32167668	5	DESCANSO	30-60
169	764	M169B1	2570	-115.19229672	32.33206412	6	DESCANSO	0-30
469	764	M169B1	163	-115.19229672	32.33206412	6	DESCANSO	30-60
170	765	M170B1	2571	-115.19302804	32.34141078	1	DESCANSO	0-30
470	765	M170B1	164	-115.19302804	32.34141078	1	DESCANSO	30-60
171	766	M171B1	2572	-115.18032191	32.33632850	11	DESCANSO	0-30
471	766	M171B1	165	-115.18032191	32.33632850	11	DESCANSO	30-60
172	767	M172B1	2573	-115.19330364	32.30939987	11	DESCANSO	0-30
472	767	M172B1		-115.19330364	32.30939987	11	DESCANSO	30-60
173	768	M173B1	2574	-115.18396494	32.30463644	4	DESCANSO	0-30
473	768	M173B1	166	-115.18396494	32.30463644	4	DESCANSO	30-60
174	769	M174B1	2575	-115.19537305	32.29818614	0	DESCANSO	0-30
474	769	M174B1	167	-115.19537305	32.29818614	0	DESCANSO	30-60
175	770	M175B1	2576	-115.20498122	32.29321676	0	DESCANSO	0-30
475	770	M175B1	168	-115.20498122	32.29321676	0	DESCANSO	30-60
176	771	M176B1	2577	-115.19941849	32.28330382	13	DESCANSO	0-30
476	771	M176B1	169	-115.19941849	32.28330382	13	DESCANSO	30-60
177	772	M177B1	2578	-115.21278871	32.27560915	12	DESCANSO	0-30
477	772	M177B1	170	-115.21278871	32.27560915	12	DESCANSO	30-60
178	773	M178B1	2579	-115.19926460	32.27119700	12	DESCANSO	0-30
478	773	M178B1	171	-115.19926460	32.27119700	12	DESCANSO	30-60
179	774	M179B1	2580	-115.19668280	32.25993935	0	DESCANSO	0-30
479	774	M179B1	172	-115.19668280	32.25993935	0	DESCANSO	30-60
180	775	M180B1	2581	-115.21506985	32.25966149	10	DESCANSO	0-30
480	775	M180B1	173	-115.21506985	32.25966149	10	DESCANSO	30-60
181	776	M181B1	2582	-115.21030230	32.24482452	9	DESCANSO	0-30
481	776	M181B1	174	-115.21030230	32.24482452	9	DESCANSO	30-60
182	777	M182B1	2583	-115.19464466	32.24467733	0	DESCANSO	0-30
482	777	M182B1	175	-115.19464466	32.24467733	0	DESCANSO	30-60
183	779	M183B1	2584	-115.19533407	32.23146209	0	DESCANSO	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
483	779	M183B1		-115.19533407	32.23146209	0	DESCANSO	30-60
184	780	M184B1	2585	-115.21203426	32.23252952	10	DESCANSO	0-30
484	780	M184B1	176	-115.21203426	32.23252952	10	DESCANSO	30-60
185	781	M185B1	2586	-115.21037699	32.21912996	3	DESCANSO	0-30
485	781	M185B1	177	-115.21037699	32.21912996	3	DESCANSO	30-60
186	782	M186B1	2587	-115.21815045	32.20575663	0	DESCANSO	0-30
486	782	M186B1	178	-115.21815045	32.20575663	0	DESCANSO	30-60
187	783	M187B1	2588	-115.20160415	32.20433473	0	DESCANSO	0-30
487	783	M187B1	179	-115.20160415	32.20433473	0	DESCANSO	30-60
188	784	M188B1	2589	-115.21381139	32.19030485	12	DESCANSO	0-30
488	784	M188B1	180	-115.21381139	32.19030485	12	DESCANSO	30-60
189	785	M189B1	2590	-115.20105983	32.19228163	12	DESCANSO	0-30
489	785	M189B1	181	-115.20105983	32.19228163	12	DESCANSO	30-60
190	786	M190B1	2591	-115.19472655	32.21685360	15	DESCANSO	0-30
490	786	M190B1		-115.19472655	32.21685360	15	DESCANSO	30-60
191	787	M191B1	2592	-115.18442377	32.20639550	3	DESCANSO	0-30
491	787	M191B1	182	-115.18442377	32.20639550	3	DESCANSO	30-60
192	788	M192B1	2593	-115.17734290	32.21807552	2	ALFALFA	0-30
492	788	M192B1		-115.17734290	32.21807552	2	DESCANSO	30-60
193	789	M193B1	2594	-115.18921511	32.19749250	1	DESCANSO	0-30
493	789	M193B1		-115.18921511	32.19749250	1	ALFALFA	30-60
194	790	M194B1	2595	-115.17107508	32.20413281	2	DESCANSO	0-30
494	790	M194B1	183	-115.17107508	32.20413281	2	DESCANSO	30-60
195	791	M195B1	2596	-115.18128164	32.23001688	1	DESCANSO	0-30
495	791	M195B1	184	-115.18128164	32.23001688	1	DESCANSO	30-60
196	792	M196B1	2597	-115.18222427	32.24232344	13	DESCANSO	0-30
496	792	M196B1	185	-115.18222427	32.24232344	13	DESCANSO	30-60
197	793	M197B1	2598	-115.16469947	32.25374705	19	DESCANSO	0-30
497	793	M197B1	186	-115.16469947	32.25374705	19	DESCANSO	30-60
198	794	M198B1	2599	-115.18581541	32.26015401	10	DESCANSO	0-30
498	794	M198B1	187	-115.18581541	32.26015401	10	DESCANSO	30-60
199	795	M199B1	2600	-115.15446676	32.26964023	0	DESCANSO	0-30
499	795	M199B1	188	-115.15446676	32.26964023	0	DESCANSO	30-60
200	796	M200B1	2601	-115.14300778	32.27595566	36	ALGODON	0-30
500	796	M200B1	189	-115.14300778	32.27595566	36	DESCANSO	30-60
201	797	M201B1	2602	-115.12924117	32.29575430	22	ALFALFA	0-30
501	797	M201B1	190	-115.12924117	32.29575430	22	ALGODON	30-60
202	798	M202B1	2603	-115.14038122	32.28779485	15	DESCANSO	0-30
502	798	M202B1	191	-115.14038122	32.28779485	15	ALFALFA	30-60
203	799	M203B1	2604	-115.14825334	32.30713030	16	DESCANSO	0-30
503	799	M203B1	192	-115.14825334	32.30713030	16	DESCANSO	30-60

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
204	800	M204B1	2605	-115.17158839	32.28275766	15	DESCANSO	0-30
504	800	M204B1	193	-115.17158839	32.28275766	15	DESCANSO	30-60
205	801	M205B1	2606	-115.18481042	32.27142071	15	DESCANSO	0-30
505	801	M205B1	194	-115.18481042	32.27142071	15	DESCANSO	30-60
206	802	M206B1	2607	-115.18207365	32.28651987	13	DESCANSO	0-30
506	802	M206B1	195	-115.18207365	32.28651987	13	DESCANSO	30-60
207	803	M207B1	2608	-115.17344909	32.29446131	20	DESCANSO	0-30
507	803	M207B1	196	-115.17344909	32.29446131	20	DESCANSO	30-60
208	804	M208B1	2609	-115.15721896	32.28432910	7	DESCANSO	0-30
508	804	M208B1	197	-115.15721896	32.28432910	7	DESCANSO	30-60
209	805	M209B1	2610	-115.16879772	32.30886024	3	ALFALFA	0-30
509	805	M209B1	198	-115.16879772	32.30886024	3	DESCANSO	30-60
210	806	M210B1	2611	-115.13836018	32.30010023	9	DESCANSO	0-30
510	806	M210B1	199	-115.13836018	32.30010023	9	ALFALFA	30-60
211	807	M211B1	2612	-115.15835110	32.29699373	18	DESCANSO	0-30
511	807	M211B1	200	-115.15835110	32.29699373	18	DESCANSO	30-60
212	808	M212B1	2613	-115.17285230	32.32888260	19	DESCANSO	0-30
512	808	M212B1		-115.17285230	32.32888260	19	DESCANSO	30-60
213	809	M213B1	2614	-115.16278488	32.32230591	3	DESCANSO	0-30
513	809	M213B1	201	-115.16278488	32.32230591	3	DESCANSO	30-60
214	839	M214B1	2615	-115.15794567	32.33366422	2	DESCANSO	0-30
514	839	M214B1	202	-115.15794567	32.33366422	2	DESCANSO	30-60
215	811	M215B1	2616	-115.16972115	32.34084575	20	DESCANSO	0-30
515	811	M215B1	203	-115.16972115	32.34084575	20	DESCANSO	30-60
216	812	M216B1	2617	-115.16935302	32.35385187	9	DESCANSO	0-30
516	812	M216B1	204	-115.16935302	32.35385187	9	DESCANSO	30-60
217	813	M217B1	2618	-115.15669710	32.34868954	7	DESCANSO	0-30
517	813	M217B1		-115.15669710	32.34868954	7	DESCANSO	30-60
218	816	M218B1	2619	-115.14558630	32.35709684	5	DESCANSO	0-30
518	816	M218B1	205	-115.14558630	32.35709684	5	DESCANSO	30-60
219	817	M219B1	2620	-115.17640907	32.36717122	9	DESCANSO	0-30
519	817	M219B1	206	-115.17640907	32.36717122	9	DESCANSO	30-60
220	818	M220B1	2621	-115.17182384	32.37683706	7	DESCANSO	0-30
520	818	M220B1	207	-115.17182384	32.37683706	7	DESCANSO	30-60
221	819	M221B1	2622	-115.15599327	32.38595976	15	ALFALFA	0-30
521	819	M221B1		-115.15599327	32.38595976	15	DESCANSO	30-60
222	820	M222B1	2623	-115.15374633	32.37639835	7	ALFALFA	0-30
522	820	M222B1	208	-115.15374633	32.37639835	7	ALFALFA	30-60
223	821			-115.13593043	32.38328308	6	ALFALFA	0-30
523	821			-115.13593043	32.38328308	6	ALFALFA	30-60
224	822	M224B1	2625	-115.14140851	32.36668062	3	ALFALFA	0-30

ORD	ID	MUESTRA	N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
								cm
524	822	M224B1	210	-115.14140851	32.36668062	3	ALFALFA	30-60
225	823	M225B1	2626	-115.16296551	32.36611711	1	DESCANSO	0-30
525	823	M225B1	211	-115.16296551	32.36611711 1		ALFALFA	30-60
226	824	M226B1	2627	-115.17109922	32.38691923	16	ALFALFA	0-30
526	824	M226B1	2681	-115.17109922	32.38691923	16	DESCANSO	30-60
227	825	M227B1	2628	-115.18887699	32.37593207	16	ALFALFA	0-30
527	825	M227B1	2682	-115.18887699	32.37593207	16	ALFALFA	30-60
228	826	M228B1	2629	-115.19879420	32.38517638	9	ALFALFA	0-30
528	826	M228B1	2683	-115.19879420	32.38517638	9	ALFALFA	30-60
229	827	M229B1	2630	-115.20448493	32.37660228	9	DESCANSO	0-30
529	827	M229B1	2684	-115.20448493	32.37660228	9	ALFALFA	30-60
230	828	M230B1	2631	-115.18807492	32.38832270	8	ALFALFA	0-30
530	828	M230B1	2685	-115.18807492	32.38832270	8	DESCANSO	30-60
231	838	M231B1	2632	-115.13483668	32.40123795	0	DESCANSO	0-30
531	838	M231B1	2686	-115.13483668	32.40123795	0	ALFALFA	30-60
232	830	M232B1	2633	-115.13102417	32.39126961	0	ALFALFA	0-30
532	830	M232B1	2687	-115.13102417	32.39126961	0	DESCANSO	30-60
233	831	M233B1	2634	-115.11754305	32.41443970	16	ALFALFA	0-30
533	831	M233B1	2688	-115.11754305	32.41443970 16		ALFALFA	30-60
234	832	M234B1	2635	-115.11992720	32.39787438	5	ALFALFA	0-30
534	832	M234B1	2689	-115.11992720	32.39787438	5	ALFALFA	30-60
235	833	M235B1	2636	-115.14769041	32.34236003	2	DESCANSO	0-30
535	833	M235B1	2690	-115.14769041	32.34236003	2	ALFALFA	30-60
236	834	M236B1	2637	-115.17593583	32.41020475	22	ALFALFA	0-30
536	834	M236B1	2691	-115.17593583	32.41020475	22	DESCANSO	30-60
237	835	M237B1	2638	-115.18121090	32.40038719	9	ALFALFA	0-30
537	835	M237B1	2692	-115.18121090	32.40038719	9	ALFALFA	30-60
238	836	M238B1	2639	-115.16472101	32.39442841	17	DESCANSO	0-30
538	836	M238B1	2693	-115.16472101	32.39442841	17	ALFALFA	30-60
239	837	M239B1	2640	-115.15548449	32.40012324	13	DESCANSO	0-30
539	837	M239B1	2694	-115.15548449	32.40012324	13	DESCANSO	30-60
240	840	M240B1	2641	-115.14506838	32.39317993	6	DESCANSO	0-30
540	840	M240B1	2695	-115.14506838	32.39317993	6	DESCANSO	30-60
241	841	M241B1	2642	-115.22067131	32.37190858	5	DESCANSO	0-30
541	841	M241B1	2696	-115.22067131	32.37190858	5	DESCANSO	30-60
242	842	M242B1	2643	-115.19725705	32.37030119	11	DESCANSO	0-30
542	842	M242B1	2697	-115.19725705	32.37030119	11	DESCANSO	30-60
243	843	M243B1	2644	-115.19833806	32.34727501	14	ALGODON	0-30
543	843	M243B1	2698	-115.19833806	32.34727501	14	DESCANSO	30-60
244	844	M244B1	2645	-115.20972613	32.35514930	8	DESCANSO	0-30
544	844	M244B1	2699	-115.20972613	32.35514930	8	ALGODON	30-60

ORD	ID MUESTRA		N Lab	LONGITUD_X	LATITUD_Y	ALTURA	CULTIVO	PROF
OND	10	MOLSTIA	IV LUD	201131135_X	LAIIIOD_I	ALIONA	COLINO	cm
245	845	M245B1	2646	-115.21111518	32.36908698	0	DESCANSO	0-30
545	845	M245B1	2700	-115.21111518	32.36908698	0	DESCANSO	30-60
246	846	M246B1	2647	-115.21133420	32.38456761	4	DESCANSO	0-30
546	846	M246B1	2701	-115.21133420	32.38456761	4	DESCANSO	30-60
247	847	M247B1	2648	-115.20196030	32.21144199	5	DESCANSO	0-30
547	847	M247B1	2702	-115.20196030	32.21144199	5	DESCANSO	30-60
248	848	M248B1	2649	-115.18513212	32.22234920	11	DESCANSO	0-30
548	848	M248B1	2703	-115.18513212	32.22234920	11	DESCANSO	30-60
249	849	M249B1	2650	-115.17069278	32.24358601	0	DESCANSO	0-30
549	849	M249B1	2704	-115.17069278	32.24358601	0	DESCANSO	30-60
250	850	M250B1	2651	-115.16884231	32.26817055	0	ALFALFA	0-30
550	850	M250B1	2705	-115.16884231	32.26817055	0	ALFALFA	30-60
251	851	M251B1	2652	-115.15111123	32.32233088	2	DESCANSO	0-30
551	851	M251B1	2706	-115.15111123	32.32233088	2	DESCANSO	30-60
252	852	M252B1	2653	-115.16178961	32.41184559	0	RAY GRASS	0-30
552	852	M252B1	2707	-115.16178961	32.41184559	0	RAY GRASS	30-60
253	853	M253B1	2654	-115.16998460	32.40357692	10	DESCANSO	0-30
553	853	M253B1	2708	-115.16998460	32.40357692	10	DESCANSO	30-60
254	854	M254B1	2655	-115.14977264	32.41077740	8	DESCANSO	0-30
554	854	M254B1	2709	-115.14977264	32.41077740	8	DESCANSO	30-60
255	855	M255B1	2656	-115.10624751	32.41668027	7	ALFALFA	0-30
555	855	M255B1	2710	-115.10624751	32.41668027	7	ALFALFA	30-60
256	860	M256B1	2657	-115.17124473	32.42933200	0	DESCANSO	0-30
556	860	M256B1	2711	-115.17124473	32.42933200	0	DESCANSO	30-60
257	857	M257B1	2658	-115.16026821	32.43096781	10	DESCANSO	0-30
557	857	M257B1	2712	-115.16026821	32.43096781	10	DESCANSO	30-60
258	858	M258B1	2659	-115.08299377	32.40978112	3	ALFALFA	0-30
558	858	M258B1	2713	-115.08299377	32.40978112	3	ALFALFA	30-60
259	859	M259B1	2660	-115.13678128	32.41403662	5	DESCANSO	0-30
559	859	M259B1	2714	-115.13678128	32.41403662	5	DESCANSO	30-60

9.2. Textura, pH, CEe, PSI y CO₃²

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
1	8	8.8	53	0	21	24	55	Franco limosa
301	7.6	9.7	82	0	17	31	52	Franco arcillo limosa
260	8.5	1.4	42	0.6	27	13	60	Franco limosa
560	8	1.2	38	0	40	2	57	Franco limosa
2	8.1	5.6	70	0.3	15	24	61	Franco limosa
302	7.8	9.1	8	0	19	27	54	Franco limosa
261	8.2	3.7	42	0	17	13	70	Franco limosa
561	8	1.2	38	0	40	2	57	Franco limosa
3	8.3	3.7	69	0.4	23	32	45	Franco arcillosa
303	7.9	4.4	50	0	21	16	63	Franco limosa
262	8.3	2.3	46	0.3	25	11	64	Franco limosa
562	8.1	1.1	43	0	12	19	68	Franco limosa
4	8.2	11.8	65	0.3	13	32	55	Franco arcillo limosa
304	7.6	11.1	75	0	13	31	56	Franco arcillo limosa
263	8.3	1.6	41	0.2	23	13	64	Franco limosa
563	7.8	3.5	53	0	14	16	69	Franco limosa
5	8.1	15.1	65	0	11	33	56	Franco arcillo limosa
305	7.7	13.7	67	0	15	23	62	Franco limosa
264	8.1	2.6	39	0	39	8	53	Franco limosa
564	8.1	0.8	29	0	56	5	38	Franco arenosa
6	8.2	7.4	64	0.3	15	31	54	Franco arcillo limosa
306	7.8	8.1	75	0	13	33	54	Franco arcillo limosa
265	8.2	2.3	38	0.3	37	11	52	Franco limosa
565	8.1	2.1	36	0	42	6	51	Franco limosa
7	8.2	7.5	70	0.3	13	33	54	Franco arcillo limosa
307	7.9	3.8	62	0	13	26	61	Franco limosa
266	8.2	1.2	37	0.3	45	5	50	Franco arenosa
566	8.2	1.4	50	0.5	18	14	67	Franco limosa
8	8.1	6.7	72	0	13	33	54	Franco arcillo limosa
308	7.6	5.2	73	0	11	29	60	Franco arcillo limosa
267	8.1	8.1	40	0.3	27	12	61	Franco limosa
567	7.6	21.5	25	0	38	2	59	Franco limosa
9	8.1	8.2	64	0.1	13	29	58	Franco arcillo limosa
309	7.5	8.3	75	0	11	31	58	Franco arcillo limosa
268	8.2	8.3	44	0.2	37	10	53	Franco limosa
568	7.8	11.3	38	0	26	6	67	Franco limosa
10	8.2	8	63	0.6	15	31	54	Franco arcillo limosa
310	7.8	7.9	94	0	11	34	55	Franco arcillo limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
269	8.2	1.8	39	0.2	39	6	55	Franco limosa
569	8.2	2.2	42	0	28	11	60	Franco limosa
11	8	13.6	69	0	11	34	55	Franco arcillo limosa
311	7.7	17.6	75	0	13	30	57	Franco arcillo limosa
270	8.3	2.2	45	0.3	31	19	50	Franco limosa
570	8	2.5	33	0	80	0	19	Areno francosa
12	8.2	5.6	71	0	7	35	58	Franco arcillo limosa
312	7.7	5.9	75	0	11	31	58	Franco arcillo limosa
271	7.9	5.5	41	0	37	9	54	Franco limosa
571	7.9	4	48	0	14	12	73	Franco limosa
13	8.2	6.1	78	0.4	11	36	53	Franco arcillo limosa
313	7.8	9.5	76	0	19	32	49	Franco arcillo limosa
272	8.4	1	40	0.3	33	9	58	Franco limosa
572	8.2	3.1	53	0	16	13	70	Franco limosa
14	8	13.6	70	0	15	35	50	Franco arcillo limosa
314	8	9.1	96	0	13	35	52	Franco arcillo limosa
273	8.2	3.9	40	0	37	10	53	Franco limosa
573	8.8	6.5	45	0	42	13	44	Francosa
15	8.3	3.3	71	0.3	15	35	50	Franco arcillo limosa
315	7.9	4.7	62	0	25	11	64	Franco limosa
274	8.4	1.7	40	0.3	37	9	54	Franco limosa
574	8.5	1.1	37	0.8	34	12	53	Franco limosa
16	7.7	35.8	61	0	15	32	53	Franco arcillo limosa
316	7.5	25.9	65	0	17	27	56	Franco limosa
275	8.3	1.3	40	0	39	6	55	Franco limosa
575	8.1	8.6	50	0	18	15	66	Franco limosa
17	8.1	14.4	53	0.3	27	21	52	Franco limosa
317	7.6	15.5	80	0	17	31	52	Franco arcillo limosa
276	8.2	1.7	40	0.4	31	7	62	Franco limosa
576	8.3	1.1	40	0.8	24	5	70	Franco limosa
18	8.2	6.6	69	0.2	7	37	56	Franco arcillo limosa
318	7.9	8.1	84	0	13	31	56	Franco arcillo limosa
277	8.3	1.2	40	0.2	29	7	64	Franco limosa
577	8.2	5.6	41	0	30	6	63	Franco limosa
19	8.2	1.8	43	0	57	9	34	Franco arenosa
319	7.9	2.1	35	0	61	31	8	Franco arcillo arenosa
278	8.4	1.1	39	0.3	23	8	69	Franco limosa
578	8.4	1.2	44	0.9	20	8	71	Franco limosa
20	8	6.6	60	0.2	23	24	53	Franco limosa
320	8.1	1.9	59	0	19	18	63	Franco limosa
279	8.6	1	61	0.3	15	24	61	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
579	8.2	6.2	71	0.2	16	28	55	Franco arcillo limosa
21	8.1	5.2	69	0	11	36	53	Franco arcillo limosa
321	7.7	8.3	93	0	11	31	58	Franco arcillo limosa
280	8.6	1.4	68	0.4	13	15	72	Franco limosa
580	8	6	59	0	12	24	63	Franco limosa
22	8.2	2.1	71	0	15	36	49	Franco arcillo limosa
322	8	2.3	89	0	11	38	51	Franco arcillo limosa
281	8.3	1.4	40	0	23	5	72	Franco limosa
581	7.8	5	43	0	16	8	77	Franco limosa
23	8	15.2	44	0	13	29	58	Franco arcillo limosa
323	7.7	7.6	79	0	13	34	53	Franco arcillo limosa
282	8	2.9	38	0	23	6	71	Franco limosa
582	8	1.9	35	0	26	3	72	Franco limosa
24	7.9	8.3	70	0	11	31	58	Franco arcillo limosa
324	7.7	10.5	79	0	13	36	51	Franco arcillo limosa
283	8.2	2.5	40	0	27	5	68	Franco limosa
583	7.9	3.9	38	0	26	6	69	Franco limosa
25	8.1	4.2	63	0.4	17	15	68	Franco limosa
325	8	2.1	60	0	25	18	57	Franco limosa
284	8.3	5.1	58	0	15	21	64	Franco limosa
584	8	2.1	45	0	12	8	81	Limosa
26	8	11.7	75	0	21	34	45	Franco arcillosa
326	7.4	16.8	75	0	13	34	53	Franco arcillo limosa
285	8.2	2.9	43	0	19	12	69	Franco limosa
585	7.8	6.9	35	0	42	3	56	Franco limosa
27	8.2	4.4	58	0	11	29	60	Franco arcillo limosa
327	8	2.3	55	0	19	16	65	Franco limosa
286	8.1	1.2	40	0.1	27	7	66	Franco limosa
586	8.1	2.3	41	0	26	9	66	Franco limosa
28	8.1	4.5	50	0	13	19	68	Franco limosa
328	8	3.3	75	0	15	33	52	Franco arcillo limosa
287	8.3	1.1	44	0.4	23	11	66	Franco limosa
587	8.3	1.5	42	0.2	16	10	75	Franco limosa
29	8.1	5.8	64	0.3	13	32	55	Franco arcillo limosa
329	7.8	7.9	87	0	13	36	51	Franco arcillo limosa
288	7.8	3.7	42	0	15	9	76	Franco limosa
588	7.9	3.4	43	0	16	6	79	Franco limosa
30	8.2	3.7	50	0.3	9	36	55	Franco arcillo limosa
330	7.9	5.1	64	0	23	28	49	Franco arcillosa
289	8.1	0.9	38	0	23	9	68	Franco limosa
589	8.1	1.6	40	0	20	5	76	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
31	8.2	3.1	71	0	15	30	55	Franco arcillo limosa
331	7.9	5.2	59	0	37	21	42	Francosa
290	8.2	1.3	37	0	32	5	63	Franco limosa
590	8.2	0.8	35	0	30	8	63	Franco limosa
32	8	2.8	37	0	45	13	42	Francosa
332	7.6	12.2	81	0	11	34	55	Franco arcillo limosa
291	8.1	1.9	39	0	22	7	71	Franco limosa
591	8.3	1.1	35	0	62	2	37	Franco arenosa
33	8	1.8	40	0	41	7	52	Franco limosa
333	8	2.2	40	0	37	3	60	Franco limosa
292	8	3.4	41	0	18	11	71	Franco limosa
592	7.8	9.7	41	0	24	7	70	Franco limosa
34	8	5.8	67	0	11	31	58	Franco arcillo limosa
334	7.7	9	71	0	17	31	52	Franco arcillo limosa
293	7.9	8.7	47	0	22	10	68	Franco limosa
593	7.9	8.7	33	0	54	7	40	Franco arenosa
35	8	15.8	72	0	9	33	58	Franco arcillo limosa
335	7.4	9.3	96	0	11	37	52	Franco arcillo limosa
294	8	8.8	70	0	8	32	60	Franco arcillo limosa
594	8.1	9.1	68	0	14	31	56	Franco arcillo limosa
36	8.4	1.6	49	0.4	13	16	71	Franco limosa
336	7.7	4.4	57	0	17	16	67	Franco limosa
295	8	5.6	64	0	10	34	56	Franco arcillo limosa
595	8.2	9.2	63	0	10	28	63	Franco arcillo limosa
37	8.2	2.1	68	0	13	32	55	Franco arcillo limosa
337								
296	8	4.6	61	0	12	25	63	Franco limosa
596	8	7.6	60	0	10	17	74	Franco limosa
38	8.1	1.5	62	0	17	26	57	Franco limosa
338	7.8	1.3	44	0	27	14	59	Franco limosa
297	8.2	3.2	53	0	16	19	65	Franco limosa
597	8	14.3	65	0	26	7	68	Franco limosa
39	8.3	2.4	75	0.3	9	35	56	Franco arcillo limosa
339	7.7	7.1	71	0	17	33	50	Franco arcillo limosa
298	8.3	1.5	50	0.3	16	17	67	Franco limosa
598	8	7.7	45	0	16	13	72	Franco limosa
40	8.1	10.3	64	0.3	9	29	62	Franco arcillo limosa
340	7.8	9.6	83	0	13	35	52	Franco arcillo limosa
299	7.8	16.6	35	0	42	8	50	Francosa
599	8	17.8	45	0	28	11	62	Franco limosa
41	8.2	4	40	0	33	18	49	Francosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
341	7.8	1.4	7	0	25	15	60	Franco limosa
300	7.8	7.8	50	0	20	13	67	Franco limosa
600	7.8	8.8	40	0	28	6	67	Franco limosa
42	8.1	3.5	58	0	13	26	61	Franco limosa
342	7.9	1.8	42	0	25	9	66	Franco limosa
43	8.2	3.1	73	0.2	13	33	54	Franco arcillo limosa
343	7.7	4.7	71	0	25	24	51	Franco limosa
44	8.1	4.2	75	0	11	34	55	Franco arcillo limosa
344	7.6	3	78	0	15	37	48	Franco arcillo limosa
45	8.2	2.6	55	0.3	11	24	65	Franco limosa
345	7.8	2.7	56	0	15	20	65	Franco limosa
46	8.3	2.8	63	0.5	13	27	60	Franco arcillo limosa
346	7.6	6.7	73	0	17	31	52	Franco arcillo limosa
47	8.1	5.1	66	0	11	33	56	Franco arcillo limosa
347	7.7	6.1	77	0	17	34	49	Franco arcillo limosa
48	8.1	2.1	37	0	41	7	52	Franco limosa
348	8.1	2.6	41	0	29	6	65	Franco limosa
49	8.2	2.6	66	0.2	11	30	59	Franco arcillo limosa
349	7.8	4.5	86	0	13	29	58	Franco arcillo limosa
50	8.3	2.7	65	0	7	33	60	Franco arcillo limosa
350	7.9	3	54	0	31	20	49	Francosa
51	8.5	1.7	61	0.4	15	28	57	Franco arcillo limosa
351	7.9	4	72	0	19	29	52	Franco arcillo limosa
52	7.6	31.6	65	0	7	30	63	Franco arcillo limosa
352	7.8	3.9	39	0	33	7	60	Franco limosa
53	8.4	2.1	66	0.2	9	31	60	Franco arcillo limosa
353	7.8	5.9	65	0	17	27	56	Franco limosa
54	8.2	2.8	71	0	7	33	60	Franco arcillo limosa
354	7.6	7.4	83	0	11	33	56	Franco arcillo limosa
55	8	5.1	70	0	9	33	58	Franco arcillo limosa
355	7.6	9.5	76	0	11	34	55	Franco arcillo limosa
56	8.3	2.8	68	0	9	31	60	Franco arcillo limosa
356	7.6	6.7	74	0	13	35	52	Franco arcillo limosa
57	8.1	4.5	39	0	25	11	64	Franco limosa
357	8.3	1.1	45	0.2	35	5	60	Franco limosa
58	8.2	3.6	39	0	35	6	59	Franco limosa
358	8.1	2.4	43	0	27	7	66	Franco limosa
59	8	8.8	75	0	14	39	47	Franco arcillo limosa
359	7.6	10.3	62	0	11	38	51	Franco arcillo limosa
60	8	8.7	75	0	12	35	53	Franco arcillo limosa
360	7.8	7.5	89	0	13	36	51	Franco arcillo limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
61	8	4.1	71	0	12	38	50	Franco arcillo limosa
361	7.7	6.6	91	0	12	36	52	Franco arcillo limosa
62	8.1	7.5	70	0.3	16	35	49	Franco arcillo limosa
362	7.8	7.4	78	0	10	38	52	Franco arcillo limosa
63	8	5	67	0	14	29	57	Franco arcillo limosa
363	7.8	8.9	75	0	14	35	51	Franco arcillo limosa
64	7.9	4.6	77	0	12	37	51	Franco arcillo limosa
364	7.9	5.1	52	0	18	23	59	Franco limosa
65	8.3	1.7	65	0.2	10	32	58	Franco arcillo limosa
365	7.9	6	66	0	12	30	58	Franco arcillo limosa
66	8.2	1.6	59	0.3	16	28	56	Franco arcillo limosa
366	8.1	1.7	45	0	24	15	61	Franco limosa
67	8.2	3.4	58	0.4	10	25	65	Franco limosa
367	8.2	3.3	65	0	10	23	67	Franco limosa
68	7.9	7.3	53	0	14	24	62	Franco limosa
368	7.8	9.5	88	0	12	34	54	Franco arcillo limosa
69	8.2	4.4	68	0.2	16	24	60	Franco limosa
369	7.7	2.7	57	0	16	24	60	Franco limosa
70	8	6.2	72	0.3	8	35	57	Franco arcillo limosa
370	7.7	8	80	0	12	34	54	Franco arcillo limosa
71	7.9	7.4	73	0	12	35	53	Franco arcillo limosa
371	7.8	9.8	76	0	12	36	52	Franco arcillo limosa
72	8.4	1.2	71	0.4	10	25	65	Franco limosa
372	7.8	10.6	79	0	12	35	53	Franco arcillo limosa
73	8.1	6.1	67	0.3	14	33	53	Franco arcillo limosa
373	8	3.2	44	0	20	11	69	Franco limosa
74	8.1	5	50	0.3	12	18	70	Franco limosa
374	7.8	1.4	51	0	12	13	75	Franco limosa
75	8.4	1	43	0.2	26	18	56	Franco limosa
375	8.1	2.3	48	0	18	13	69	Franco limosa
76	8	3.5	39	0	28	8	64	Franco limosa
376	8.2	2	39	0.2	32	5	63	Franco limosa
77	8	8.5	50	0.3	16	29	55	Franco arcillo limosa
377	7.9	5.7	75	0	12	33	55	Franco arcillo limosa
78	8.3	2.7	64	0	16	30	54	Franco arcillo limosa
378	7.9	4.9	77	0	12	32	56	Franco arcillo limosa
79	8.3	2.3	66	0.3	12	30	58	Franco arcillo limosa
379	7.8	4.2	60	0	10	27	63	Franco arcillo limosa
80	8.1	3.1	43	0.3	28	11	61	Franco limosa
380	7.9	2.9	44	0	28	7	65	Franco limosa
81	8.2	3.4	50	0.3	12	23	65	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
381	8.1	3.2	47	0	12	11	77	Franco limosa
82	8	2.1	71	0	12	23	65	Franco limosa
382	7.9	4.3	49	0	18	14	68	Franco limosa
83	7.9	6.2	68	0	10	35	55	Franco arcillo limosa
383	7.9	4.9	67	0	12	31	57	Franco arcillo limosa
84	8.2	3.7	46	0.4	20	18	62	Franco limosa
384	7.9	3	45	0	38	12	50	Franco limosa
85	8.5	2.2	45	0.3	28	15	57	Franco limosa
385	8.1	1.6	40	0	30	11	59	Franco limosa
86	8.2	4	70	0.3	14	28	58	Franco arcillo limosa
386	7.8	5	69	0	14	31	55	Franco arcillo limosa
87	8.2	6	70	0.3	14	30	56	Franco arcillo limosa
387	7.8	8.5	70	0	12	32	56	Franco arcillo limosa
88	8.1	3.4	47	0	16	17	67	Franco limosa
388	7.9	1.9	58	0	8	24	68	Franco limosa
89	8.2	4.2	71	0.3	10	31	59	Franco arcillo limosa
389	7.8	3.3	69	0	12	28	60	Franco arcillo limosa
90	8.1	3.2	42	0.3	30	7	63	Franco limosa
390	7.7	6.4	74	0	13	32	54	Franco arcillo limosa
91	8.1	3.6	46	0.2	16	17	67	Franco limosa
391	7.9	1.8	34	0	45	2	52	Franco limosa
92	8.3	2.9	44	0.3	22	13	65	Franco limosa
392	8	1.5	58	0	13	25	61	Franco limosa
93	8.3	2.1	50	0	16	21	63	Franco limosa
393	7.6	4.8	53	0	13	16	70	Franco limosa
94	8.6	1.5	75	1	14	30	56	Franco arcillo limosa
394	8.2	1.6	70	0.2	15	27	57	Franco arcillo limosa
95	8.1	5.3	48	0	26	10	64	Franco limosa
395	8	5.6	53	0	19	16	64	Franco limosa
96	8.4	1.7	53	0.3	14	24	62	Franco limosa
396	7.7	3.4	55	0	11	22	66	Franco limosa
97	8.4	1.4	66	0	12	31	57	Franco arcillo limosa
397	7.9	2.1	96	0	13	32	54	Franco arcillo limosa
98	8.3	1.6	60	0.3	14	29	57	Franco arcillo limosa
398	7.9	4.2	56	0	11	22	66	Franco limosa
99	8.4	1.9	55	0.5	34	23	43	Francosa
399	8.1	0.9	43	0	57	15	27	Franco arenosa
100	8.3	2.3	48	0	24	20	56	Franco limosa
400	7.9	2.7	44	0	17	17	65	Franco limosa
101	8.4	2.1	71	0.3	12	34	54	Franco arcillo limosa
401	7.9	5.1	78	0	15	32	52	Franco arcillo limosa

ORD	pН	CE	PS	CO ₃ ²	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
102 402	8.2	3.5	57	0	26	28	46	Franco arcillosa
103	8.4	2.2	66	0.4	14	31	55	Franco arcillo limosa
403		_						
104	8.3	4	66	0.3	18	32	50	Franco arcillo limosa
404	7.9	2.9	50	0	27	17	55	Franco limosa
105	8.2	5	68	0	14	33	53	Franco arcillo limosa
405								
106	8.2	5.4	73	0	10	36	54	Franco arcillo limosa
406								
107	8.4	1.5	53	0.3	18	29	53	Franco arcillo limosa
407	8.1	1	36	0	43	3	53	Franco limosa
108	8.3	2.6	55	0.3	22	25	53	Franco limosa
408	7.9	2.7	37	0	45	7	47	Francosa
109	8.3	1.5	44	0	26	10	64	Franco limosa
409	8	1.5	45	0	17	15	67	Franco limosa
110	8.1	2.2	43	0	22	13	65	Franco limosa
410								
111	8.2	1.4	44	0.5	30	10	60	Franco limosa
411	8	1.4	40	0	29	7	63	Franco limosa
112	8.3	1.4	43	0	18	16	66	Franco limosa
412	7.8	3.3	50	0	13	19	67	Franco limosa
113	8.3	0.9	41	0.4	40	6	54	Franco limosa
413	7.8	5.8	37	0	31	5	63	Franco limosa
114	8.3	1.5	39	0.3	30	12	58	Franco limosa
414	8.2	2.1	46	0.3	25	10	64	Franco limosa
115	8.2	3.9	63	0	10	31	59	Franco arcillo limosa
415	8	2.7	55	0	13	30	56	Franco arcillo limosa
116	8.4	0.9	35	0.3	48	9	43	Francosa
416	8.1	0.8	36	0	43	5	51	Franco limosa
117	8.2	1.8	50	0	22	21	57	Franco limosa
417	8	1.2	55	0	15	23	61	Franco limosa
118	8.4	1.6	75	0.3	10	37	53	Franco arcillo limosa
418	7.9	1.6	93	0	19	33	47	Franco arcillo limosa
119	8.2	3.9	62	0	2	35	63	Franco arcillo limosa
419	8.2	1.2	50	0	21	18	60	Franco limosa
120	8.1	3.9	66	0.2	16	36	48	Franco arcillo limosa
420	8	6.6	75	0	15	36	48	Franco arcillo limosa
121	8.3	3.3	69	0	10	36	54	Franco arcillo limosa
421	7.9	6	71	0	13	37	49	Franco arcillo limosa
122	8.3	2.4	46	0	30	22	48	Francosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
422	7.8	8.6	42	0	27	5	67	Franco limosa
123	8.1	9.3	50	0.2	24	27	49	Franco arcillosa
423	8	2.7	90	0	18	31	50	Franco arcillo limosa
124	8.2	2.2	64	0	14	34	52	Franco arcillo limosa
424	7.9	8.2	75	0	12	38	49	Franco arcillo limosa
125	8.2	3.6	68	0.3	14	32	54	Franco arcillo limosa
425	7.9	6.7	69	0	18	31	50	Franco arcillo limosa
126	8	9.8	68	0	16	33	51	Franco arcillo limosa
426	8	1.8	70	0	14	38	47	Franco arcillo limosa
127	8.2	1.8	65	0	18	24	58	Franco limosa
427	7.7	5.2	57	0	18	25	56	Franco limosa
128	8.4	2.3	70	0.3	14	33	53	Franco arcillo limosa
428	8.1	1.4	58	0	30	25	44	Francosa
129	8.1	7.4	70	0	12	36	52	Franco arcillo limosa
429	7.9	9.5	98	0	14	37	48	Franco arcillo limosa
130	8.3	2.8	47	0.2	22	23	55	Franco limosa
430	7.7	11.1	69	0	18	29	52	Franco arcillo limosa
131	8.2	3.2	63	0	14	32	54	Franco arcillo limosa
431	7.9	3.7	41	0	30	5	64	Franco limosa
132	8.4	0.9	41	0.3	38	9	53	Franco limosa
432	8.1	1.6	39	0	26	6	67	Franco limosa
133	8.2	2.5	41	0.4	32	9	59	Franco limosa
433	8.2	1.6	41	0	28	8	63	Franco limosa
134	8.3	1.6	50	0	13	22	64	Franco limosa
434	8.1	3.1	57	0	14	24	61	Franco limosa
135	8.1	8.2	67	0	11	35	54	Franco arcillo limosa
435	7.9	7.4	78	0	12	38	49	Franco arcillo limosa
136	8	8.9	69	0	13	34	53	Franco arcillo limosa
436	7.8	16.4	75	0	12	31	56	Franco arcillo limosa
137	8	5.1	63	0	11	34	55	Franco arcillo limosa
437	7.7	7.9	75	0	12	35	52	Franco arcillo limosa
138	7.9	5.4	61	0	11	34	55	Franco arcillo limosa
438	7.7	10.2	75	0	8	37	54	Franco arcillo limosa
139	8	9.1	70	0	13	34	53	Franco arcillo limosa
439	7.9	10	75	0	12	38	49	Franco arcillo limosa
140	8	6.8	63	0	13	34	53	Franco arcillo limosa
440	8.8	4.6	75	0	14	38	47	Franco arcillo limosa
141	8	8.4	73	0	15	34	51	Franco arcillo limosa
441	8.1	5.2	72	0	20	28	51	Franco arcillosa
142	8	6.9	73	0	9	38	53	Franco arcillo limosa
442	8.1	5.1	76	0	12	38	49	Franco arcillo limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
143	8	7.1	66	0	13	34	53	Franco arcillo limosa
443	8	13.3	75	0	12	38	49	Franco arcillo limosa
144	8.2	4.8	61	3.4	17	26	57	Franco limosa
444	8.1	8.4	53	0	16	33	50	Franco arcillo limosa
145	8.1	5.5	58	0	17	28	55	Franco arcillo limosa
445	8.1	7.8	75	0	20	30	49	Franco arcillosa
146	7.8	11.5	73	0	9	37	54	Franco arcillo limosa
446	8	10	83	0	12	39	48	Franco arcillo limosa
147	8	10.9	66	0	19	32	49	Franco arcillo limosa
447	8	8.1	85	0	14	34	51	Franco arcillo limosa
148	7.8	15.2	65	0	17	34	49	Franco arcillo limosa
448	8	8.9	82	0	12	35	52	Franco arcillo limosa
149	7.9	9.1	73	0	9	38	53	Franco arcillo limosa
449	7.9	9.1	88	0	12	31	56	Franco arcillo limosa
150	8	9	71	0	29	30	41	Franco arcillosa
450	7.9	11.4	81	0	18	33	48	Franco arcillo limosa
151	8.2	5.2	60	0.3	11	31	58	Franco arcillo limosa
451	8	7.2	80	0	16	30	53	Franco arcillo limosa
152	8.1	11.3	70	0.3	13	34	53	Franco arcillo limosa
452	7.7	16.1	86	0	14	38	47	Franco arcillo limosa
153	8.4	3.6	55	0.3	13	25	62	Franco limosa
453	7.9	12.8	77	0	15	32	53	Franco arcillo limosa
154	8.2	5.4	73	0.3	13	35	52	Franco arcillo limosa
454	8.1	1.9	63	0	17	13	70	Franco limosa
155	8.3	1	44	0.4	33	9	58	Franco limosa
455	8.3	0.7	35	0.4	49	2	49	Franco arenosa
156	8.3	1.3	41	0.4	31	10	59	Franco limosa
456	8.3	0.5	37	0.4	65	0	35	Franco arenosa
157	8.5	1.4	42	0.3	33	16	51	Franco limosa
457	8.1	2.3	39	0	47	5	48	Franco arenosa
158	8	22.2	41	0	33	8	59	Franco limosa
458	8.2	1.3	35	0.3	69	1	30	Franco arenosa
159	8.4	3.1	49	0.3	19	21	60	Franco limosa
459	8.1	3.3	54	0	17	21	62	Franco limosa
160	8	9.7	44	0.3	29	9	62	Franco limosa
460	7.9	10.9	38	0	35	5	60	Franco limosa
161	8.1	2.4	52	0	16	22	61	Franco limosa
461	8.1	4.5	65	0	11	30	59	Franco arcillo limosa
162	8.2	1.2	42	0.2	22	12	65	Franco limosa
462	8.3	1.3	46	0.6	21	13	66	Franco limosa
163	8.3	1.1	37	0	42	5	52	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
463	8.4	1.2	38	0.7	27	5	68	Franco limosa
164	8.2	3	50	0	24	18	57	Franco limosa
464	7.9	8.5	66	0	17	26	57	Franco limosa
165	8.2	6.7	70	0	16	32	51	Franco arcillo limosa
465	8	9.1	82	0	13	31	56	Franco arcillo limosa
166	8.2	4.2	65	0	12	31	56	Franco arcillo limosa
466	7.9	10.4	75	0	11	35	54	Franco arcillo limosa
167	8.5	1.4	70	0.3	14	35	50	Franco arcillo limosa
467	8.3	2.2	77	0.6	11	36	53	Franco arcillo limosa
168	8.1	3.6	43	0	30	12	57	Franco limosa
468	7.9	8.1	42	0	37	5	58	Franco limosa
169	8.1	6.1	42	0	36	11	52	Franco limosa
469	8.1	8.2	75	0	29	10	61	Franco limosa
170	8.3	2	46	0	36	13	50	Franco limosa
470	8.1	7.9	42	0	25	7	68	Franco limosa
171	8	4.5	47	0	24	18	57	Franco limosa
471	8	7.5	31	0	61	5	34	Franco arenosa
172	8	3	67	0	10	32	57	Franco arcillo limosa
472								
173	8.2	4.3	44	0	30	19	50	Franco limosa
473	8	4.8	68	0	11	28	61	Franco arcillo limosa
174	8.2	3.9	65	0	22	29	48	Franco arcillosa
474	8.1	8	72	0	11	35	54	Franco arcillo limosa
175	8.1	5.5	65	0	10	34	55	Franco arcillo limosa
475	8.1	9.3	78	0	11	36	53	Franco arcillo limosa
176	8.1	3.7	66	0	10	34	55	Franco arcillo limosa
476	8.2	5.5	52	0	13	31	56	Franco arcillo limosa
177	7.8	7	71	0	18	33	48	Franco arcillo limosa
477	8	6.2	77	0	13	36	51	Franco arcillo limosa
178	8	4.5	71	0	12	37	50	Franco arcillo limosa
478	8.1	6.9	70	0	11	37	52	Franco arcillo limosa
179	7.9	2.8	68	0	14	35	50	Franco arcillo limosa
479	8.3	2.4	53	0.7	27	19	54	Franco limosa
180	7.8	7.2	70	0	10	35	54	Franco arcillo limosa
480	8.1	8.8	73	0	11	37	52	Franco arcillo limosa
181	8.3	2.7	49	0	18	19	62	Franco limosa
481	8.2	3.8	51	0	21	19	60	Franco limosa
182	8.1	5.3	65	0	14	31	54	Franco arcillo limosa
482	8.1	3.5	50	0	17	13	70	Franco limosa
183	8.1	4.5	69	0	14	33	52	Franco arcillo limosa
483								

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
184	7.7	36.9	63	0	10	37	52	Franco arcillo limosa
484	8.1	13.2	75	0	9	33	58	Franco arcillo limosa
185	7.9	10.7	73	0	12	37	50	Franco arcillo limosa
485	8.1	7.9	79	0	15	37	48	Franco arcillo limosa
186	7.9	11	67	0	18	34	47	Franco arcillo limosa
486	7.8	18.6	73	0	11	39	50	Franco arcillo limosa
187	8	10.1	70	0	12	37	50	Franco arcillo limosa
487	8	8.5	81	0	13	35	52	Franco arcillo limosa
188	8	9.4	66	0	17	32	52	Franco arcillo limosa
488	8.1	4.3	66	0	21	27	52	Franco arcillosa
189	8.1	3.9	68	0	17	33	51	Franco arcillo limosa
489	8.1	6.9	75	0	15	32	53	Franco arcillo limosa
190	8	6	61	0	21	28	52	Franco arcillosa
490								
191	8	6	75	0	21	33	47	Franco arcillosa
491	8.1	8	68	0	9	35	56	Franco arcillo limosa
192	8.2	2.7	63	0	27	30	44	Franco arcillosa
492								
193	8.2	1.6	69	0	23	32	46	Franco arcillosa
493								
194	8	4.7	50	0	17	26	58	Franco limosa
494	7.7	25.3	62	0	17	23	60	Franco limosa
195	8	2.9	45	0	21	24	56	Franco limosa
495	8.1	1.5	34	0	67	4	29	Franco arenosa
196	8.1	2.2	70	0	17	35	49	Franco arcillo limosa
496	8	6.4	80	0	11	33	56	Franco arcillo limosa
197	8.1	2.1	63	0	15	31	55	Franco arcillo limosa
497	8	4.9	58	0	9	22	69	Franco limosa
198	8.1	3.1	67	0	15	32	54	Franco arcillo limosa
498	8.1	5.4	53	0	15	16	69	Franco limosa
199	8	3.7	57	0	15	28	58	Franco arcillo limosa
499	8	2.4	35	0	19	6	75	Franco limosa
200	8	5.4	54	0	21	29	51	Franco arcillosa
500	8	8.6	85	0	11	36	53	Franco arcillo limosa
201	8.3	1.8	64	0	17	28	56	Franco arcillo limosa
501	8	5.6	78	0	9	33	58	Franco arcillo limosa
202	8.3	1.6	67	0	15	30	56	Franco arcillo limosa
502	8.1	5	85	0	11	38	51	Franco arcillo limosa
203	8.1	5	56	0	13	28	60	Franco arcillo limosa
503	7.9	11.2	77	0	9	33	58	Franco arcillo limosa
204	8	5.6	67	0	13	37	51	Franco arcillo limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
504	8	7.4	84	0	9	38	53	Franco arcillo limosa
205	7.8	7.5	68	0	15	37	49	Franco arcillo limosa
505	8.1	3.3	80	0	9	40	51	Franco arcillo limosa
206	8	7.2	67	0	15	35	51	Franco arcillo limosa
506	8	9.5	82	0	9	39	52	Franco arcillo limosa
207	8.1	3.7	75	0	13	35	53	Franco arcillo limosa
507	7.8	8.1	84	0	9	39	52	Franco arcillo limosa
208	8	6.1	67	0	17	32	52	Franco arcillo limosa
508	8.1	6.5	55	0	9	34	57	Franco arcillo limosa
209	8.2	2.4	60	0	11	23	67	Franco limosa
509	8	6.1	77	0	9	33	58	Franco arcillo limosa
210	8	11.8	53	0	23	20	58	Franco limosa
510	8	3.9	35	0	49	5	46	Franco arenosa
211	8.2	2.7	58	0	13	27	61	Franco limosa
511	8.1	3	67	0	7	29	64	Franco arcillo limosa
212	8	13.3	45	0	31	9	61	Franco limosa
512					7	29	64	Franco arcillo limosa
213	8	12.1	43	0	33	8	60	Franco limosa
513	7.9	6.3	73	0	10	27	63	Franco limosa
214	7.8	4.9	47	0	11	30	60	Franco arcillo limosa
514	7.9	9.1	48	0	22	16	62	Franco limosa
215	8	3.8	40	0	35	4	62	Franco limosa
515	8	16.5	41	0	28	7	65	Franco limosa
216	8	7.4	37	0	39	5	57	Franco limosa
516	8	7.6	40	0	16	25	59	Franco limosa
217	7.8	9.1	64	0	33	30	38	Franco arcillosa
517								
218	7.9	6.1	59	0	33	25	43	Francosa
518	7.8	10.3	65	0	32	7	61	Franco limosa
219	8.1	55	40	0	35	8	58	Franco limosa
519	8	3.5	40	0	36	6	58	Franco limosa
220	8	4	48	0	31	9	61	Franco limosa
520	7.9	4.4	35	0	36	5	59	Franco limosa
221	8.3	1.3	40	0.3	27	6	68	Franco limosa
521								
222	8	7.8	35	0	31	6	64	Franco limosa
522	8	4.4	43	0	20	7	73	Franco limosa
223	7.9	19.5	41	0	33	7	61	Franco limosa
523	8	6.8	45	0	22	10	68	Franco limosa
224	8.4	1	41	0.5	39	7	54	Franco limosa
524	8.2	1.4	35	0	22	6	72	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
225	8	12.1	47	0	25	13	62	Franco limosa
525	8	34.1	38	0	34	8	58	Franco limosa
226	8.2	3.1	53	0	15	30	55	Franco arcillo limosa
526	8.1	1.6	35	0	66	2	32	Franco arenosa
227	8	6.8	46	0	33	9	58	Franco limosa
527	7.8	18.4	38	0	30	5	65	Franco limosa
228	7.9	7.4	47	0	27	7	66	Franco limosa
528	7.9	7.6	40	0	26	5	69	Franco limosa
229	8	7.2	51	0	21	18	61	Franco limosa
529	8.1	6.5	75	0	12	29	59	Franco arcillo limosa
230	8	10.7	42	0	31	6	63	Franco limosa
530	7.9	16.4	58	0	16	15	69	Franco limosa
231	8.2	2.6	43	0.3	29	5	66	Franco limosa
531	7.9	13.7	40	0	22	13	66	Franco limosa
232	8.2	1	38	0	33	5	62	Franco limosa
532	8	10.2	44	0	14	10	77	Franco limosa
233	8.2	0.9	39	0	23	4	73	Franco limosa
533	8	21.3	38	0	22	8	71	Franco limosa
234	8.3	2.3	45	0.2	21	7	72	Franco limosa
534	7.9	17.2	58	0	16	20	65	Franco limosa
235	8.3	2.4	50	0.2	15	14	71	Franco limosa
535	7.9	13.3	43	0	20	8	73	Franco limosa
236	8	9.8	43	0	33	6	61	Franco limosa
536	8.3	2.9	75	0.3	8	17	76	Franco limosa
237	8	4.4	41	0	33	6	61	Franco limosa
537	8.3	1.2	58	0	18	21	62	Franco limosa
238	7.8	18.6	53	0	21	19	60	Franco limosa
538	8	3.4	42	0	20	13	68	Franco limosa
239	7.9	15.8	45	0	23	8	69	Franco limosa
539	8.3	1.9	73	0.2	14	31	56	Franco arcillo limosa
240	8.2	2.2	64	0	17	21	62	Franco limosa
540	8	10.7	50	0	10	9	82	Limosa
241	7.9	11.8	46	0	23	9	68	Franco limosa
541	7.8	40.5	42	0	18	7	76	Franco limosa
242	8	10.7	48	0	23	14	63	Franco limosa
542	8	4.2	38	0	30	6	65	Franco limosa
243	7.9	8.3	46	0	21	9	70	Franco limosa
543	8	10.1	67	0	14	21	66	Franco limosa
244	8	7.5	42	0	25	9	66	Franco limosa
544	8.1	4.5	40	0	24	6	71	Franco limosa
245	7.9	18.3	58	0	21	16	63	Franco limosa

ORD	рН	CE	PS	CO ₃ ²⁻	Arena	Arcilla	Limo	Textura
		dS m ⁻¹		me L ⁻¹	%	%	%	
545	7.9	4.9	38	0	38	8	55	Franco limosa
246	7.8	23	42	0	23	8	69	Franco limosa
546	8	13.6	54	0	26	17	58	Franco limosa
247	8.1	3	64	0	15	29	56	Franco arcillo limosa
547	8	4.5	41	0	28	10	63	Franco limosa
248	8.3	1.4	63	0	15	29	56	Franco arcillo limosa
548	8.3	1.5	33	0.6	32	6	63	Franco limosa
249	8.2	2	61	0	17	25	58	Franco limosa
549	8	3.4	42	0	20	13	68	Franco limosa
250	8.4	1.2	48	0	23	17	60	Franco limosa
550	8.3	1.9	73	0.2	14	31	56	Franco arcillo limosa
251	8	4.2	48	0	13	11	76	Franco limosa
551	8	10.7	50	0	10	9	82	Limosa
252	8	25.8	39	0	27	6	67	Franco limosa
552	7.8	40.5	42	0	18	7	76	Franco limosa
253	7.9	7	41	0	29	6	65	Franco limosa
553	8	4.2	38	0	30	6	65	Franco limosa
254	7.9	8.6	46	0	29	14	57	Franco limosa
554	8	10.1	67	0	14	21	66	Franco limosa
255	8.3	1.6	41	0	27	5	68	Franco limosa
555	8.1	4.5	40	0	24	6	71	Franco limosa
256	8.3	2.9	50	0.3	27	13	60	Franco limosa
556	7.9	4.9	38	0	38	8	55	Franco limosa
257	7.9	23	58	0	17	22	61	Franco limosa
557	8	13.6	54	0	26	17	58	Franco limosa
258	8.1	1.8	43	0	29	9	62	Franco limosa
558	8	4.5	41	0	28	10	63	Franco limosa
259	7.9	9.6	39	0	31	6	63	Franco limosa
559	8.3	1.5	33	0.6	32	6	63	Franco limosa

9.3. Disminución del Rendimiento Potencial de cultivos

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
1	3	5	20	50	32	100	97
301	3	10	26	57	47	100	100
260	1	0	0	0	0	2	1
560	1	0	0	0	0	0	0
2	2	0	0	26	0	70	55
302	3	7	22	52	37	100	100
261	1	0	0	13	0	41	32
561	1	0	0	0	0	0	0
3	1	0	0	13	0	41	32
303	2	0	0	18	0	52	40
262	1	0	0	2	0	17	12
562	1	0	0	0	0	0	0
4	3	21	41	72	81	100	100
304	3	18	37	67	70	100	100
263	1	0	0	0	0	6	4
563	1	0	0	11	0	37	28
5	4	38	65	96	100	100	100
305	4	31	55	86	100	100	100
264	1	0	0	4	0	22	17
564	1	0	0	0	0	0	0
6	2	0	10	39	9	99	79
306	3	2	15	45	21	100	89
265	1	0	0	2	0	18	13
565	1	0	0	1	0	15	11
7	2	0	10	40	11	100	80
307	1	0	0	13	0	42	33
266	1	0	0	0	0	0	0
566	1	0	0	0	0	3	1
8	2	0	5	35	0	89	70
308	2	0	0	23	0	64	50
267	3	2	15	45	22	100	89
567	5	71	100	100	100	100	100
9	3	2	16	46	23	100	90
309	3	3	16	46	24	100	91
268	3	3	16	46	24	100	91
568	3	18	38	68	72	100	100
10	3	1	14	44	19	100	87
310	2	0	13	43	17	100	85

ORD	FAO		Disn	ninución d <u>e</u>	l Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
269	1	0	0	0	0	9	6
569	1	0	0	2	0	17	12
11	4	30	54	85	100	100	100
311	4	51	83	100	100	100	100
270	1	0	0	1	0	16	12
570	1	0	0	3	0	21	15
12	2	0	0	26	0	70	56
312	2	0	0	29	0	76	60
271	2	0	0	26	0	70	55
571	2	0	0	14	0	45	35
13	2	0	0	30	0	78	62
313	3	9	25	55	43	100	100
272	1	0	0	0	0	0	0
572	1	0	0	8	0	31	24
14	4	31	54	86	100	100	100
314	3	7	22	52	38	100	100
273	1	0	0	14	0	44	34
573	2	0	3	33	0	85	67
15	3	0	0	9	0	33	26
315	2	0	0	20	0	57	45
274	1	0	0	0	0	8	5
574	1	0	0	0	0	0	0
16	6	100	100	100	100	100	100
316	5	95	100	100	100	100	100
275	1	0	0	0	0	1	0
575	3	4	18	48	29	100	95
17	4	35	60	92	100	100	100
317	4	40	68	99	100	100	100
276	1	0	0	0	0	8	5
576	1	0	0	0	0	0	0
18	2	0	4	34	0	87	69
318	3	2	15	45	20	100	88
277	1	0	0	0	0	0	0
577	2	0	0	27	0	71	56
19	1	0	0	0	0	10	7
319	1	0	0	0	0	14	10
278	1	0	0	0	0	0	0
578	1	0	0	0	0	0	0

ORD	FAO		Disn	ninuci <u>ón de</u> l	l Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
20	2	0	4	34	0	87	69
320	1	0	0	0	0	12	8
279	1	0	0	0	0	0	0
579	2	0	1	30	0	80	63
21	2	0	0	23	0	64	50
321	3	3	16	46	24	100	91
280	1	0	0	0	0	3	1
580	2	0	0	29	0	77	61
22	1	0	0	0	0	14	10
322	1	0	0	2	0	18	13
281	1	0	0	0	0	3	1
581	2	0	0	22	0	61	48
23	4	39	66	97	100	100	100
323	2	0	12	41	13	100	82
282	1	0	0	6	0	27	20
582	1	0	0	0	0	11	8
24	3	3	17	46	24	100	91
324	3	14	32	62	59	100	100
283	1	0	0	4	0	21	16
583	1	0	0	14	0	43	34
25	2	0	0	16	0	49	38
325	1	0	0	1	0	15	11
284	2	0	0	22	0	62	49
584	1	0	0	1	0	14	10
26	3	21	41	71	79	100	100
326	4	47	77	100	100	100	100
285	1	0	0	6	0	27	21
585	2	0	7	36	2	92	73
27	3	0	0	18	0	52	41
327	1	0	0	2	0	18	13
286	1	0	0	0	0	0	0
586	1	0	0	2	0	17	13
28	2	0	0	18	0	52	41
328	1	0	0	9	0	34	26
287	1	0	0	0	0	0	0
587	1	0	0	0	0	4	2
29	2	0	0	28	0	74 100	59 86
329	2	1	14	43	18	100	86

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
288	1	0	0	12	0	40	31
588	1	0	0	10	0	35	27
30	1	0	0	13	0	41	32
330	2	0	0	22	0	62	49
289	1	0	0	0	0	0	0
589	1	0	0	0	0	7	5
31	1	0	0	8	0	30	23
331	2	0	0	24	0	65	51
290	1	0	0	0	0	2	1
590	1	0	0	0	0	0	0
32	1	0	0	6	0	25	19
332	4	23	44	75	87	100	100
291	1	0	0	0	0	12	8
591	1	0	0	0	0	0	0
33	1	0	0	0	0	9	6
333	1	0	0	2	0	17	12
292	1	0	0	10	0	36	28
592	3	10	26	57	47	100	100
34	2	0	0	28	0	74	58
334	3	7	22	52	36	100	100
293	3	5	19	49	30	100	96
593	3	5	19	49	30	100	96
35	4	42	70	100	100	100	100
335	3	8	23	53	40	100	100
294	3	5	20	50	32	100	98
594	3	7	22	52	37	100	100
36	1	0	0	0	0	6	3
336	2	0	0	18	0	52	41
295	2	0	0	26	0	70	56
595	3	7	23	53	38	100	100
37	1	0	0	1	0	14	10
337		_			_		
296	2	0	0	19	0	55	43
596	2	0	11	41	12	100	82
38	1	0	0	0	0	5	3
338	1	0	0	0	0	2	0
297	1	0	0	9	0	33	25
597	4	34	59	90	100	100	100

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
39	1	0	0	3	0	19	14
339	2	0	8	38	5	95	76
298	1	0	0	0	0	6	3
598	2	0	12	42	15	100	84
40	3	13	31	61	56	100	100
340	3	9	26	56	45	100	100
299	4	46	75	100	100	100	100
599	4	52	84	100	100	100	100
41	2	0	0	15	0	45	35
341	1	0	0	0	0	3	2
300	2	0	13	43	16	100	85
600	3	5	20	50	32	100	97
42	1	0	0	11	0	37	29
342	1	0	0	0	0	10	7
43	1	0	0	8	0	31	24
343	2	0	0	20	0	56	44
44	2	0	0	16	0	47	37
344	1	0	0	7	0	28	22
45	1	0	0	4	0	22	17
345	1	0	0	5	0	24	18
46	1	0	0	6	0	25	19
346	2	0	5	35	0	89	71
47	2	0	0	22	0	62	49
347	2	0	1	30	0	79	62
48	1	0	0	0	0	14	10
348	1	0	0	4	0	22	16
49	1	0	0	5	0	23	17
349	2	0	0	18	0	53	41
50	1	0	0	5	0	25	19
350	1	0	0	7	0	29	23
51	1	0	0	0	0	8	5
351	2	0	0	15	0	45	35
52	6	100	100	100	100	100	100
352	1	0	0	14	0	43	34
53	1	0	0	1	0	15	11
353	2	0	0	28	0	75	60
54	1	0	0	6	0	25	19
354	2	0	10	39	9	99	79

ORD	FAO		Disn	ninución del	l Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
55	2	0	0	23	0	62	49
355	3	9	25	55	43	100	100
56	1	0	0	5	0	25	19
356	2	0	5	35	0	89	70
57	2	0	0	19	0	54	42
357	1	0	0	0	0	0	0
58	1	0	0	12	0	39	30
358	1	0	0	3	0	19	14
59	3	5	20	50	32	100	98
359	3	13	30	61	56	100	100
60	3	5	19	49	31	100	96
360	3	0	11	40	11	100	80
61	2	0	0	16	0	47	37
361	2	0	5	34	0	88	70
62	2	0	10	40	10	100	80
362	2	0	10	39	9	99	79
63	2	0	0	22	0	60	48
363	3	6	21	51	34	100	99
64	2	0	0	19	0	55	43
364	2	0	0	23	0	63	49
65	1	0	0	0	0	7	5
365	2	0	0	29	0	77	61
66	1	0	0	0	0	7	4
366	1	0	0	0	0	7	5
67	1	0	0	11	0	36	28
367	1	0	0	10	0	34	27
68	2	0	10	39	9	99	79
368	3	9	25	55	43	100	100
69	2	0	0	18	0	52	41
369	1	0	0	5	0	24	19
70	2	0	1	30	0	80	63
370	3	1	15	44	20	100	88
71	2	0	10	40	10	100	80
371	3	11	27	58	49	100	100
72	1	0	0	0	0	0	0
372	3	15	33	63	61	100	100
73	2	0	1	30	0	80	63
373	1	0	0	9	0	33	25

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
74	2	0	0	22	0	61	48
374	1	0	0	0	0	2	1
75	1	0	0	0	0	0	0
375	1	0	0	2	0	17	13
76	1	0	0	11	0	36	28
376	1	0	0	0	0	12	9
77	3	4	18	47	27	100	93
377	2	0	0	27	0	72	57
78	1	0	0	5	0	25	19
378	2	0	0	22	0	60	47
79	1	0	0	2	0	17	13
379	2	0	0	16	0	48	37
80	1	0	0	8	0	30	23
380	1	0	0	7	0	28	21
81	1	0	0	10	0	36	28
381	1	0	0	9	0	32	25
82	1	0	0	1	0	15	11
382	2	0	0	17	0	50	39
83	2	0	1	31	0	80	63
383	2	0	0	21	0	59	46
84	1	0	0	13	0	41	32
384	1	0	0	7	0	29	23
85	1	0	0	1	0	16	12
385	1	0	0	0	0	7	4
86	2	0	0	15	0	46	36
386	2	0	0	22	0	61	48
87	2	0	0	29	0	77	61
387	3	4	18	48	28	100	94
88	1	0	0	10	0	35	27
388	1	0	0	0	0	12	8
89	2	0	0	16	0	48	38
389	1	0	0	9	0	33	25
90	1	0	0	9	0	32	24
390	2	0	3	32	0	84	66
91	1	0	0	12	0	39	30
391	1	0	0	0	0	9	6
92	1	0	0	6	0	27	20
392	1	0	0	0	0	5	3

ORD	FAO		Disn	ninución de	l Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
93	1	0	0	1	0	15	11
393	2	0	0	20	0	57	45
94	1	0	0	0	0	4	2
394	1	0	0	0	0	6	4
95	2	0	0	24	0	66	52
395	2	0	0	27	0	72	56
96	1	0	0	0	0	7	5
396	1	0	0	10	0	35	27
97	1	0	0	0	0	4	2
397	1	0	0	1	0	15	11
98	1	0	0	0	0	6	4
398	2	0	0	16	0	48	38
99	1	0	0	0	0	11	7
399	1	0	0	0	0	0	0
100	1	0	0	2	0	18	13
400	1	0	0	5	0	24	18
101	1	0	0	1	0	15	11
401	2	0	0	22	0	62	49
102	1	0	0	11	0	37	29
402							
103	1	0	0	1	0	16	12
403		_	_		_		
104	2	0	0	14	0	44	35
404	1	0	0	6	0	27	21
105	2	0	0	22	0	62	49
405	_	•	0	25	0	60	- 4
106	2	0	0	25	0	68	54
406	1	0	0	0	0	4	2
107	1	0	0	0	0	4	2
407	1	0	0	0	0	0	0
108 408	1	0 0	0 0	4 5	0	22	17
109	1			0	0	24	18
409	1	0	0 0	0	0	5 4	3 2
110	1	0		1	0		2 11
410	1	0	0	1	0	16	11
111	1	0	0	0	0	3	1
411	1	0	0	0	0	3	1

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
112	1	0	0	0	0	3	1
412	1	0	0	9	0	33	26
113	1	0	0	0	0	0	0
413	2	0	0	28	0	74	58
114	1	0	0	0	0	4	2
414	1	0	0	1	0	15	11
115	1	0	0	14	0	44	34
415	1	0	0	5	0	24	18
116	1	0	0	0	0	0	0
416	1	0	0	0	0	0	0
117	1	0	0	0	0	10	7
417	1	0	0	0	0	1	0
118	1	0	0	0	0	6	4
418	1	0	0	0	0	6	3
119	1	0	0	14	0	44	34
419	1	0	0	0	0	1	0
120	1	0	0	14	0	44	34
420	2	0	4	34	0	87	69
121	1	0	0	10	0	34	27
421	2	0	0	29	0	77	61
122	1	0	0	3	0	20	15
422	3	4	19	49	29	100	95
123	3	8	24	54	41	100	100
423	1	0	0	5	0	24	18
124	1	0	0	2	0	17	12
424	3	2	15	45	22	100	89
125	1	0	0	12	0	39	30
425	2	0	5	34	0	88	70
126	3	10	27	57	48	100	100
426	1	0	0	0	0	10	7
127	1	0	0	0	0	9	6
427	2	0	0	23	0	64	50
128	1	0	0	2	0	18	13
428	1	0	0	0	0	3	2
129	2	0	10	39	9	99 100	79 100
429	3	9	25	55 6	44	100	100
130	1	0	0	6 6 7	0	26 100	19 100
430	3	18	37	67	70	100	100

ORD	FAO		Disn	ninución del	Rendimiento	(%)	
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
131	1	0	0	9	0	32	25
431	1	0	0	13	0	40	31
132	1	0	0	0	0	0	0
432	1	0	0	0	0	6	3
133	1	0	0	4	0	21	16
433	1	0	0	0	0	6	4
134	1	0	0	0	0	7	4
434	1	0	0	8	0	31	24
135	3	2	16	46	23	100	90
435	2	0	10	40	10	100	80
136	3	6	21	51	34	100	99
436	4	45	74	100	100	100	100
137	2	0	0	23	0	63	50
437	2	1	14	43	18	100	86
138	2	0	0	25	0	68	53
438	3	13	30	60	54	100	100
139	3	7	22	52	37	100	100
439	3	11	28	59	51	100	100
140	2	0	6	35	0	91	72
440	2	0	0	19	0	55	43
141	3	3	17	47	25	100	92
441	2	0	0	23	0	64	50
142	2	0	6	36	1	92	73
442	2	0	0	22	0	62	49
143	2	0	8	38	5	96	76
443	4	29	52	83	100	100	100
144	2	0	0	21	0	58	46
444	3	3	17	47	25	100	92
145	2	0	0	25	0	69	54
445	2	0	13	43	17	100	85
146	3	19	39	70	75	100	100
446	3	12	29	59	52	100	100
147	3	17	35	66	67	100	100
447	3	2	15	45	21	100	89
148	4	39	65	97	100	100	100
448	3	6	21	51	34	100	99
149	3	7	22	52	38	100	100
449	3	7	22	52	37	100	100

ORD	FAO	Disminución del Rendimiento (%)						
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga	
150	3	6	21	51	35	100	100	
450	3	19	39	69	75	100	100	
151	2	0	0	23	0	64	50	
451	2	0	9	38	7	97	77	
152	3	19	38	68	73	100	100	
452	4	43	72	100	100	100	100	
153	1	0	0	12	0	38	30	
453	4	26	48	79	96	100	100	
154	2	0	0	25	0	67	53	
454	1	0	0	0	0	11	8	
155	1	0	0	0	0	0	0	
455	1	0	0	0	0	0	0	
156	1	0	0	0	0	2	1	
456	1	0	0	0	0	0	0	
157	1	0	0	0	0	4	2	
457	1	0	0	2	0	18	13	
158	5	75	100	100	100	100	100	
458	1	0	0	0	0	2	0	
159	1	0	0	8	0	31	24	
459	1	0	0	10	0	34	26	
160	3	10	26	56	46	100	100	
460	3	16	35	66	66	100	100	
161	1	0	0	3	0	19	14	
461	2	0	0	18	0	53	41	
162	1	0	0	0	0	0	0	
462	1	0	0	0	0	1	0	
163	1	0	0	0	0	0	0	
463	1	0	0	0	0	0	0	
164	1	0	0	7	0	28	22	
464	3	4	18	48	28	100	94	
165	2	0	5	34	0	88	70	
465	3	7	22	52	36	100	100	
166	2	0	0	16	0	48	38	
466	3	14	31	62	58	100	100	
167	1	0	0	0	0	3	1	
467	1	0	0	1	0	15	11	
168	1	0	0	11	0	38	30	
468	3	2	15	45	20	100	88	

ORD	FAO	Disminución del Rendimiento (%)						
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga	
169	2	0	1	30	0	79	63	
469	3	2	16	46	23	100	90	
170	1	0	0	0	0	12	9	
470	2	1	14	44	18	100	86	
171	2	0	0	18	0	53	41	
471	2	0	11	41	12	100	81	
172	1	0	0	7	0	28	22	
472								
173	2	0	0	16	0	49	38	
473	2	0	0	21	0	58	46	
174	1	0	0	14	0	44	34	
474	3	1	14	44	19	100	87	
175	2	0	0	26	0	70	55	
475	3	8	24	54	41	100	100	
176	1	0	0	13	0	41	32	
476	2	0	0	25	0	68	54	
177	2	0	7	36	2	93	74	
477	2	0	1	31	0	80	63	
178	2	0	0	18	0	53	42	
478	2	0	7	36	2	92	73	
179	1	0	0	6	0	26	20	
479	1	0	0	3	0	19	14	
180	2	0	9	38	6	97	77	
480	3	6	20	50	33	100	98	
181	1	0	0	5	0	24	18	
481	1	0	0	13	0	41	32	
182	2	0	0	24	0	66 27	52	
482	1	0	0	11	0	37 52	29	
183 483	2	0	0	18	0	52	41	
184	6	100	100	100	100	100	100	
484	6 4	28	51	82	100	100	100	
185	3	26 16	34	64	64	100	100	
485	2	10	13	43	17	100	86	
186	3	1 17	36	45 66	68	100	100	
486	4	57	90	100	100	100	100	
187	3	12	29	59	53	100	100	
487	3	4	18	48	27	100	93	
407	د	4	10	40	۷1	100	33	

ORD	FAO	Disminución del Rendimiento (%)						
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga	
188	3	9	24	55	42	100	100	
488	2	0	0	17	0	50	39	
189	1	0	0	14	0	44	34	
489	2	0	6	36	1	91	72	
190	2	0	0	29	0	77	61	
490								
191	2	0	0	30	0	78	62	
491	3	1	15	44	20	100	88	
192	1	0	0	5	0	24	18	
492								
193	1	0	0	0	0	6	4	
493								
194	2	0	0	20	0	56	44	
494	5	91	100	100	100	100	100	
195	1	0	0	7	0	28	21	
495	1	0	0	0	0	5	3	
196	1	0	0	1	0	15	11	
496	2	0	3	32	0	84	67	
197	1	0	0	1	0	15	11	
497	2	0	0	21	0	60	47	
198	1	0	0	8	0	31	23	
498	2	0	0	25	0	67	53	
199	1	0	0	13	0	41	32	
499	1	0	0	3	0	20	15	
200	2	0	0	25	0	67	53	
500	3	4	18	48	28	100	94	
201	1	0	0	0	0	9	6	
501	2	0	0	27	0	71	56	
202	1	0	0	0	0	6	4	
502	2	0	0	22	0	62	49	
203	2	0	0	22	0	60	48	
503	3	18	37	68	71	100	100	
204	2	0	0	26	0	70	55	
504	2	0	10	40	10	100	80	
205	2	0	11	40	11	100	81	
505	1	0	0	9	0	34	26	
206	2	0	8	38	6	96	77	
506	3	9	25	55	44	100	100	

ORD	FAO	Disminución del Rendimiento (%)					
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga
207	1	0	0	13	0	41	32
507	3	2	15	45	21	100	89
208	2	0	0	30	0	78	62
508	2	0	4	33	0	86	68
209	1	0	0	3	0	19	14
509	2	0	1	30	0	79	62
210	3	21	41	72	81	100	100
510	1	0	0	14	0	44	34
211	1	0	0	5	0	24	18
511	1	0	0	7	0	28	22
212	4	29	52	83	100	100	100
512	1						
213	4	22	43	74	85	100	100
513	2	0	2	31	0	82	65
214	2	0	0	21	0	60	47
514	3	7	22	52	36	100	100
215	1	0	0	13	0	42	33
515	4	45	75	100	100	100	100
216	2	0	10	40	10	100	79
516	2	0	11	41	13	100	82
217	3	7	22	52	38	100	100
517							
218	2	0	1	30	0	79	63
518	3	13	31	61	56	100	100
219	6	100	100	100	100	100	100
519	1	0	0	11	0	37	28
220	2	0	0	15	0	45 52	35
520	2	0	0	18	0	52	41
221	1	0	0	0	0	2	0
521	,	0	12	42	17	100	٥r
222	2	0 0	13 0	43 17	17 0	100	85 40
522 223	4		96		100	51 100	
		61		100			100
523	2 1	0 0	6 0	35 0	0 0	90 0	71 0
224							
524225525	1 4 6	0 23 100	0 44 100	0 74 100	0 85 100	2 100 100	1 100 100

ORD	FAO	Disminución del Rendimiento (%)						
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga	
226	1	0	0	8	0	30	23	
526	1	0	0	0	0	6	4	
227	2	0	6	35	0	90	71	
527	4	56	89	100	100	100	100	
228	2	0	10	40	9	100	79	
528	2	0	11	41	13	100	82	
229	2	0	9	38	7	97	77	
529	2	0	4	33	0	85	68	
230	3	15	33	64	63	100	100	
530	4	45	75	100	100	100	100	
231	1	0	0	5	0	23	18	
531	4	31	55	86	100	100	100	
232	1	0	0	0	0	0	0	
532	3	13	30	61	55	100	100	
233	1	0	0	0	0	0	0	
533	5	70	100	100	100	100	100	
234	1	0	0	2	0	17	12	
534	4	49	80	100	100	100	100	
235	1	0	0	3	0	19	14	
535	4	29	52	83	100	100	100	
236	3	10	27	57	48	100	100	
536	2	0	0	6	0	27	21	
237	2	0	0	17	0	51	40	
537	1	0	0	0	0	1	0	
238	4	57	90	100	100	100	100	
538	1	0	0	10	0	35	27	
239	4	42	70	100	100	100	100	
539	1	0	0	0	0	11	8	
240	1	0	0	1	0	16	11	
540	3	15	33	64	63	100	100	
241	3	21	41	72	80	100	100	
541	6	100	100	100	100	100	100	
242	3	15	33	64	62	100	100	
542	2	0	0	16	0	48	38	
243	3	3	16	46	24	100	91	
543	3	12	29	59	53	100	100	
244	2	0	11	40	11	100	81	
544	2	0	0	18	0	53	42	

ORD	FAO	Disminución del Rendimiento (%)						
		Algodón	Trigo	Alfalfa	Espárrago	Cebolla	Lechuga	
245	4	55	88	100	100	100	100	
545	2	0	0	22	0	60	47	
246	5	80	100	100	100	100	100	
546	4	31	55	86	100	100	100	
247	1	0	0	7	0	29	22	
547	2	0	0	18	0	53	42	
248	1	0	0	0	0	3	1	
548	1	0	0	0	0	5	3	
249	1	0	0	0	0	13	10	
549	1	0	0	10	0	35	27	
250	1	0	0	0	0	0	0	
550	1	0	0	0	0	11	8	
251	2	0	0	16	0	48	38	
551	3	15	33	64	63	100	100	
252	5	94	100	100	100	100	100	
552	6	100	100	100	100	100	100	
253	2	0	7	37	4	94	75	
553	2	0	0	16	0	48	38	
254	3	4	19	49	29	100	95	
554	3	12	29	59	53	100	100	
255	1	0	0	0	0	6	4	
555	2	0	0	18	0	53	42	
256	1	0	0	7	0	28	21	
556	2	0	0	22	0	60	47	
257	5	80	100	100	100	100	100	
557	4	31	55	86	100	100	100	
258	1	0	0	0	0	10	7	
558	2	0	0	18	0	53	42	
259	3	10	26	56	45	100	100	
559	1	0	0	0	0	5	3	