

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS

CAMPUS MONTECILLO

POSTGRADO EN HIDROCIENCIAS

AUTOMATIZACIÓN DEL RIEGO EN SUSTRATOS

PEDRO RIOS GONZÁLEZ

T E S I S

PRESENTADA COMO REQUISITO PARCIAL

PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS

MONTECILLO, TEXCOCO, EDO. DE MEXICO.
2010

La presente tesis, titulada: **AUTOMATIZACIÓN DEL RIEGO EN SUSTRATOS,** realizada por el alumno: **PEDRO RIOS GONZÁLEZ**, bajo la dirección del Consejo Particular indicado, ha sido aprobada y aceptada como requisito parcial para obtener el grado de:

MAESTRO EN CIENCIAS

HIDROCIENCIAS

AUTOMATIZACIÓN DEL RIEGO EN SUSTRATOS

Pedro Rios González, M.C.

Colegio de Postgraduados, 2010

En México existe la necesidad de desarrollar tecnología de bajo costo para sistemas de producción agrícola por tal razón, se desarrolló un sistema de riego automatizado para sustratos, que controla la frecuencia de riego a partir de los requerimientos de la especie y naturaleza del sustrato. Se realizó la caracterización física de los sustratos (agrolita, fibra de coco, arena, peatmoss, tezontle y tepojal) y se diseñó un sustrato (mezcla) con el método de Zamora (2005). Se seleccionó el sensor de humedad ECHO EC5 por su baja respuesta a la conductividad eléctrica y se obtuvo la función de ajuste del contenido de humedad y la señal del sensor. El sistema de riego se integró por: un sistema electrónico de adquisición de datos y control (microcontrolador PIC18F4550), computadora personal, interfaz de usuario (PicWinC), base de módulo de potencia para MySQL, sensor de humedad, datos encender/apagar los dispositivos (bomba y electroválvula), contactor y sistema de riego. Las pruebas del sistema de control de riego por goteo en sustratos se hicieron bajo condiciones de invernadero, en macetas y sin cultivo, en dos ensayos (días 13 y 26 de abril del 2010). El primero en agrolita y el segundo, con una mezcla al 50% en v/v de tezontle y fibra de coco, donde se controló el nivel de humedad en el rango de agua fácilmente disponible. Los resultados indican que cada sustrato presenta características físicas propias, que retienen diferentes cantidades de humedad a diferentes tensiones. Sin embargo, el sistema que se desarrolló es capaz de auto regular los niveles de humedad que se deseen y los sensores se pueden calibrar con sólo registrar el dato de respuesta en el aire y agua (con una conductividad eléctrica menor a 2.7 ms/cm).

Palabras clave: Automatización, sistema de riego, microcontrolador, sustratos, sensor de humedad del suelo.

AUTOMATION OF IRRIGATION IN SUBSTRATES

Pedro Rios González, M.C.

Colegio de Postgraduados, 2010

In México exists the necessity of develop technology of low cost for agricultural production systems for this reason, it developed an automated irrigation system for substrates, that controls the frequency of irrigation according specie's requirements and substrate's nature.

It was performed the physical characterization of the substrates (perlite, coconut's fiber, sable, peat- moss, tezontle and tepojal) and was designed a substrate (mixture) with the method Zamora (2005). Was selected the soil moisture sensor ECHO EC5 for its low response to electrical conductivity and was obtained the adjustment function of soil moisture content and the sensor signal.

The irrigation system consists for an electronic system of data acquisition and control (PIC18F4550 micro controller), personal computer, user interface (PicWinC), base of datas MySQL, soil moisture sensor, module of potential to turn on/turn off the dispositive (pump and solenoid), contactor and irrigation system.

The tests of control system for drip irrigation in substrates were made under conditions of greenhouse, in flower pots and without crop, in two essays (days 13 and 26 on april 2010). The first in perlite and the second, with a mixture at 50% v/v of tezontle and coconut's fiber, was controlled the soil moisture level in the range of easy available water.

The results show that each substrate presents own physical features, that keep different quantities of soil moisture to different tensions. However, the system that was developed is able to self regulate the soil moisture levels that are desired and the sensors can be calibrate with the register of the response data in the air and water (with electrical conductivity less than 2.7 ms/cm).

Key words: Automation, irrigation system, micro controller, substrates, soil moisture sensor.

DEDICATORIA

Dedico esta tesis

A mi madre

Sofía González Martínez, Por todas sus enseñanzas, comprensión y esfuerzo que me ha dedicado durante toda su vida.

A mis abuelos

Baltasar González Martínez y Guadalupe Martínez Vargas, por sus sabias enseñanzas, apoyo y por creer en mí.

A mi novia

Aurora del Roció Pablo Barahona, por estar siempre conmigo y apoyarme durante este trayecto de mi carrera, este logro obtenido lo logramos juntos.

A mí cuñado y concuñada

Elio Emilio Pablo Barahona y Xochitl Selene Gerónimo Olarte, por compartir con migo momentos de convivencia.

A mis amigos

Julián Martínez Bernabé y Karen, por la amistad incondicional y el apoyo mutuo, que siempre hemos tenido.

A la familia Pablo Barahona

Por su confianza, apoyo incondicional y por creer en mí.

A la familia Guzmán Luna

Por la amistad que siempre hemos tenido y que tendremos durante mucho tiempo, por los momentos de convivencia y la confianza que me han brindado.

A mis tíos, primos, compañeros y amigos.

AGRADECIMIENTOS

Deseo expresar mi más sincero agradecimiento al Consejo Nacional de Ciencia y tecnología y al Colegio de Postgraduados por haberme dado la oportunidad de continuar con mi formación académica.

Al programa de Hidrociencias, personal académico y administrativo por el apoyo y facilidades otorgadas durante mi permanencia.

Al Dr. Abel Quevedo Nolasco, por su dirección, persistencia y apoyo incondicional, que ha sido parte fundamental para el desarrollo del presente trabajo de investigación, por ser un excelente amigo y maestro.

Al Dr. Enrique Palacios Vélez, por sus acertados comentarios, sugerencias y orientaciones que permitieron concluir con éxito el presente trabajo de investigación.

A la Dra. Bertha Patricia Zamora Morales, por sus importantes aportaciones y siempre acertadas sugerencias que contribuyeron a mejorar el presente trabajo de investigación.

Al Dr. Martiniano Castro Popoca, por su valiosa colaboración, sugerencias y aportaciones en el desarrollo del presente trabajo de investigación.

Al M.C. Enrique Rodríguez Cruz, por sus importantes aportaciones, observaciones y buena disposición en la realización de esta investigación.

A los maestros del ESIME Zacatenco del IPN, por su participación en el presente trabajo de investigación.

Ing. Juan Manuel Cobilt Catana

M.C. Jorge García Jiménez

Ing. José Luis Delgado Mendoza

Ing. Ricardo López Macedo

Ing. Víctor Manuel Gómez Salazar

A los alumnos de la ESIME Zacatenco del IPN, por haber participado en la realización de la presente investigación.

Arturo García García

Carlos Flores Hernández

Carlos Alberto Rodríguez Mejía

David Reyes Muñoz

Ricardo Campos Ramírez

Al Dr. Ramón Arteaga Ramírez, por su apoyo en la realización de este trabajo de investigación.

Al Dr. Mario Alberto Vázquez Peña, por el apoyo brindado en este trabajo de investigación.

A la M.C. Érica Morales Hernández, por su apoyo en la realización del presente trabajo de investigación.

Al Sr. Narciso Torres Estrada, por su apoyo incondicional y amistad.

A la Señorita. Gertrudis Días Ortega, por el apoyo brindado en este trabajo de investigación.

INDICE

RI	ESUMEN	iii
ΑI	BSTRACT	iv
	EDICATORIA	V
A	GRADECIMIENTOS	vi
	DICE DE FIGURAS	vii
	DICE DE CUADROS	
		1X
I.	INTRODUCCIÓN	1
1	.1. Objetivos	2
	1.1.1 Objetivo general	2
	1.1.2 Objetivos particulares	2
1	.2 Hipótesis	3
	1.2.1 Hipótesis general	3
	1.2.2 Hipótesis particulares	3
II.	REVISIÓN DE LITERATURA	5
	2.1 Definición de sustratos	
	2.2 Porosidad	_
	2.3 Uso de los sustratos en México	
2	2.4 SISTEMA DE RIEGO	
	2.4.1 Riego	
	2.4.2 Relación agua, planta y sustrato	
	2.4.3 Sistema de riego por goteo	
2	2.5 Caracterización de sustratos.	
	2.5.1 Análisis físico de sustratos	
	2.5.1.1 Densidad aparente y porosidad de aire	
	2.5.1.3 Retención de humedad	
	2.5.1.4 Análisis granulométrico	
_	2.5.1.5 Materia organica y centza 2.6 DISEÑO DE MEZCLAS DE SUSTRATOS ESPECÍFICOS	
	2.7 CONCEPTOS DE AUTOMATIZACIÓN Y CONTROL ELECTRÓNICO.	
_	2.7.1Sistemas de control	
	2.7.2 Controladores	
	2.7.3. Interfaz de potencia	
	2.7.4. Comunicaciones electrónicas	
	2.7.5 Automatización agrícola	
9	2.8 Sistemas de control de riego mediante sensores de humedad de sustratos	
_	2.8.1 Interpretación y aplicación de la información de sensores de humedad de	
	suelo y sustratos	
	2.8.2 Descripción de los sensores de humedad de suelos y sustratos	
	2.8.3 Sensores de potencial matricial del suelo	
	2.8.3.1 Tensiómetros	

2.8.3.2 Sensores de Resistencia Eléctrica	35
2.8.3.3 Sensores de Matriz Granular	36
2.8.3.4 Sensores de Humedad Volumétrica	37
2.8.3.5 Sensores Dieléctricos (General)	38
2.8.3.5.1 Reflectometría de Dominios Magnéticos de Tiempo (Time Domain	
Reflectometry; TDR)	38
2.8.3.5.2 Reflectometría de Dominios Magnéticos de Frecuencia (Frequency Don	nain
Reflectometry; FDR)	40
III. METODOLOGÍA	41
3.1 SELECCIÓN DE SUSTRATOS, CARACTERIZACIÓN FÍSICA Y FORMULACIÓN DE MEZCLAS DE	44
SUSTRATOS ESPECÍFICOS	
3.1.2 Análisis físico de sustratos	
3.1.3 Densidad aparente y porosidad de aire	
3.1.4 Densidad real	
3.1.5 Retención de humedad	
3.1.6 Materia orgánica y cenizas	
3.1.7 Diseño de sustratos específicos	
3.1.8. Determinación del punto de equilibrio R	
3.1.9. Calculo de la curva teórica de liberación de agua para la mezcla (50% Fi	
de coco y 50% Tezontle)	
3.2 Diseño electrónico del sistema de adquisición de datos, comunicación y con	
0.2 Discho cicci onico aci sistema ac auquisición ac autos, comunicación y con	
3.2.1 Materiales utilizados en la construcción del sistema	
3.2.2 Componentes electrónicos importantes en el desarrollo del sistema	
3.2.2.1 Sensor de humedad EC5 de la empresa DECAGON DIVICES	
3.2.2.2 Microcontrolador PIC18F4550	
3.2.2.2.1 Datos técnicos	54
3.2.2.3. Contactor modelo LC1 D2510	54
3.2.2.3.1 Características eléctricas del contactor LC1 D2510	55
3.2.3 Etapas del sistema automático de adquisición de datos, comunicación y	
control	55
3.2.4. Diseño y construcción de los circuitos electrónicos	56
3.2.4.1. Desarrollo del sistema comunicación y control electrónico	56
3.2.4.2. Fase de potencia	58
3.2.4.3. Diseño de los circuitos impresos	59
3.2.4.4. Construcción de los circuitos impresos	59
3.2.4.5. Pre-pruebas del sistema de control	62
3.2.5 Interfaz de usuario	62
3.2.5.1 Software utilizado	62
3.2.5.2 Software de control	63
3.2.5.3 Prueba del sistema de control	63
3.3 Seleccionar un sensor con base a su respuesta a la conductividad eléctrica	64
3.4 caracterización del sensor con los sustratos	65

	3.4.1 Relación de la respuesta del sensor (ec5) con la tensión de succión y	
	diferentes calidades de agua de agua	66
	3.5. Evaluación del sistema de control electrónico en sustratos	67
	3.5.1 Zona experimental	67
	3.5.2 Sistema de riego	68
	3.5.3 Componentes de hardware	69
	3.5.4 Prueba del sistema de control	69
IV.	RESULTADOS	72
	4.1 Sustratos seleccionados, caracterización física y formulación de mezclas	de
	sustratos específicos.	72
	4.1.1 Curvas de retención de agua	72
	4.1.2 Curvas liberación de agua.	74
	4.1.3 Punto de equilibrio R	75
	4.1.4 Materia orgánica	80
	4.1.5 Mezcla de sustratos específicos	80
	4.1.6. Curva teórica de liberación de agua para la mezcla (50% Fibra de coco y	
	50% Tezontle).	86
	4.2 Sistema de adquisición de datos y control	87
	4.2.1 Sistema de medición y control	87
	4.2.2 Interfaz del sistema electrónico	88
	4.2.3 Interfaz de usuario	92
	4.3 Selección del sensor de humedad en sustratos	95
	4.4 caracterización del sensor con los sustratos	107
	4.4.1 Relación de la respuesta del sensor (ec5) con la tensión de succión y	
	diferentes tipos de agua.	116
	4.5 Evaluación del sistema de automatización de riego en sustratos	120
	4.5.1 Prueba de aforo	120
	4.5.2 Experimento 1: Control automático del riego en agrolita	121
	4.5.3 Experimento2: Control automático del riego en la mezcla (50%Tezontle y	
	50%Fibra de coco)	124
V.	CONCLUSIONES	127
VI.	RECOMENDACIONES	128
VII.	LITERATURA CITADA	129
ANI	EXOS	135

ÍNDICE DE FIGURAS

riguia	Fi	gι	ır	a
--------	----	----	----	---

2.1	Relación entre el rendimiento y la porosidad de aire, como consecuencia de diferentes intensidades de riego en la planta de	
	tomate	07
2.2	Relación del volumen de aire y humedad en el sustrato	13
2.3	Curva de liberación de agua	15
2.4	Diagrama de bloques de un sistema de control	24
2.5	Diagrama de bloques de una planta	24
2.6	Sistema de control en lazo abierto	25
2.7	Sistema de control en lazo cerrado	25
2.8	Sistema de control automático de temperatura	26
3.1	Sensor EC-5	50
3.2	Configuración del conector estéreo	51
3.3	Diagrama de pines del Microcontrolador PIC18F4550	52
3.4	Contactor LC1 D2510 de la empresa Telemecanique	53
3.5	Circuito eléctrico del sistema de adquisición, transmisión y control	57
3.6	Circuito eléctrico de la fase de potencia	58
3.7	Vista aérea de la ubicación de la zona del experimento	66

3.8	Sistema de riego	67
3.9	Sistema de automatización del riego en sustratos	70
4.1	Curvas de retención de agua para seis sustratos, en tensión de columna de agua (cm)	72
4.2	Curvas de liberación de agua para siete sustratos (según De Boodt, et al., 1974)	73
4.3	Relación del volumen de aire y humedad en arena	75
4.4	Relación del volumen de aire y humedad en fibra de coco	75
4.5	Relación del volumen de aire y humedad en peat-moss	76
4.6	Relación del volumen de aire y humedad en Tezontle	77
4.7	Relación del volumen de aire y humedad en agrolita	78
4.8	Relación del volumen de aire y humedad en tepojal	78
4.9	Curva de retención de agua de la mezcla de sustratos	81
4.10	Curva de liberación de agua para la mezcla (fibra de coco y tezontle)	82
	Curvas de retención de agua de los sustratos simples (Fibra de coco y Tezontle) y la mezcla	83
	Curva de liberación de agua para dos sustratos simples (Fibra de coco y Tezontle) y para la mezcla	84
4.13	Relación de aire y humedad en la mezcla	84
4.14	Curva de liberación de agua teórica y experimental, para la mezcla.	86
4.15	Terminales de de conexión del sensor de humedad EC5 y las salidas al módulo de potencia	87

Pistas del circuito del sistema de adquisición, transmisión de	
datos y control.	88
Pistas del circuito de potencia	88
Sistema electrónico del sistema de adquisición, transmisión de	
datos y control.	89
Modulo de potencia	90
Sistema de adquisición, transmisión de datos y control, con sus	
componentes electrónicos y eléctricos	90
Pestaña de configuración inicial de usuario	92
Pestaña de captura del sensor	93
Pestaña que permite graficar los eventos y datos sensados	94
Respuesta de los sensores 10HS (a.c. v.e.) v FC-5 (h.d. v.f.) a la	
	99
-	
conductividades eléctricas, para diferentes dispositivos	
electrónicos de adquisición de datos	103
Relación entre Conductividad eléctrica y concentración de NaCl	104
Respuesta del sensor con diferentes porcentajes de humedad,	
	100
para tres dispositivos de adquisición	106
	Pistas del circuito de potencia

4.29	Respuesta del sensor al contenido de humedad volumétrica	110
4.30	Respuesta del sensor al contenido de humedad volumétrica para	
	el circuito de 5V	111
4.31	Respuesta del sensor al contenido de humedad volumétrica	112
4.32	Función de respuesta del sensor a partir de dos puntos extremos.	112
4.33	Respuesta del sensor a diferentes tipos de agua	114
4.34	Respuesta del sensor para cada tensión de succión en los	
	sustratos, con dos tipos de agua	117
4.35	Respuesta del sensor (mV) y la humedad volumétrica (v/v), a	
	partir de los datos de aire y agua	118
4.36	(a) Calendario de riego del día 13 de abril del 2010 en función al	
	% de humedad volumétrica	120
4.36	(b) Calendario de riego del día 13 de abril del 2010 en función de	
	la respuesta (Mb) del sensor	120
4.36	(c) Calendario de riego del día 13 de abril del 2010 en función de	
	la humedad volumétrica	101
	(v/v)	121
4.37	Calendario de riego del día 26 de abril del 2010 en función al %	
	de humedad volumétrica	123
4.38	Calendario de riego del día 26 de abril del 2010 en función de la	
	respuesta (V) del sensor	123
4.39	Colondorio do riogo del día 06 de abril del 0010 en fración del	
	Calendario de riego del día 26 de abril del 2010 en función del	104
	contenido de humedad volumétrica (v/v)	124

ÍNDICE DE CUADROS

\sim	1	
('11	ลต	ro
\sim u	au	11 ()

2.1	Necesidades de aire de las raíces de diferentes plantas	
	ornamentales	06
3.1	Niveles a evaluar para cada variable de diseño	45
3.2	Herramientas necesarias para la construcción de los circuitos	
	electrónicos	48
3.3	Lista de materiales a utilizar para el circuito con comunicación	
	USB	49
3.4	Material utilizado en el circuito de potencia	49
4.1	Propiedades físicas de seis diferentes tipos de sustratos	71
4.2	Retención de humedad de diferentes sustratos expresada en %	
	de humedad volumétrica	72
4.3	Variables que integran la curva de liberación de agua para	
	siete sustratos simples	74
4.4	Contenido de materia orgánica en sustratos	79
4.5	Precios por litro de los sustratos	79
4.6	Propiedades físicas de la mezcla (50% tezontle y 50% fibra de	
	coco)	80
4.7	Datos de la curva de liberación de aguade la mezcla tezontle-	
	fibra de coco	81
4.8	Datos teóricos y experimentales de la curva de liberación de	
	agua para la mezcla	85
4.9	Respuesta de los sensores 10HS y EC5 a la conductividad	
	eléctrica	95
4.10	Respuesta de los sensores 10HS y EC5 a una rango amplio de	
	valores de conductividad eléctrica (CE)	100

4 4 4		
4.11	Coeficientes de un modelo lineal obtenidos con tres	
	dispositivos diferentes	108
4.12	Coeficiente del modelo lineal y= a+ bx (% de humedad= a + b	
	(señal del sensor) con dos voltajes de alimentación	113
4.13	Respuesta del sensor de humedad (EC-5) con diferentes	
	calidades de agua	114
4.14	Respuesta del sensor en los sustratos a la tensión de	
	succión	115
4.15	Datos del tiempo atmosférico del día 13 de Abril del	
	2010	121
4.16	Datos del tiempo atmosférico del día 26 de Abril del	
	2010	124

I. INTRODUCCIÓN

La necesidad de incrementar la rentabilidad de la producción hortícola y las restricciones de uso de algunos suelos para el cultivo ha propiciado un aumento en la utilización de las técnicas del cultivo con base en el uso de sustratos.

En los sistemas de producción agrícola con sustratos se requiere de aplicaciones de agua con alta frecuencia para mantener el contenido de humedad a bajas tensiones, esto puede significar inversiones importantes en la contratación de mano de obra para la operación del riego.

Para la automatización de los sistemas de producción que emplean sustratos se requiere de un nivel de equipamiento que posibilite el control con precisión y de forma dinámica del aporte del agua, para evitar el estrés en el cultivo. De tal manera que estos métodos y dispositivos deberán considerar las características de los sustratos, características de los sensores, componentes de comunicación, fuentes de energía con el fin de satisfacer la demanda de riego en el propio sistema.

Se tiene la necesidad de un sistema de automatización de riego en el uso de los sustratos, la introducción de este sistema abre nuevas perspectivas en el manejo de los cultivos en cuanto a que se puede extender a técnicas culturales más tradicionales sobre suelo, puesto que la automatización permite controlar el sistema formado por la planta y su ambiente. De este modo se ofrece la posibilidad de tener un sistema de producción agrícola menos contaminante, al haber menor lixiviación de los elementos químicos provenientes de los fertilizantes adicionados al agua de riego, logrando con ello mejorar la productividad y la rentabilidad de la producción hortícola.

En el mercado existen sistemas de automatización de riego, siendo estos una opción, sin embargo estos productos son de origen extranjero y por ende costosos, es por ello que se tiene la necesidad de desarrollar un sistema de automatización de riego en sustratos, el cual debe de ser: Eficaz y eficiente en el control del riego, deberá de ser un sistema programable y su desarrollo debe de basarse en tecnologías económicas y confiables

A partir de lo anterior, el presente trabajo estuvo orientado al desarrollo de un sistema específico para el control del riego en sustratos, para mejorar la eficiencia del riego y reducir costos de producción de especies agrícolas en sustratos.

1.1. Objetivos

1.1.1 Objetivo general

Diseñar y desarrollar un sistema de control automático para sistemas de producción agrícolas, con base en el uso de sustratos; que responda a los requerimientos de la especie y naturaleza del sustrato, con el fin de lograr una mayor eficiencia del riego y ahorro de mano de obra.

1.1.2 Objetivos particulares

 Diseño de un sustrato específico (mezcla) por medio de programación lineal a partir de la caracterización física de los sustratos, los requerimientos de la especie; contemplando como restricciones:

- capacidad de agua (CA), espacio poroso total (EPT) y contenido de materia orgánica (MO).
- Selección de un sensor de humedad comercial, de baja sensibilidad a la conductividad eléctrica, para su uso en el diseño y desarrollo de un sistema de autocontrol del riego para la producción agrícola en sustratos.
- Obtener la función de ajuste entre contenido de humedad y la señal del sensor de humedad que se empleo en el diseño y desarrollo de un sistema de autocontrol del riego para la producción agrícola en sustratos.
- Diseño y desarrollo de un sistema de autocontrol y un software (interfaz de usuario) para: registrar los datos generados por sensores de humedad, controlar el encendido y apagado de dispositivos usados en la aplicación del riego para la producción agrícola en sustratos.

1.2 Hipótesis

1.2.1 Hipótesis general

El sistema de control automático diseñado para sistemas de producción agrícolas con base en el uso de sustratos responde a los requerimientos de la especie y naturaleza del sustrato, para mantener el contenido de humedad en sustratos.

1.2.2 Hipótesis particulares

• Diferentes sustratos específicos (por sus características de capacidad de agua, espacio poroso total y la materia orgánica) sometidos a una misma

- tensión de succión retienen diferentes cantidades de humedad, por lo que requieren de un manejo de riego particular.
- La caracterización específica de sensores de humedad, la respuesta entre sensores y sustratos, permite un mejor control sobre la aplicación del agua.
- La integración de hardware y software (Sensores, interfaces de comunicación, fuentes de energía y la programación) de un sistema de automatización de riego puede regular la demanda de agua en sistemas de producción con sustratos.

II. REVISIÓN DE LITERATURA

2.1 Definición de sustratos

El término *sustrato* se aplica en horticultura a todo material sólido, natural, de síntesis o residual, mineral u orgánico, distinto del suelo *in situ*, que colocado en un contenedor en forma pura o en mezcla, permite el anclaje del sistema radicular, desempeñando, por tanto, un papel de soporte para la planta (Blanc, 1987; Abad, 1991; Abad y Noguera, 1998). El sustrato puede intervenir en el complejo proceso de la nutrición mineral de la planta, ya sea por ser un material químicamente activo o por adquirir esa modalidad con el tiempo.

2.2 Porosidad

Ansorena (1994) menciona que las raíces de las plantas necesitan un cierto aporte de oxigeno y la aireación dependerá principalmente del tamaño de los poros del medio de cultivo. Para que el oxigeno se difunda hasta la película de agua de las raíces, es necesaria que haya un mínimo de porosidad ocupada por aire.

Cuadro 2.1 Necesidades de aireación de las raíces de diferentes plantas ornamentales.

Necesidades de aireación	Muy alta	Alta	Intermedia	Baja
Porosidad (%)	20	20 - 10	10 - 5	5 - 2
	Azalea	Antirrhinum	Camelia	Clavel
	Orquídea(epífita)	Begonia	Crisantemo	Conífera
		Daphne	Gladiolo	Geranio
		Ercácea	Hydrangea	Hiedra
		Plantas de hoja decorativa	Lilium	Palmera
		Gardenia	Poinsettia	Rosa
		Gloxinia		Alheli
		Orquídea(Terrestre)		Strelitzia (Ave del paraíso)
		Podocarpus		Césped
		Rhododendron		_
		Saintpaulia		

Fuente: Johnson (1968)

Según, Ansorena (1994). La porosidad de aire P_a es probablemente la propiedad física más importante de los sustratos empleados en horticultura ornamental, no existe unanimidad entre los diferentes autores respecto del valor óptimo de P_a aunque se acepta con carácter general que debe de estar comprendido entre el 10 y el 20 % para sustratos en maceta.

La falta de acuerdo sobre las necesidades de aireación es debido a tres causas principales:

1. Diferentes tolerancias de las plantas a niveles bajos de aireación del medio de cultivo (Cuadro 2.1).

2. Influencia de factores ambientales y de manejo. En condiciones adversas de porosidad de aire, su efecto negativo en el crecimiento puede reducirse en parte con un manejo esmerado del riego. La pérdida de agua que acompaña a la evapotranspiración aumenta la aireación y el riego la disminuye; por lo que si se evitan riegos frecuentes, puede conseguirse cultivar en condiciones aceptables de aireación, aunque el valor de la porosidad de aire del sustrato sea bajo.

La figura 2.1 muestra la relación entre el rendimiento de plantas de tomate y la porosidad de aire, en un experimento en que esta última se modifico variando la frecuencia del riego. El rendimiento disminuye bruscamente a medida que la porosidad de aire desciende por debajo del 10 %, a causa de un riego excesivo.

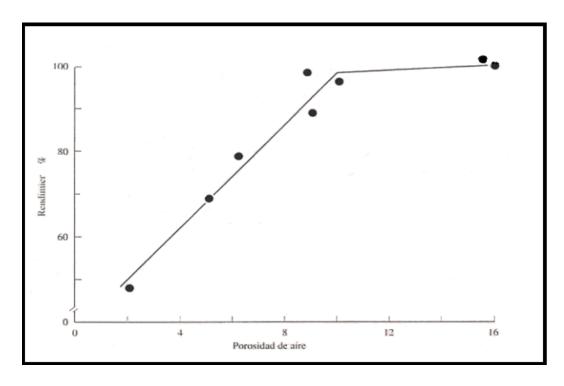


Figura 2.1 Relación entre el rendimiento y la porosidad de aire, como consecuencia de diferentes intensidades de riego en la planta de tomate.

Fuente: Bunt (1988).

3. Los diferentes métodos empleados para determinar los valores de porosidad de aire, pueden proporcionar resultados distintos.

2.3 Uso de los sustratos en México

En México la investigación sobre sustratos en los últimos años se ha orientado a la realización de algunos trabajos de evaluación en la producción de plántulas de hortalizas, plantas forestales y plantas ornamentales en maceta. En su mayoría estos trabajos son tesis y en estos se puede observar una gran variación entre las metodologías utilizadas tanto en la caracterización de los sustratos como en la evaluación de la respuesta de las plantas cultivadas como indicadoras.

En un estudio sobre sustratos para la producción de plántulas de lechuga bajo invernadero, utilizando tierra de monte, germinaza, vermicomposta y turba, como materiales orgánicos, además de perlita y vermiculita, como materiales inorgánicos, Arias (1998) encontró que el mejor tratamiento fue la tierra de monte en mezcla con perlita hasta en un 33% del volumen total: Concluyó que las diferencias encontradas entre los tratamientos fueron atribuidas a la fertilidad de cada material utilizado, más que a sus características físicas y por ello resalta la importancia de evaluar tanto las características físicas como las químicas cuando se trabaje con sustratos y también señala la importancia de contar con un equipo apropiado para realizar el análisis físico.

Velázquez (1995), evaluó *Quercus crassipes* en vivero bajo diferentes tipos de sustrato e intensidades de luz, y encontró que la tierra de monte sola ó con niveles bajos de arena de río fue el mejor sustrato para producir esta especie y la mejor intensidad fue a plena luz.

Al evaluar cuatro sustratos (germinaza, ocochal, corteza de pino y turba) en el trasplante y desarrollo de mini-azalea en condiciones de invernadero en Chapingo, Méx., Velasco (1995), encontró como mejor tratamiento la corteza de pino. No se menciona si este material tuvo algún proceso de descomposición ni se indica su lugar de origen; tampoco se especifican las propiedades físicas y químicas de los materiales que se utilizaron.

En un trabajo con plántulas de *Pinus greggii*, Quiñones (1995) evaluó la influencia del sustrato y fertilización en el crecimiento de esta especie bajo condiciones de vivero. Observó que el mejor sustrato en todas las variables estudiadas fue la tierra de monte debido a que aumentó la aireación radical y por lo tanto redujo la incidencia de enfermedades fungosas en la raíz. No realizó caracterización física ni química de los sustratos utilizados.

En la evaluación de cinco sustratos y dos cultivares de crisantemo para maceta bajo invernadero en la región de Texcoco, Edo. México; Zarate (1995), encontró que las mezclas con germinaza fueron las mejores porque les permitió retener más humedad. Los materiales utilizados fueron: Germinaza, cascarilla de arroz, tierra de monte, turba y tezontle. Su trabajo no incluyó la descripción de las propiedades físicas y químicas de los sustratos.

Para la producción de plántula de brócoli en contenedores con soluciones nutritivas y sustratos bajo invernadero, Jaimes (1994) probó arena, tierra de monte y germinaza así como cuatro soluciones nutritivas. El sustrato testigo estuvo compuesto por tres partes de germinaza, dos partes de tierra de monte y uno parte de estiércol bovino. Los mejores tratamientos fueron los que incluyeron germinaza aunque no se presentaron diferencias estadísticamente significativas con el testigo. El calendario de riegos afectó negativamente por exceso de humedad a los tratamientos con germinaza (incluyendo el testigo).

No se realizaron análisis granulométricos, de densidad real, ni de porosidad de aire y en las características químicas solo se determinó el pH.

Domínguez, (1994) evaluó sustratos en orquídeas obtenidas mediante la germinación *in vitro* de semillas y encontró que en el trasplante el unicel, el tezontle y la corteza de encino dan los mejores resultados. No especifica los orígenes de los materiales evaluados y no se realizó su caracterización química y física.

Por su parte, Zamora (2005) menciona que México al igual que en muchos países los sustratos se obtienen tradicionalmente por el método de "ensayo y error". Es decir, se parte de una serie de materiales conocidos, se mezclan en distintas proporciones, y se analizan los sustratos resultantes, seleccionando aquellos que tienen las características más adecuadas. El número de materiales es muy elevado, esto resulta en numerosas muestras a analizar, si a esto añadimos optimizar el costo de los materiales, o maximizar la dosis de un determinado material, resulta extremadamente complicado elaborar sustratos, convirtiéndose en un problema de dificil solución por el número de variables en juego. En México, es indispensable avanzar en este sentido haciendo uso de técnicas y metodologías que simplifiquen la obtención de sustratos, que consideren una reducción en los costos así como en la optimización de resultados, pues de lo contrario se estarían desperdiciando innumerables subproductos agro industriales que podrían ser excelentes sustratos para la horticultura, y además se continuaría causando un impacto desfavorable en los ecosistemas y en la economía nacional.

2.4 Sistema de riego

2.4.1 Riego

Golberg, 1976. Define el riego como un medio artificial de mantener la disponibilidad de agua en la zona radicular a un nivel óptimo.

El riego localizado o también llamado de alta frecuencia se puede definir como el conjunto de técnicas empleadas para mantener un nivel óptimo de humedad en la zona radicular de la planta desde un punto externo a ella.

2.4.2 Relación agua, planta y sustrato

El control de los parámetros relacionados con el suministro de agua a las plantas se consigue mediante el manejo del agua de riego.

Las condiciones ambientales determinan en gran medida la demanda hídrica de la planta. El agua retenida en el sustrato supone la oferta de agua en la planta. Cuando la oferta es menos que la demanda se debe de aportar agua mediante un adecuado sistema de riego. El control de riego permite controlar el estado hídrico del sustrato y por lo tanto la disponibilidad de agua.

La cantidad de agua disponible para la planta, presente en el sustrato está condicionada por el volumen del contenedor, por las propiedades físicas del sustrato y por su estado hídrico.

En el rango de tensiones comprendido entre 0 y 100 cm de columna de agua (0 a 10 KPa) está retenido un porcentaje elevado del volumen de agua del

sustrato, por lo que es en este rango donde se produce el intercambio aireagua del espacio poroso del sustrato.

2.4.3 Sistema de riego por goteo

Amoros (1993) menciona que el agua llega a la planta por unas tuberías de conducción a través de los dispositivos llamados goteros que proporcionan la humedad a la planta, sus caudales varían de 2 a 8 L/h, este sistema está compuesto por:

- Cabezal de riego (que se integra por sistemas de: Bombeo, filtrado, fertirrigación, automatización, y elementos de seguridad y control).
- Red de distribución (que son un conjunto de tuberías principales, secundarias y porta goteros).
- Goteros o emisores

Se debe de aforar el sistema de riego para determinar que la uniformidad del riego es correcta. El gasto del primer gotero en comparación con el último no debe variar en más del 10 % y el sistema no deberá tener variaciones de presión de más del 20 % (Boswell, 1989).

2.5 Caracterización de sustratos

Zarate (2007) menciona que el parámetro R informa sobre la disponibilidad de agua a baja tensión para cultivos en contenedor de altura comprendida entre 10 y 20 cm, una vez regado y drenado. Cuando R está comprendido entre 10 y 30 cm las raíces dispondrán de suficiente aire y agua fácilmente asimilable. Si

R es superior a 30 cm el contenido en aire será limitante, una vez que el sustrato este regado y drenado, por lo que existe riesgo de asfixia radicular. Si R es inferior a 10 cm el sustrato estará muy aireado, pero apenas dispondrá de agua fácilmente asimilable.

Para cultivo en contenedores de altura inferior a 10 cm, R deberá tener valores bajos, de este modo existirá una aireación suficiente en condiciones de capacidad de contenedor. Contrariamente, para contenedores altos los sustratos deberán tener valores elevados de R, que garanticen que a capacidad de contenedor queda aun suficiente agua disponible (Ansorena, 1994).

A partir de los datos de la curva de liberación de agua puede determinarse la tensión a la que se igualan los contenidos de aire y agua del sustrato. Este parámetro, denominado R, se expresa en centímetros de tensión de columna de agua y es característico del sustrato. Se determina gráficamente representando de forma conjunta las curvas de retención y liberación agua en porcentaje volumétrico de agua y de aire en función de la tensión aplicada, la proyección del punto de corte de ambas curvas sobre el eje de la tensión proporcionada el valor de R (Figura 2.2).

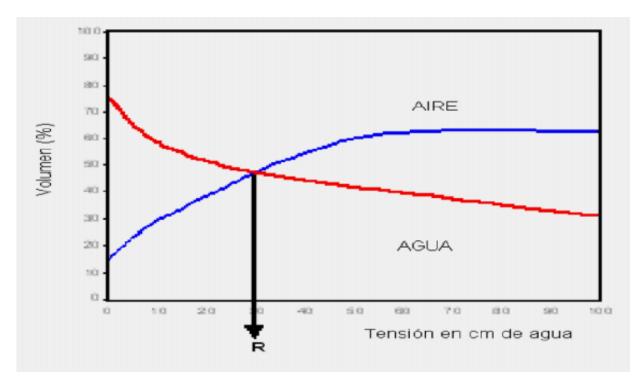


Figura 2.2. Relación del volumen de aire y humedad en el sustrato.

Fuente: Zarate (2007)

La altura o profundidad del contenedor tiene un efecto marcado sobre el contenido de aire en el sustrato. Cuanto más alto es el contenedor, mayor es el contenido de aire, por lo que cuando se usan contenedores pequeños o poco profundos, son preferibles sustratos de textura gruesa, que mantienen una aireación adecuada (Sponer, 1974 y 1975).

Los siguientes parámetros se obtienen a partir de la curva de liberación de agua o curva característica de un sustrato desarrollada por De Boodt *et al.* (1974), cuya representación gráfica se detalla en la Figura 2.3.

Agua fácilmente disponible (AFD). Se refiere a la cantidad de agua (% en vol.) que se libera al aplicar una tensión al sustrato de entre 10 y 50 cm de columna de agua. Valor óptimo: 20 a 30 %.

Agua de reserva (AR). En este caso se refiere a la cantidad de agua (% en vol.) que se libera al aplicar una tensión al sustrato de entre 50 y 100 cm de columna de agua. Valor óptimo: 4 a 10 %.

Agua dificilmente disponible (ADD). Se trata del agua (% en vol.) que queda retenida en el sustrato después de aplicar una tensión de 100 cm de columna de agua.

Capacidad de aireación (CA). Se refiere a la proporción del volumen del sustrato que contiene aire después que dicho sustrato ha sido llevado a saturación y dejado drenar (normalmente a 10 cm de columna de agua). El valor óptimo se produce cuando se dan valores entre 10 y 30 %.

Espacio poroso total (EPT). Es el volumen total del sustrato de cultivo que no está ocupado por partículas orgánicas o minerales. Es un dato que se determina a partir de las densidades real y aparente. Su valor óptimo se produce cuando alcanza niveles superiores a 85 %.

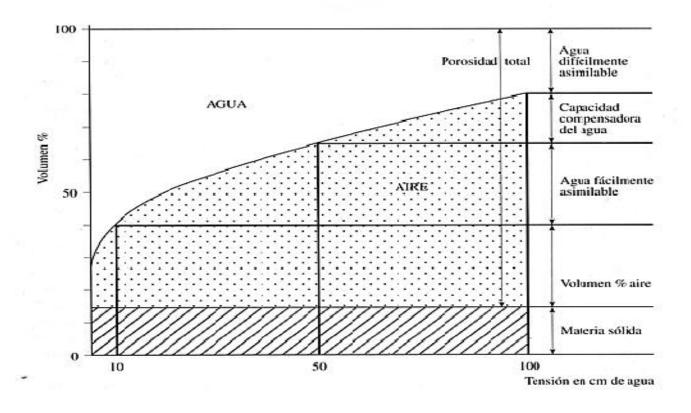


Figura 2.3. Curva de liberación de agua.

Fuente: Ansorena,. 1994. Adaptado De Boodt et al (1974)

2.5.1 Análisis físico de sustratos

El análisis físico de los sustratos incluye la determinación de: Densidad aparente (Da), espacio poroso (EPT), retención de humedad (curva de liberación de agua), análisis granulométrico y densidad real (Dr). Cada determinación se realiza usando la metodología de análisis de sustratos propuesta por Ansorena (1994) y por Warncke (1986).

2.5.1.1 Densidad aparente y porosidad de aire

Para la determinación de estas características se utilizan macetas comerciales de 1.5 L de capacidad, las cuales se pesarán y llena hasta el borde a intervalos de 100 mL con el sustrato secado a peso constante a 105° C. Sobre el sustrato se aplica un peso de 650 g por tres minutos para facilitar su asentamiento, agregando más sustrato cuando el volumen se reduzca. Las macetas con el sustrato se pesa nuevamente y se cubre en la parte superior con un plástico sujeto por una liga y se coloca en una bandeja de plástico. A esta se le agregara agua a intervalos de media hora, para que penetre lentamente por los orificios de la base de las macetas, a fin de que el sustrato se humedezca por capilaridad. Se agrega agua a un recipiente hasta que su nivel coincida exactamente con el nivel del sustrato dentro de la maceta. Una vez saturados los sustratos, se sacan las macetas del agua para permitir que el sustrato se drene y tome el volumen equivalente a su manejo comercial en vivero. Este proceso se repite por tres ocasiones. Después de la última saturación, y manteniendo las macetas dentro del agua, se tapan los orificios de la base con tapones de goma para evitar que drene el agua. Se saca del agua y se seca por la parte exterior. Se coloca sobre un embudo y se destapan los orificios para dejar drenar el agua del sustrato durante 30 minutos sobre un recipiente colector. Finalmente se mide el volumen de agua colectado.

La densidad aparente se calcula a partir de:

Da
$$(kg \cdot L^{-1}) = (P2 - P1) / V$$

Donde:

P2 = peso de la maceta + peso del sustrato (g)

P1 = peso de la maceta (g)

V = volumen de la maceta, L

La porosidad de aire se calculará a partir de:

Pa (%) = 100 V1 / V2

Donde:

V1 = volumen de agua colectado, mL

V2 = volumen del sustrato, mL

2.5.1.2 DENSIDAD REAL

Se pesa un matraz aforado de 100 mL (Pm), se añade una cantidad de sustrato secado a 105° C y se pesa nuevamente (Ps). Se añade agua destilada y hervida hasta aproximadamente la mitad del volumen del matraz, arrastrando hacia el interior las partículas de sustrato que quedan adheridas a las paredes. Tras dejar reposar durante 24 horas se expone el aire, hirviendo lentamente el contenido del matraz durante unos minutos, y agitándolo suavemente para evitar la pérdida de sustrato por formación de espuma. Se enfría y se enrasa con agua destilada previamente hervida y enfriada a 20° C. Se pesa (Psa) para después vaciarlo y limpiarlo. Se llena hasta la mitad con agua destilada hervida. Se posa en baño termostático a 20° C, y se enrasa con agua destilada hervida, enfriada a 20° C. Una vez que el contenido se saca de este baño, se seca al exterior del matraz y se pesa (Pa), Zamora(2005). El valor de la densidad real del sustrato se obtiene aplicando la fórmula:

$$dr = da (Ps-Pm) / (Ps-Pm) - (Psa -Pa),$$

Donde:

Pm = peso del matraz de 100 mL

Ps = Peso del sustrato secado a 105 °C + Pm

Psa = Peso del sustrato secado a 105 °C + Pm + agua destilada a 20 °C

Pa = Peso del sustrato después del baño termostático y secado al exterior del matraz

dr = densidad real

da = densidad del agua a 20° C.

2.5.1.3 Retención de humedad

Esta característica, se define como el contenido de agua del sustrato a capacidad de contenedor, se refiere a la máxima cantidad de agua que puede retener un sustrato colocado en un contenedor, tras saturación y drenaje hasta el equilibrio (Martínez *et al.*, 1992), es equiparable al concepto de capacidad de campo en suelos agrícolas, se determina de acuerdo al siguiente procedimiento.

La retención de humedad se relaciona con el contenido en agua del sustrato tras la medición de la porosidad de aire, a partir de lo cual se procede a pesar la maceta con el sustrato humedecido a capacidad de contenedor (PSH). A este valor se le resta el peso del sustrato seco (PSS), se divide entre el volumen de la maceta y se multiplica por 100.

Los resultados se expresan como porcentaje de humedad en volumen

Retención de humedad (%) = (PSH- PSS) / V X 100

Donde:

PSH = peso del sustrato húmedo (g)

PSS = peso del sustrato seco (g)

V = volumen de la maceta (cm³)

2.5.1.4 Análisis granulométrico

Cien gramos de sustrato secado al aire se pasa por tamices de 4.76, 3.36, 2, 1, 0.5 y 0.25 mm de una tamizadora que se hace funcionar a máxima amplitud durante 10 min. Al cabo de ese tiempo se pesa el contenido de cada tamiz y del colector del fondo en recipientes que se taran con precisión de 0.1 g. Los resultados se expresan como porcentaje en peso de cada fracción.

2.5.1.5 Materia orgánica y ceniza

Una vez determinada la retención de agua, una muestra del sustrato se introduce en una mufla calentada de manera gradual hasta 500° C manteniendo esta temperatura durante 4 h. La muestra se lleva a un desecador y una vez enfriada a temperatura ambiente se pesa. Los porcentajes de materia orgánica y cenizas se calculan con las siguientes fórmulas:

Materia orgánica (%) = PMS -PMI / PMS X 100

Donde:

PMS = peso de la muestra seca (g)

PMI = peso de la muestra incinerada (g)

Cenizas (%) = PMI / PMS X 100

2.6 diseño de mezclas de sustratos específicos

Zamora (2005). Desarrolló el método de formulación de mezclas de sustratos mediante programación lineal, a partir de los datos que se generen del análisis físico de los materiales empleados se determinan las variables de diseño (propiedades físicas de los sustratos) con potencial para ser incluidas en el modelo de programación lineal (respuesta lineal y aditividad), se establecen los límites (nivel de restricción) para cada una de éstas, considerando las especificaciones de etiquetado para sustratos comerciales.

La programación lineal se emplea para minimizar la función de costo de las mezclas de materiales individuales. Donde en la función objetivo se minimiza el costo de las materias primas en la elaboración de sustratos:

$$MinZ = \sum_{i=1}^{n} c_i * x_i = f(X)$$

Donde:

 c_i = coeficiente de la variable i en la función objetivo (precio de las materias primas: Tezontle (\$/L), agrolita (\$/L), peat-moss® (\$/L), germinasa (\$/L), tepojal (\$/L) y arena (\$/L).

 x_i = proporción del material i (en metros cúbicos o litros) con relación a un volumen unitario.

Una vez establecidas las variables de diseño (propiedades físicas de la mezcla de sustratos a diseñar balance de volúmenes, M.O., EPT y CA) se definen los valores finales los cuales representan las restricciones del modelo lineal, que se establece como:

$$R_i = \sum_{j=1}^n a_{ij} * x_j <, > \acute{o} = b_i$$

Donde:

R_i = Restricción o fila i (igualdades o desigualdades lineales)

a_{ij} = Coeficiente de la variable j en la fila i, que representa la variables de diseño del material.

b_j = límite máximo, mínimo o igual de la restricción i (con las unidades propias de la restricción por metros cúbicos de sustrato).

Las restricciones se definen con las siguientes variables:

- Balance de volúmenes. Los cambios en el volumen de los materiales participantes no deben modificarse por lo que se considera un valor de cero (se asume que el tamaño de partícula se mantiene constante para todos los sustratos).
- 2. Cantidad de materias primas. El porcentaje máximo a emplear de cada uno de los sustratos debe ser inferior al 100% en volumen.
- 3. Materia orgánica (M.O.).
- 4. Espacio poroso total (EPT).
- 5. Capacidad de aire (CA).

El valor máximo de 100 cm de columna de agua se derivaba de unos experimentos realizados con plantas de *Ficus* en los que De Boodt y

colaboradores (1974) hallaron una reducción de la productividad cuando se dejaba que la tensión del sustrato durante el cultivo sobrepasara este valor. Unos años más tarde estos mismos investigadores desarrollaron el concepto de "sustrato ideal", que corresponde a un sustrato de características físicas medias adecuado para las condiciones de cultivo más usuales y establecieron unos valores fijos para los sustratos. Esta curva no podía ser única, sino que debía variar entre ciertos límites en función de la especie cultivada: Si la planta era del tipo de las epifitas, la curva se deberá situar en la zona superior de la óptima, mientras que para plantas de tipo geofísico se buscaría una curva en la zona media o inferior, Dos ventajas que apuntaban De Boodt y colaboradores (1974) en la representación gráfica de la curva son el hecho de que ayuda a juzgar la desviación entre la curva de un sustrato y la curva óptima y que si el material estudiado no es el adecuado, ayuda a predecir con que tipos de materiales se deberá mezclar para obtener un sustrato que se halle dentro de la curva óptima.

2.7 conceptos de automatización y control electrónico.

2.7.1Sistemas de control

Los sistemas de control según la Teoría Cibernética se aplican en esencia para los organismos vivos, las máquinas y las organizaciones. Estos sistemas fueron relacionados por primera vez en 1948 por Norbert Wiener en su obra *Cibernética y Sociedad* con aplicación en la teoría de los mecanismos de control. Un sistema de control está definido como un conjunto de componentes que pueden regular su propia conducta o la de otro sistema con el fin de lograr un funcionamiento predeterminado, de modo que se reduzcan las probabilidades de fallos y se obtengan los resultados buscados. Hoy en día

los procesos de control son síntomas del proceso industrial que estamos viviendo. Estos sistemas se usan típicamente en sustituir un trabajador pasivo que controla una determinado sistema (ya sea eléctrico, mecánico, etc.) con una posibilidad nula o casi nula de error, y un grado de eficiencia mucho más grande que el de un trabajador. Los sistemas de control más modernos en ingeniería automatizan procesos en base a muchos parámetros y reciben el nombre de Controladores de Automatización Programables (PAC).

Ganssle y Barr (2003) definen que un sistema de control es un sistema integrado cuya función es manipular un dispositivo físico. Algunos ejemplos de sistemas de control comunes son los termostatos, elevadores y sistemas de dirección de vehículos.

Los componentes básicos de un sistema de control se pueden describir como objetivos, controlador y resultados o salidas. Los objetivos son llamados señal de referencia y definen el estado deseado de la variable física de interés. El controlador está constituido por todos los elementos que permiten convertir la señal de referencia en una señal de control. Estos elementos pueden ser mecánicos, eléctricos, hidráulicos, neumáticos o electrónicos.

La señal de control que genera el sistema se debe aplicar entonces al proceso que se desea controlar, el cual es llamado *Planta*. La señal de control modifica la salida entregada por la planta, la cual es la variable final cuyo valor se desea controlar. Las figuras 2.4 y 2.5 muestran los diagramas de un controlador y una planta. Aunque ambos sistemas tienen la misma representación en diagrama de bloques, el controlador se diseña para añadirse a la planta y controlar un proceso físico en ella.

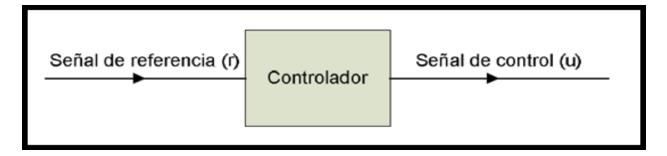


Figura 2.4 Diagrama de bloques de un sistema de control

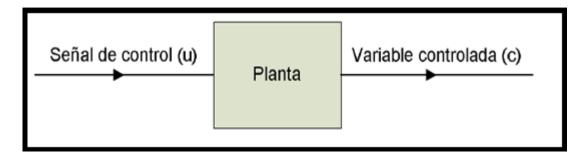


Figura 2.5 Diagrama de bloques de una planta

La Figura 2.6 muestra los dos conceptos anteriores integrados en un solo sistema. En la misma Figura 2.7 se incluye el efecto de las perturbaciones externas. Estas señales entran al sistema después de aplicada la acción de control. El sistema mostrado en la Figura 2.6 es llamado sistema de control en lazo abierto, mientras que el mostrado en la Figura 2.7 es un sistema de control en lazo cerrado. En ambos sistemas la variable de interés se ha marcado con la letra c y puede representar una temperatura, una posición o cualquier otra magnitud física que se desee controlar.

En los sistemas de control en lazo abierto no se tiene información del efecto de las perturbaciones externas (n), por lo que el controlador no puede corregir la señal de control (u) para minimizar su efecto negativo. La señal de referencia (r) que se alimenta al controlador permanece constante a lo largo del proceso. Los sistemas de control en lazo cerrado incluyen un elemento adicional, un

sensor encargado de monitorear la salida de la planta y compararla con la referencia original para generar la señal que se alimenta al controlador (*b*). Esta señal incluye información del efecto de las perturbaciones externas y así permite corregir la respuesta global del sistema (Kuo, 1996; Ogata, 1998).

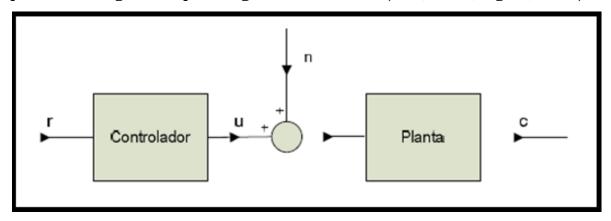


Figura 2.6. Sistema de control en lazo abierto

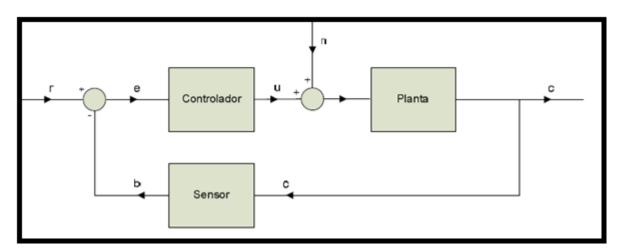


Figura 2.7. Sistema de control en lazo cerrado.

En la figura 2.8 se muestra un ejemplo: Un sistema de control de temperatura en un invernadero. Es un sistema en lazo cerrado con un solo actuador, un calefactor de gas, por lo que soló puede elevar la temperatura del invernadero (planta).

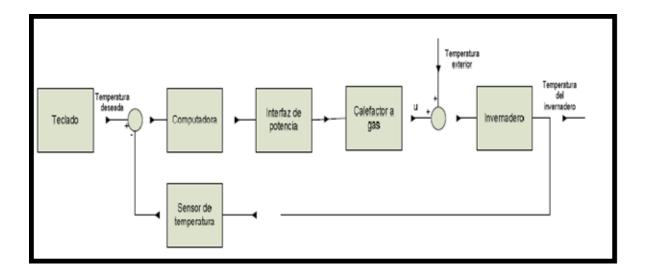


Figura 2.8. Sistema de control automático de temperatura.

2.7.2 Controladores

El elemento más importante de los sistemas de control automático, como su nombre indica, es el controlador. Si bien los controladores pueden ser dispositivos mecánicos, hidráulicos, eléctricos o incluso químicos; los controladores electrónicos digitales están cada vez más difundidos por la flexibilidad que tienen para cambiar las estrategias de control (Miranda, 2008).

Los controladores electrónicos digitales más sencillos son los que están con base en lógica combinacional y secuencial y son llamados *circuitos digitales*. Estos circuitos constituyen la base para las computadoras electrónicas más complejas, que son la principal opción para la implementación física de los sistemas de control automático.

Las computadoras electrónicas son máquinas capaces de realizar cálculos matemáticos y tomar decisiones en función de la información que se les

suministra. Esta definición abarca un amplio rango de dispositivos electrónicos, de los cuales los más relevantes por su uso como controladores automáticos son los sistemas integrados, los controladores lógicos programables, los sistemas de registro de datos y las computadoras personales. Todas estas computadoras están con base en núcleos de microprocesadores o microcontroladores de diferente capacidad y con varios niveles y tipos de periféricos de entrada y de salida (Miranda, 2008).

Los sistemas integrados (embedded systems) son computadoras diseñadas para realizar una función específica y carecen de flexibilidad, por lo que se les considera la contraparte de las computadoras de propósito general. Los sistemas integrados forman parte de teléfonos celulares, máquinas registradoras, electrodomésticos, equipos médicos, semáforos y muchas otras aplicaciones (Ganssle y Barr, 2003). Sus características centrales son su diseño cerrado o con muy poca flexibilidad, que permite la optimización del tamaño físico y el costo de los componentes. Dependiendo de cada aplicación, los periféricos de entrada pueden ser inexistentes (como en los sistemas de frenos antibloqueo) o constar de botoneras y luces, pantallas sencillas, teclados o terminales de control complejas. Muchos sistemas electrónicos se consideran sistemas integrados y existe cierta controversia acerca de la terminología, ya que algunos sistemas integrados actuales tienen cierto grado de flexibilidad en la programación, como en el caso de los teléfonos celulares (Noergaard, 2005).

2.7.3. Interfaz de potencia

Las computadoras electrónicas funcionan internamente con bajos niveles de potencia eléctrica. Estos niveles, si bien permiten realizar cálculos matemáticos complejos, no son adecuados para tomar directamente acciones de control sobre los actuadores del sistema de control. La función de las interfaces de potencia es proporcionar la potencia necesaria para que las señales lógicas generadas por el controlador puedan actuar sobre los elementos físicos. Mientras que las señales eléctricas son usadas en electrónica general para transportar *información*, en electrónica de potencia son usadas para transportar *energía* (Miranda 2008).

Los interruptores que se usan en las etapas de salida de los sistemas de control automático caen en dos grandes categorías: Electromecánicos y semiconductores.

2.7.4. Comunicaciones electrónicas

Las diferentes partes de los sistemas de control deben transmitir información entre sí. La información incluye mediciones de sensores, valores de referencia, señales de activación de salidas y comunicación entre los elementos internos del sistema. La comunicación de datos implica que la información es digital tanto en la fuente como en el destino, aunque durante la transmisión puede estar en forma digital o analógica. Esto quiere decir que se pueden utilizar canales analógicos (como la modulación en amplitud o frecuencia) para transmitir información digital (Tomasi, 2003).

Algunas de las interfaces de comunicaciones seriales más utilizadas en los sistemas de control automático son la EIA/TIA-232 (antes RS-232), EIA-485, I2C, USB y Ethernet.

2.7.5 Automatización agrícola

El concepto actual de automatización en la agricultura se confunde muy a menudo con el de mecanización, la verdadera automatización ocurre hasta que se presenta una retroalimentación, en el sistema; debe de existir la habilidad del dispositivo a regularse por sí mismo (Carrillo, 1999).

Castro., (2008) Menciona que para el desarrollo de sistemas encaminados a la automatización del riego, se debe de contar con un grupo interdisciplinario, en el que participe personal con especialidad en ingeniería electrónica, computación, meteorología, agronomía, irrigación y nutrición vegetal, ya que gran parte de las tareas que implica el desarrollo de este tipo de sistemas están relacionadas entre sí.

Existen varias áreas de aplicación general para la automatización en la agricultura. Destacan la propagación de plántulas, la agricultura de precisión (siembra, manejo de malezas, cosecha), el riego, el control de clima en invernaderos y el manejo postcosecha (refrigeración, empaque, distribución). El desarrollo de herramientas de hardware y software como los microcontroladores y microprocesadores ha llevado a la integración de controladores complejos (Morais y Boaventura, 2000).

Una de las áreas más avanzadas en tecnificación es el riego, donde ya se encuentran disponibles de manera comercial programadores de riego de diferentes capacidades. Rodríguez y Berenguel (2004) mencionan las siguientes razones que hacen que el riego y fertirriego se puedan automatizar con relativa facilidad:

- Las redes de riego son fijas.
- Los caudales son bajos.
- Las unidades de fertirrigación (superficies regadas simultáneamente) son relativamente grandes.
- Factores ambientales, como el viento, no afectan estos sistemas de fertirriego.
- El riego no interfiere con la mayoría de las labores agrícolas en los invernaderos.

En un principio, los sistemas de control de riego han sido simples temporizadores, pero han evolucionado a sistemas más complejos y el uso de sensores para conocer el nivel de humedad en el suelo se extiende cada vez más. Los sensores que más se utilizan son los tensiómetros y los sensores TDR (time domain reflectometry). Sobre el funcionamiento de los sensores TDR, cada vez más utilizados gracias a su precisión, se puede consultar el artículo de Noborio (2001). A pesar de la introducción de sensores y controladores más precisos y económicos, la programación de riegos sigue siendo la práctica más extendida para el control automático del riego.

Otro elemento que empieza a desempeñar un papel importante en la automatización agrícola son los sensores inteligentes. Estos dispositivos están dotados de cierta capacidad de procesamiento y pueden ejecutar tareas de control y comunicaciones, además de tomar mediciones. Sobre comunicaciones inalámbricas y sensores inteligentes puede consultarse el artículo de Wang *et al.* (2006).

2.8 Sistemas de control de riego mediante sensores de humedad de sustratos

2.8.1 Interpretación y aplicación de la información de sensores de humedad de suelo y sustratos

La programación del riego es un conjunto de procedimientos técnicos desarrollados para predecir cuánto y cuándo regar. Los métodos de programación del riego se basan en:

- Medir el contenido de agua en el suelo
- Medir el estado hídrico de la planta
- Medir parámetros climáticos

Los sensores que miden el contenido de agua en el suelo permiten conocer cómo el cultivo va extrayendo el agua del suelo, de forma que el riego puede programarse para mantener un contenido de agua en el suelo entre dos niveles de humedad. El límite superior es fijado para evitar drenaje, y por tanto lavado de fertilizantes, y el límite inferior representaría el punto a partir del cual el cultivo sufre estrés hídrico (Fernández 1994).

2.8.2 Descripción de los sensores de humedad de suelos y sustratos

Los sensores pueden medir tanto los contenidos volumétricos de agua en el medio como su potencial matricial. En muchos suelos agrícolas, el potencial matricial es una aproximación al potencial hídrico total del suelo. El potencial osmótico puede estar afectado por la salinidad, el cual modifica apreciablemente al potencial hídrico total del medio, por lo que se debe buscar

la manera de medir el contenido de humedad del medio independiente de la salinidad (Fernández 2001).

2.8.3 Sensores de potencial matricial del suelo

Para la programación de los riegos el potencial matricial del suelo (Ψ_m) es una medida útil de la humedad del suelo ya que indica la disponibilidad de agua para los cultivos. Se puede utilizar la información publicada por parte de fabricantes de equipos y servicios de extensión para seleccionar los valores de los límites superior e inferior. Idealmente estos valores deberían determinarse para los cultivos más importantes.

Algunos autores y fabricantes de equipos han indicado que los puntos límite superior e inferior definen adecuadamente el potencial matricial en la zona radicular para la producción hortícola en suelo; se establecen diferencias entre la textura, la especie y las condiciones evaporativas. En el caso de cultivos con riego de alta frecuencia los intervalos recomendados están entre -10 y -20 kPa, -10 y -30 kPa, y -20 y -40 kPa para suelos de textura gruesa, media y fina respectivamente. Los valores recomendados habitualmente en este caso se refieren a los sensores de potencial matricial localizados en la zona de máxima concentración de raíces activas. Los sensores de potencial matricial localizados a mayor profundidad presentan normalmente valores más bajos (más negativos) en un cultivo bien regado.

2.8.3.1 Tensiómetros

El tensiómetro mide el esfuerzo que las raíces deben realizar para extraer la humedad del suelo (potencial matricial). Son sensores baratos y de fácil instalación, sin embargo no miden directamente el contenido de agua del suelo, además la relación entre el potencial matricial y el contenido de agua no es universal y difiere para cada tipo de suelo (Fernández 1994).

Los tensiómetros son baratos, simples y fáciles de utilizar; sin embargo requieren de una preparación y mantenimiento adecuado para proporcionar datos exactos y fiables. Protocolos de uso adecuados normalmente se encuentran disponibles con los fabricantes y distribuidores. El tensiómetro tradicional consta de una cápsula cerámica porosa fijada a un tubo plástico transparente con el mismo diámetro exterior (normalmente aprox. 2.5 cm) con un depósito de agua en la parte superior acoplado a un vacuómetro. El tensiómetro se llena de agua de tal manera que la columna de agua en su interior forma un continuum con el agua de la solución del suelo en el espacio circundante a través de la cápsula porosa. El potencial matricial del suelo circundante ejerce una succión sobre el agua del tensiómetro, lo que se refleja en la lectura del vacuómetro. Los tensiómetros se fabrican en longitudes estándar, normalmente en longitudes múltiplo de 15 y 30 cm, por ejemplo, 15, 30, 45, 60, 90 y 120 cm.

Una simple adaptación para automatizar el riego consiste en fijar un interruptor al vacuómetro de tal manera que cuando la aguja alcanza ese valor se envía una señal al controlador de riego para que inicie el riego. En la actualidad se emplean transductores de presión en lugar de los vacuómetros.

Los tensiómetros tienen normalmente un intervalo de funcionamiento de 0 a -80 kPa; por debajo de este valor la columna de agua se rompe,

penetrando el aire en los tensiómetros e invalidando las medidas siguientes. Esta limitación no tiene consecuencias en sistemas de producción bajo riego, dado que los potenciales matriciales se mantienen normalmente dentro de estos límites.

En función de las características de la cápsula cerámica los tensiómetros pueden presentar un intervalo de funcionamiento más limitado (0 a –40 kPa) con un tiempo de respuesta más rápido y lecturas más exactas. Estos tensiómetros se pueden utilizar en suelos de textura gruesa o sustratos artificiales. Para conseguir total exactitud, las lecturas han de ser corregidas para el efecto de la gravedad en la columna de agua. 10 cm de columna de agua equivalen a –1 kPa de la lectura del tensiómetro; para una lectura de –20 kPa en un tensiómetro de 30 cm el valor corregido es de –17 kPa. Estas correcciones son innecesarias cuando los tensiómetros se emplean para planificar riegos y muy especialmente si son superficiales. La salinidad del suelo no afecta a las lecturas del tensiómetro, ya que los solutos se mueven libremente a través de la cápsula porosa y no afectan a la lectura del vacuómetro.

2.8.3.2 Sensores de Resistencia Eléctrica

Los sensores de resistencia eléctrica consisten en una matriz con dos electrodos. El agua y solutos de la solución del suelo se equilibran con los de la matriz del sensor. La resistencia eléctrica entre los electrodos es función del contenido en agua. Dado que el equilibrio entre el sensor y el suelo es una función del potencial matricial del suelo, la resistencia medida será una lectura indirecta del potencial hídrico del suelo, por lo que se requiere calibración. Este tipo de sensor es barato, simple y fácil de instalar. Sin

embargo es importante considerar las condiciones de operación, la calibración, vida útil del sensor, cuando se evalúe su utilidad para la programación del riego (Fernández 1994).

2.8.3.3 Sensores de Matriz Granular

Los sensores de matriz granular son adaptaciones de los sensores de bloque de yeso en los que se emplean materiales alternativos. Estos materiales no se degradan en el suelo, tienen vidas útiles considerablemente mayores que los bloques de yeso, y su efectividad aumenta a potenciales matriciales mayores (menos negativos). El más común es el Watermark (Irrometer Co. California, USA). Este sensor es barato, fácil de usar e instalar, y presenta un intervalo de funcionamiento entre -10 y -200 kPa, tiene unas necesidades de mantenimiento mínimas y una vida útil relativamente extensa (de 5 a 7 años). Para un uso adecuado en el manejo del riego en sistemas de producción hortícola intensiva, se requiere una calibración. El Watermark consiste de dos electrodos situados dentro de un bloque (matriz de relleno granular) que se cubre por una malla externa con amplias aberturas. El modelo actual, el Watermark 200SS, emplea acero inoxidable como malla, con dimensiones de 2 cm de diámetro y 8 cm de longitud, para instalarlos se fijan al extremo de tubos de plástico rígido, con un diámetro aproximadamente igual. Estos dispositivos cuentan con un lector portátil (dataloggers) suministrado por el mismo fabricante, para el registro continuo y automático de datos. Las lecturas se pueden convertir a valores de potencial matricial con ecuaciones de calibración a partir de la resistencia medida. La resistencia eléctrica medida está influenciada por la temperatura del suelo (se recomienda hacer una corrección) y la conductividad eléctrica del suelo. Actualmente no hay suficiente información disponible para evaluar el comportamiento del Watermark en condiciones salinas (Fernández 1994).

Normalmente los Watermark no se consideran precisos con potenciales matriciales mayores de -10 kPa, lo que limita su uso en suelos arenosos o sustratos muy abonados, donde se requiere de una mayor precisión con potenciales matriciales altos. Así mismo que responden mal a procesos de humedecimiento parcial y su respuesta es considerablemente más lento que la de los tensiómetros equipados con transductores de presión.

Considerando las reservas con respecto a la precisión y capacidad de respuesta del Watermark, éste se puede utilizar para la programación de riegos, donde se sugiere que son más adecuados para suelos con buen drenajes (de textura media a gruesa) y con cultivos no demasiado sensibles al stress hídrico.

Los Watermark son más adecuados para cultivos herbáceos y leñosos, en suelo con riegos poco frecuentes, que para cultivos hortícolas en invernadero con riego localizado de alta frecuencia.

2.8.3.4 Sensores de Humedad Volumétrica

El uso de la humedad volumétrica del suelo para la programación del riego es menos directo que el del potencial matricial del suelo, ya que no se pueden emplear valores generales para definir los límites superior e inferior. Por ello, estos límites han de definirse para cada medio (por ejemplo suelo o sustrato) a partir de curvas características de humedad (definidas en el laboratorio o en campo). Una aproximación distinta consiste en interpretar la naturaleza dinámica de datos del sensor con la respuesta específica del cultivo con el fin

de definir los límites. En función de la configuración del sensor, se pueden emplear registros continuos de la humedad volumétrica del suelo para determinar la profundidad de infiltración, la tasa de absorción hídrica a diferentes profundidades, y el desplazamiento horizontal del agua aportada (Fernández 1994).

Existen varios tipos de sensores que pueden medir la humedad volumétrica del suelo, los más empleados en la programación de riego e investigación son los sensores dieléctricos. Anteriormente se utilizaba la sonda de atenuación de neutrones pero su uso se ha interrumpido debido al riesgo de radiación.

2.8.3.5 Sensores Dieléctricos (General)

Los sensores se basan en la medida de la constante dieléctrica de la matriz del suelo se utilizan ampliamente en investigación, en programación de riegos y en monitorización ambiental. Se utilizan dos métodos con este principio de la constante dieléctrica para medir la humedad en el suelo con aplicación al manejo del riego: (1) Reflectometría de Dominios Magnéticos de Tiempo (TDR – Time Domain Reflectometry) y Reflectometría de Dominios Magnéticos de Frecuencia (FDR – Frequency Domain Reflectometry), (Fernández 1994).

2.8.3.5.1 Reflectometría de Dominios Magnéticos de Tiempo (Time Domain Reflectometry; TDR)

La técnica de reflectometría en el tiempo (TDR) es un método que mide el tiempo de recorrido de un pulso electromagnético, que varía con el contenido de agua del suelo. A

pesar de su precisión, presenta un alto coste y las medidas requieren tiempo, por lo que se emplea preferentemente en centros de investigación (Fernández 1994).

El método TDR se utiliza ampliamente en investigación y aplicaciones de monitorización ambiental. Con base en el tiempo de transmisión de una señal electromagnética (EM) a lo largo de una sonda metálica que se introduce en el suelo. La constante dieléctrica aparente del suelo se determina a partir del dato del tiempo de tránsito (en ambas direcciones) y de la longitud de la sonda (Ferre y Topp, 2002). Las sondas TDR empleadas más frecuentemente constan de un par de barras metálicas que se insertan en el suelo. Estas barras están hechas de acero inoxidable, con un diámetro 5-6 mm, 15-30 cm de longitud y con una separación de 5 cm.

En el caso de que se empleen sondas TDR para la programación de riego, se pueden insertar verticalmente en la superficie del suelo, horizontalmente en la zona radicular, o instalar de forma inclinada. Existen pequeños sistemas portátiles TDR (que combinan el instrumento y la sonda) que se pueden utilizar para realizar medidas puntuales. Una dificultad práctica con relación a las medidas de TDR, es con el registro automático de múltiples sondas, que se limita a la longitud del cable entre la sonda y el instrumento que es inferior a 25 m. La obtención de datos de la humedad del suelo a profundidades por debajo de la superficie del suelo mediante el empleo de sondas convencionales TDR no se logra sin inducir una perturbación en el suelo. Esto supone una limitación a su uso para la programación de riego, cuando se requiere información sobre la parte inferior de la zona radicular. En general el uso de sistemas TDR para la programación de riego es más adecuado para realizar medidas en la parte superior del perfil del suelo, en situaciones en las que la longitud del cable no supone un problema.

2.8.3.5.2 Reflectometría de Dominios Magnéticos de Frecuencia (Frequency Domain Reflectometry; FDR)

Según Fernández, 1994. Los sensores de FDR son conocidos normalmente como sensores de capacitancia, ya que utilizan la capacitancia para medir la constante dieléctrica de la matriz del suelo. Estos sensores emplean el suelo circundante como parte de un capacitor eléctrico. Se utilizan frecuentemente en investigación y aplicaciones de monitorización ambiental, y son adecuados para la programación de riego. Los sensores FDR son resistentes, estables y precisan de un nivel mínimo de mantenimiento, y tienen tiempos de respuesta rápidos. Algunos de los sensores FDR solucionan dos de las principales limitaciones de las sondas TDR ya que, en función de su diseño, pueden instalarse a distintas profundidades y no hay restricciones en cuanto a longitud de cable. Los sistemas FDR más complejos son relativamente caros en comparación con otros sistemas comerciales para la medida de la humedad del suelo a nivel de explotación.

Existe una serie de sensores FDR disponibles en el mercado con distintos diseños y formatos de instalación. Un diseño habitual es el de anillos cilíndricos, que permite la instalación a distintas profundidades de una única sonda situada en el interior de un tubo de acceso. También se emplean barras paralelas. Datos recogidos en continuo por los sensores del tipo de anillos cilíndricos a distintas profundidades proporcionan una imagen dinámica y detallada del movimiento de agua en el suelo y la absorción hídrica del cultivo. Esta información se puede emplear para definir los límites superior e inferior, específicos de cultivo.

III. METODOLOGÍA

3.1 Selección de sustratos, caracterización física y Formulación de mezclas de sustratos específicos

La caracterización de los sustratos se realizó en el laboratorio de Física de Suelos del Colegio de Postgraduados, Montecillos, Estado de México.

La selección de los sustratos se realizó con base a los sustratos comerciales disponibles en la zona, se diseño una mezcla de estos con el fin de disminuir costos a partir de la metodología propuesta por Zamora (2005).

3.1.1 Sustratos empleados

En este trabajo se emplearon seis sustratos: Tezontle (M1), Agrolita (M2), Peatmoss (M3), Arena (M4), Tepojal (M5), y Germinasa (fibra de coco) (M6). Estos materiales se caracterizaron de manera individual (caracterización física).

3.1.2 Análisis físico de sustratos

El análisis físico de los sustratos considerados en este trabajo incluyó la determinación de: Densidad aparente (Da), espacio poroso (EPT), retención de humedad (curva de liberación de agua), análisis granulométrico y densidad real (Dr). Cada determinación se realizó por triplicado siguiendo la metodología de análisis de sustratos propuesta por Ansorena (1994) y por Warncke (1986).

3.1.3 Densidad aparente y porosidad de aire

Para la determinación de estas característica se utilizaron macetas comerciales de 1.5 L de capacidad, las cuales se pesaron y llenaron hasta el borde a intervalos de 100 mL con el sustrato secado a peso constante a 105° C. Sobre el sustrato se aplico un peso de 650 g por tres minutos para facilitar su asentamiento, agregando más sustrato cuando el volumen se redujo. Las macetas con el sustrato se pesaron nuevamente y se cubrieron en la parte superior con un plástico sujeto por una liga y se colocaron en una bandeja de plástico. A esta se le agrego agua a intervalos de media hora, para que penetrara lentamente por los orificios situados en la base de las macetas, afin de que el sustrato se humedeciera por capilaridad. Se agrego agua a un recipiente hasta que su nivel coincidía exactamente con el nivel del sustrato dentro de la maceta. Una vez saturados los sustratos, se sacaron las macetas del recipiente con agua para permitir que el sustrato se drenara y tomara el volumen equivalente a su manejo comercial en vivero. Este proceso se repitió por tres ocasiones. Después de la última saturación, y manteniendo las macetas dentro del agua, se taparon los orificios de la base con tapones de goma para evitar que drenara el agua. Se saco del agua y se seco por la parte exterior. Se colocaron sobre un embudo y se destaparon los orificios para dejar drenar el agua del sustrato durante 30 minutos sobre un recipiente colector. Finalmente se medio el volumen de agua colectado.

La densidad aparente se calculó a partir de:

Da
$$(kg \cdot L^{-1}) = (P2 - P1) / V$$
 en donde:

P2 = peso de la maceta + peso del sustrato (g)

P1 = peso de la maceta (g)

V = volumen de la maceta, L

La porosidad de aire se calculara a partir de:

$$Pa (\%) = 100 V1 / V2$$

Donde:

V1 = volumen de agua colectado, mL

V2 = volumen del sustrato, mL

3.1.4 Densidad real

Se peso un matraz aforado de 100 mL (Pm), se añadió una cantidad de sustrato secado a 105° C y se peso nuevamente (Ps). Se añadió agua destilada y hervida hasta aproximadamente la mitad del volumen del matraz, arrastrando hacia el interior las partículas de sustrato que quedaran adheridas a las paredes. Tras dejar reposar durante 24 horas se expulso el aire, hirviendo lentamente el contenido del matraz durante unos minutos, y agitándolo suavemente para evitar la pérdida de sustrato por formación de espuma. Se enfrió y se enraso con agua destilada previamente hervida y enfriada a 20° C. Se peso (Psa) para después vaciarlo y limpiarlo. Se lleno hasta la mitad con agua destilada hervida. Se poso en baño termostático a 20° C, y se enraso con agua destilada hervida, enfriada a 20° C. Una vez que el contenido se saco de este baño, se seco al exterior del matraz y se peso (Pa). El valor de la densidad real del sustrato se obtuvo aplicando la fórmula:

$$dr = da (Ps-Pm) / (Ps-Pm) - (Psa -Pa),$$

Donde:

Pm = peso del matraz de 100 mL

Ps = Peso del sustrato secado a 105 °C + Pm

Psa = Peso del sustrato secado a 105 °C + Pm + agua destilada a 20°C

Pa = Peso del sustrato después del baño termostático y secado al exterior del matraz

dr = densidad real

da = densidad del agua a 20° C.

3.1.5 Retención de humedad

Esta característica, definida como el contenido de agua del sustrato a capacidad de contenedor, se refiere a la máxima cantidad de agua que puede retener un sustrato colocado en un contenedor, tras saturación y drenaje hasta el equilibrio (Martínez *et al.*, 1992). Es equiparable al concepto de capacidad de campo en suelos agrícolas

Para su medición la retención de humedad se relacionará con el contenido en agua del sustrato tras la medición de la porosidad de aire, a partir de lo cual se procederá a pesar la maceta con el sustrato humedecido a capacidad de contenedor (PSH). A este valor se le restará el peso del sustrato seco (PSS), se dividirá entre el volumen de la maceta y se multiplicará por 100.

Los resultados se expresarán como porcentaje de humedad en volumen

Retención de humedad (%) = (PSH- PSS) / V X 100

Donde:

PSH = peso del sustrato húmedo (g)

PSS = peso del sustrato seco (g)

V = volumen de la maceta (cm³)

3.1.6 Materia orgánica y cenizas

Una vez determinada la retención de agua, una muestra del sustrato se introdujo en una mufla calentada de manera gradual hasta 500° C manteniendo esta temperatura durante 4 h. La muestra se llevo a un desecador y una vez enfriada a temperatura ambiente se peso. Los porcentajes de materia orgánica y cenizas se calcularon con las siguientes fórmulas:

Materia orgánica (%) = PMS -PMI / PMS X 100

Donde:

PMS = peso de la muestra seca (g)

PMI = peso de la muestra incinerada (g)

Cenizas (%) = PMI / PMS X 100

Donde:

PMI = peso de la muestra incinerada (g)

PMS = peso de la muestra seca (g)

3.1.7 Diseño de sustratos específicos

La selección de los sustratos se realizo a partir de los sustratos comerciales disponibles en la zona. Se diseñó una mezcla de estos con el fin de disminuir costos, tomando en consideración las restricciones de diseño a partir de la metodología propuesta por Zamora (2005).

Se busco una mezcla con características contrastantes de materia orgánica, espacio poroso total y capacidad de aire. En el Cuadro 3.1 se indican las restricciones de diseño de las mezclas a diseñar.

Cuadro 3.1 Niveles a evaluar para cada variable de diseño.

variable de diseño	Materia orgánica	Espacio poroso total	capacidad de aire
		% en volumen	
Nivel de restricción	MO1	EPT	CA1
Valor de la restricción	>=25	>=60	>=10

MO1 = % de Materia orgánica para el nivel de restricción establecido, EPT =% Espacio poroso para el nivel de restricción establecido, CA = % Capacidad de aire para el nivel de restricción establecido.

Las mezclas finales fueron con base a seis materiales individuales, se consideraron las restricciones a partir de las variables de diseño (MO., EP, CA), obteniendo 57 mezclas (15 binarias, 20 terciarias, 15 cuaternarias, seis mezclas de cinco elementos y una mezcla de seis elementos). Por lo que a partir de las combinaciones de las variables de diseño y mediante programación lineal (con el software (DMS", a partir de la metodología propuesta por Zamora (2005)) se obtuvieron aquellas mezclas que cumplieron la función objetivo (minimización de costos) y las restricciones impuestas por

cada una de las variables incluidas en el modelo. Se consideró como sustrato óptimo económico aquel que cumplió con las restricciones especificadas a un costo mínimo.

Se alimento el software "DMS" desarrollado por Zamora (2005), con los resultados de la caracterización física de cada sustrato (curva de retención de humedad, espacios porosos totales, materia orgánica y precio por litro de cada sustrato), con las restricciones >=25% de M.O., >=60% de espacios porosos totales y Capacidad de aire >=10%.

Una vez obtenidas las proporciones de cada sustrato por medio del software "DMS", se realizo la caracterización física de la mezcla en el laboratorio de física de suelos, para comprobar los datos calculados por el software, además de conocer las curvas de retención y liberación de agua.

3.1.8. Determinación del punto de equilibrio R

A partir de los datos de la curva de liberación de agua se determinó la tensión a la que se igualan los contenidos de aire y agua del sustrato. Este parámetro, denominado R, se expreso en centímetros de tensión de columna de agua y es característico del sustrato. Se determino gráficamente representando de forma conjunta las curvas de porcentaje volumétrico de agua y de aire en función de la tensión aplicada, la proyección del punto de cruce de ambas curvas sobre el eje de la tensión nos proporciono el valor de R.

3.1.9. CALCULO DE LA CURVA TEÓRICA DE LIBERACIÓN DE AGUA PARA LA MEZCLA (50% FIBRA DE COCO Y 50% TEZONTLE).

Partiendo de los datos de las curvas de retención de humedad y de las proporciones de cada sustrato simple (50% fibra de coco y 50% tezontle), se calculó la curva de liberación de agua para la mezcla y se comparó con la curva experimental de ésta.

Para los cálculos de la curva de liberación de agua se partió del principio de linealidad.

3.2 Diseño electrónico del sistema de adquisición de datos, comunicación y control

3.2.1 Materiales utilizados en la construcción del sistema

La relación del material que se utilizó en el diseño, probar e implementar los sistemas electrónicos desarrollados (ver Cuadro 3.2).

Cuadro 3.2 Herramientas necesarias para la construcción de los circuitos electrónicos.

MATERIAL	CANTIDAD
Multimetro	1
Protoboard	4
Fuente de poder regulada	1
Computadora personal	1
Impresora Láser	1
Pasta para soldar	2
Soldadura 60% estaño y 40% plomo	1
Cautin	1
Soporte	1
Extractor de soldadura	1
Bases para circuitos integrados de 40	
pines	4
Cloruro Férrico	1
Acetona	1
Juego de brocas para perforar madera	1
Taladro eléctrico	1
Placa fenólica virgen para circuito	_
impreso de 10X10	3

De manera similar en el Cuadro 3.3 se indican los componentes electrónicos que se emplearon para la construcción del circuito de adquisición, transmisión de datos y control, vía USB y en el Cuadro 3.4 la relación de materiales para el circuito de potencia.

Cuadro 3.3. Lista de materiales utilizados para el circuito con comunicación USB.

COMPONENTE	CANTIDAD
PIC18F4550	1
Zócalo de 40 pines	1
Capacitor de 47 uF	
electrolítico	1
Cristal de 20 MHz	1
Capacitores de 22 uf	
cerámicos	2
capacitor 0.1 uF cerámico	1
Resistencias de 330 ohm	3
Leds rojo, azul y verde	3
Push botton normalmente	
abierto	1
Resistencia de 10 k ohm	1
Conector USB tipo B	1

Cuadro 3.4 Material utilizado en el circuito de potencia.

COMPONENTE	CANTIDAD
Resistencia de 470 ohm	1
Resistencia de 1 k ohm	1
Capacitor de 400 uF	1
Resistencia de 330 ohm	1
Triack a 400 V Opto acoplador moc(3040	1
ó 3041)	1
Led rojo	1
Placa fenólica 10X10 cm	1

3.2.2 Componentes electrónicos importantes en el desarrollo del sistema

3.2.2.1 Sensor de humedad EC5 de la empresa DECAGON DIVICES

El sensor marca ECH2O, modelo **EC-5** de la empresa Decagon Devices. Es capacitivo del tipo FDR (Frequency Domain Reflectrometry, Reflectrometría en el dominio de la frecuencia) ya que determina la permisividad del medio midiendo el tiempo de carga de un condensador que emplea el suelo como un dieléctrico. Al aplicar un pulso de voltaje, se puede medir la frecuencia resultante que variará con el dieléctrico. Es de tipo capacitivo que mide la constante dieléctrica o permisividad del medio (en este caso sustrato) para posteriormente correlacionarlo con su contenido volumétrico de agua (Volumetric Water Content, VWC), ver figuras 3.1 y 3.2.

Figura 3.1. Sensor EC-5

Características Técnicas del sensor EC-5:

Precisión:

- ± 3% en todos los suelos, con más de 8 dS/m,
- ± 2% con calibración específica

Voltaje: 2,5 – 5 V DC @ 10mA

Frecuencia del oscilador: 70MHz

Señal de salida: Voltaje, correlacionado linealmente (suelo) o polinomialmente (Medio de cultivo) con el VWC

Ecuaciones de calibración (según voltaje de excitación)

@2,5 V: VWC=0,00119mV - 0,401

@3,0 V: VWC=0,00116mV - 0,481

Longitud de Cable: 5m

Condiciones ambientales para su funcionamiento: -40 a 60 °C, 0 - 100% HR

Tiempo de Medida: 10mS

Resolución: 0,002m3/m3 (con Em50 y Em5b, con otros loggers puede variar)

Cable de conexión: Conector estéreo estándar de 3,5mm (stereo plug) para

conexión directa a los dataloggers de Decagon Em5 y Em50

Fuente: DECAGON DIVICES

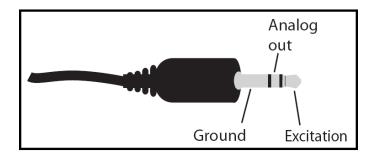


Figura 3.2. Configuración del conector estéreo (Fuente Decagon Divices).

3.2.2.2 Microcontrolador PIC18F4550

Pertenece a la familia de micro controladores de la empresa Microchip del rango de gama media y se le identifica porque presenta una memoria de programa del tipo flash de 32 Kbyte (16384 palabras), puede ser programado para desarrollar una serie de tareas de interés en la medición y control, y una serie de recursos que lo hacen semejante a otros de mayor potencia. Presenta 40 pines (Figura 3.3) lo que le permite contar con más líneas de entrada/salida disponibles (específicamente 34 pines) para configurarse a criterio propio del programador y conectarlas a periféricos.

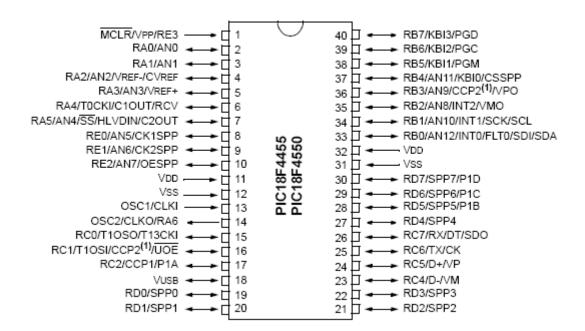


Figura 3.3. Diagrama de pines del microcontrolador PIC18F4550

3.2.2.2.1 Datos técnicos

- Convertidor Analógico-Digital de 10 bits
- 13 canales A/D
- El rango de operación de los canales A/D es de 0 a 5 VCD
- Memoria flash de programa 32 kbyte (16384 palabras de instrucción)
- Memoria de datos ESRAM 2048 bytes y EEPROM 256 bytes
- 34 I/O
- Protocolos de comunicación MSSPP(SPI y I2C), EUSART
- Timers de 8/16 –bit: 1/3

3.2.2.3. Contactor modelo LC1 D2510

Este dispositivo permite el encendido del sistema de riego (bomba) y la apertura de la electroválvula para hacer el riego.

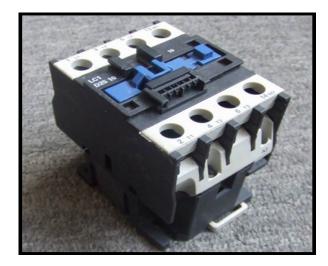


Figura 3.4. Contactor LC1 D2510 de la empresa Telemecanique

3.2.2.3.1 Características eléctricas del contactor LC1 D2510

Voltaje: 200-220, 440 y 600 VCA

Corriente: 40 A

3.2.3 Etapas del sistema automático de adquisición de datos, comunicación y control

- Se comunico el sensor EC5 con el Datalogger de Campbell Scientific, excitándolo por 10 milisegundos a 2.5 VCD, se leyó el dato de respuesta del sensor por medio de un osciloscopio, corroborando que el tiempo de excitación fuese de 10 milisegundos y que el voltaje de alimentación del sensor fuese de 2.5 VCD. Se observo el comportamiento del sensor y en base a este comportamiento se partió para programar el micro controlador PIC18F4550, con los parámetros adecuados de tiempo y voltaje de excitación, así como el momento de la lectura del dato. Para determinar los parámetros de programación del micro controlador, se pueden utilizar los datos de la hoja de especificaciones del sensor, evitándose el uso del osciloscopio y del Datalogger.
- Se investigo de forma experimental la manera de conectar el sensor de humedad en un protoboard, utilizando para ello material electrónico y el lenguaje de programación C# de Visual Studio .Net de la empresa Microsoft, con el fin de obtener los datos por medio del protocolo USB en una base de datos (MySQL) y que el sistema tomara decisiones de apertura o cierre de puertos a partir de estos datos.
- Se diseñaron y elaboraron los circuitos impresos que tienen por objeto contener los componentes electrónicos para cada circuito.

- Se probó el sistema durante varios días, sensando, desconectándolo y cambiándolo de medios de medición, para corroborar que su funcionamiento y los datos obtenidos fueran correctos.
- Se realizo la validación del sistema de control electrónico desarrollado en un sustrato simple (Agrolita) y en una mezcla de sustratos (50% Tezontle y 50% Fibra de coco), bajo condiciones de invernadero y controlando el nivel de humedad en estos.

3.2.4. Diseño y construcción de los circuitos electrónicos

3.2.4.1. Desarrollo del sistema comunicación y control electrónico

La base del sistema considera el sensor de humedad EC5 ya presentado anteriormente, el cual es leído por un canal Analógico-Digital del micro controlador PIC18F4550 de la empresa Microchip, el dato ya convertido de la señal analógica a digital, es enviado por el protocolo USB a la computadora, por medio de un software desarrollado(PicWinC).

Ser utilizó el microcontrolador PIC18 F4550 por las siguientes razones:

- ✓ Permite cargarle de manera rápida y sencilla un programa en su memoria para que realice una tarea específica.
- ✓ Permite la conexión con la computadora mediante el protocolo de comunicación USB para el intercambio de información digital.
- ✓ Por su estructura interna nos permite trabajar a diferentes frecuencias de operación, permitiéndonos utilizar una gama de cristales diferentes(4 MHZ, 8MHZ, 20MHZ, etc)

- ✓ Cuenta con una memoria tipo Flash de 32 Kb, que permite su escritura y borrado del código en hexadecimal del programa fuente una cantidad considerable de veces.
- ✓ Se puede comunicar con una pantalla LCD para visualizar valores o mensajes.
- ✓ Cuenta con un Convertidor Analógico-Digital de 10 bits
- ✓ Cuenta con 13 canales A/D. lo que nos permite conectar 13 sensores analógicos.
- ✓ Cuanta con una Memoria de datos ESRAM 2048 bytes y EEPROM 256 bytes.
- ✓ Cuanta con 34 I/O.
- ✓ Tiene los protocolos de comunicación MSSPP (SPI y 12C), EUSART.
- ✓ Tiene los protocolos de comunicación MSSPP (SPI y I2C), EUSART.

Se propuso el siguiente circuito electrónico para realizar la lectura del sensor y convertir la señal analógica a digital por medio del canal analógico ANO del microcontrolador, en el puerto RD2 se manda la señal de excitación para el sensor y todo el puerto B fue programado para hacer el control del encendido y apagado de motores y electroválvulas, por medio de una fase de potencia que se describirá más adelante. La comunicación entre el microcontrolador y la PC se lleva a cabo por medio del protocolo USB, ver figura 3.5.

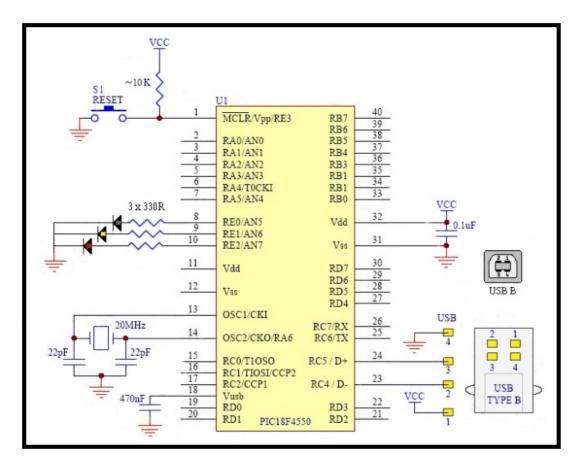


Figura 3.5. Circuito eléctrico del sistema de adquisición, transmisión y control.

3.2.4.2. Fase de potencia

Se propuso el circuito de la figura 3.6 para la fase de potencia, el cual nos permitirá controlar motores y electroválvulas para el control de la humedad, a partir del puerto B del microcontrolador, este circuito nos permite controlar un dispositivo a la vez, por medio de un pin del puerto B, para nuestro caso, si se requiere activar más de un dispositivo eléctrico, se deberán usar mas pines del puerto B o del microcontrolador.

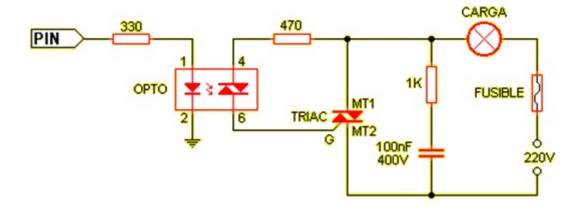


Figura 3.6. Circuito eléctrico de la fase de potencia.

3.2.4.3. Diseño de los circuitos impresos

El circuito impreso tiene como función el de sujetar mecánicamente y conectar eléctricamente los componentes electrónicos a través de rutas o pistas de material conductor.

Para el diseño de los diagramas electrónicos se utilizó el software PCB Wizard(Software para el diseño de circuitos impresos), donde se determinan las dimensiones de las placas fenólicas a utilizar y el tamaño de los gabinetes que son una caja de plástico la cual sirve para contener la tarjeta electrónica del sistema y protegerlo a la hora de transportarlo de un lugar a otro, así como la distribución tentativa de las pistas de conducción en las placas fenólicas.

3.2.4.4. Construcción de los circuitos impresos

Los diseños de los circuitos fueron impresos en papel couche con una impresora laser.

Se tomó la placa fenólica y se limpió (sucia la placa no brinda la facilidad para que pueda adherirse la tinta de impresión), por último se procuró no tocar la superficie de la placa limpia con los dedos ya que éstos dejan marcas de grasa lo que provoca dificultades en la obtención de una buena placa fenólica impresa.

Se prosiguió a sobreponer la impresión del circuito en contacto directo con la placa fenólica, auxiliándose de bordes para sujetarlos y adhiriendo cinta adhesiva en las pestañas, para evitar que la impresión se moviera durante el proceso de planchado y se colocó una hoja blanca sobre la hoja de papel couche que contiene al circuito para evitar que el calor la derritiese y se pegara a la plancha. Se conectó la plancha y se puso a calentar a una temperatura de 130-160 °C.

Se realizó el proceso de planchado que consistió en aplicar calor de 3 a 5 minutos sobre la placa. Se deslizó la plancha de manera uniforme; para verificar que la transferencia se realizó correctamente, bastó con observar un color obscuro en el papel couche.

Se dice que una temperatura mayor a la recomendada puede ocasionar que el papel normal se queme, por tanto la trasferencia del toner al cobre no se realice correctamente, y se tenga que volver a repetir el proceso. Se procede a quitar la hoja, en caso de que se presenten lugares con exceso de tóner, éstos se pueden quitar con el empleo de un cúter.

Una vez que se verificó que todas las pistas quedaron adheridas sobre la placa fenólica se preparó el ácido en un recipiente de plástico, para lo cual se mezclaron dos partes de cloruro férrico por una parte de agua para activar la solución. Se introdujo la placa al recipiente y se dejo durante media hora, sin

embargo, cada cinco minutos se agita con el fin de que la solución de ácido atacara con mayor eficiencia al cobre.

El proceso se completó cuando la placa tomó un color blanco donde el ácido atacó el cobre, se lavó la placa con agua para quitar los restos de la solución.

Se obtuvo una placa en buen estado con las pistas bien marcadas y desapareció el cobre en las partes de la placa no útiles, se seco con un pañuelo y el siguiente paso fue dejar al descubierto las pistas donde solo pueda verse el cobre. El exceso de tinta del toner se eliminó con algodón impregnado de acetona, con el fin de que se facilite soldar los componentes de la placa.

Se utilizó un taladro eléctrico para realizar las perforaciones sobre la placa fenólica. Una vez que se hicieron todas las perforaciones sobre la placa, éstas se verificaron colocando en contra luz la placa perforada y se verificó que no faltara ninguna perforación. Se colocaron los componentes electrónicos en la placa perforada y se procedió a soldarlos.

Antes de encender la interface por primera vez se realizaron algunas verificaciones a fin de determinar su correcto funcionamiento y evitar daños en los componentes.

Las verificaciones que se realizaron fueron:

Se examinó detalladamente que todos los componentes estuvieran correctamente montados. Ya que al insertar un circuito de manera incorrecta se producen daños permanentes en su interior dejándolos inservibles y luego se tiene que utilizar uno nuevo.

Se comprobó que hubiera continuidad entre el inicio y fin de cada una de las pistas; para realizar esta operación se utilizó el multímetro en su configuración de medición de resistencia. También que no hubiera continuidad entre dos punto continuos o dos pistas continuas porque esto indicaría un cortocircuito.

3.2.4.5. Pre-pruebas del sistema de control

Se conectó el sensor al sistema de adquisición de datos y éste a su vez a la computadora, donde el software que se desarrolló (PicWinC) permitió controlar el sistema de riego. Al sistema de adquisición se conectó el sistema de potencia para encender y apagar la bomba y la electroválvula. Una vez hecho lo anterior, se probó y ajusto varias veces el sistema; esto permitió corregir, e incluso rediseñar de algunos de los componentes.

3.2.5 Interfaz de usuario

3.2.5.1 Software utilizado

MySQL versión 5.1 de ORACLE

Se uilizó el lenguage de programacion C# de Microsoft Visual studio 2008.

Office 2007 de Microsoft

CCS PCW versión 4.057 compilador

MPLAB versión 8.4 de la empresa Microchip.

PCW Wizard-Profesional Edition

MASTER-PROG+ de Microchip

3.2.5.2 Software de control

Se desarrolló un programa en el lenguaje de programación C# de Visual Studio 2008, para interactuar entre los componentes de sistema de control del riego en sustratos y el usuario (la interfaz de usuario). Las partes del software contiene tres módulos: a) configuración del sistema de control; b) captura de sensor y c) un módulo grafico.

3.2.5.3 Prueba del sistema de control

Los experimentos se llevaron a cabo los días 13 y 26 de abril del año 2010. Estos consistieron en mantener un nivel de humedad en un sustrato simple (agrolita) y en una mezcla (50%Tezontle y 50% fibra de coco), sin cultivo, donde sólo se recuperó el agua perdida por evaporación, por medio del sistema de automatización de riego que se desarrolló.

Se conectaron todos los componentes del sistema de automatización de riego, y se configura el software para que inicie a operar el riego por sí mismo.

En la configuración del software se introducen: La ecuación de respuesta del sensor al contenido de humedad volumétrica en el sustrato; se define el tiempo de sensado; tiempo de riego y el umbral (contenido de humedad mínimo permitido).

El sistema evalúa el contenido de humedad en el sustrato, sí este es menor o igual que el umbral se inicia el riego, incluso se puede definir el rango en que se desee mantener la variación de humedad en el sustrato.

3.3 Seleccionar un sensor con base a su respuesta a la conductividad eléctrica

El fabricante nos dice que el circuito de los sensores ECH2O minimiza el efecto de los cambios de la temperatura y su recubrimiento minimiza los de la salinidad. Las sondas **EC-10** y **EC-20**, de 10 y 20 cm, respectivamente, exploran un mayor volumen de suelo, pero son más sensibles a la salinidad. Los modelos **10HS** (High Speed) y **EC-5** (de 10 y 5cm de longitud respectivamente) incorporan un oscilador que funciona a una frecuencia de 70MHz, por lo que se puede usar en un rango más amplio de suelos o medios con lecturas de conductividad eléctrica (CE) de hasta 8 dS/m.

Para comprobar el dato de respuesta del sensor ante la CE que proporciona el fabricante se realizó un experimento en el Laboratorio de salinidad del Departamento de Irrigación de la Universidad Autónoma Chapingo

Para obtener la respuesta de los sensores a la CE con tres sistemas electrónicos diferentes se llevó a cabo el siguiente procedimiento:

Se formularon diferentes concentraciones de salinidad en agua con cloruro de sodio (NaCl) desde valores cercanos a 0 N (0 normal ó 0 ppm), hasta valores de 0.1 N (5839.3 ppm). La CE se midió con el dispositivo Corning Pinnacle Conductivity Meter Model 541, para cada concentración.

Se utilizaron los sensores 10HS y EC5 para evaluar su respuesta ante diferentes concentraciones de salinidad, para ello se utilizaron tres sistemas electrónicos (dataloggers CR10X de Campbell Scientific), sistema electrónico con alimentación al sensor de 2.5 V CD Y sistema electrónico con alimentación al sensor de 5 V CD).

Para cada concentración se medio la conductividad eléctrica, el voltaje de respuesta con cada sistema electrónico y la temperatura de la solución.

Para conocer la respuesta de los sensores a una gama amplia de CE se realizó un experimento en el que se formularon concentraciones desde 0.0041 mS/cm, hasta 186.1 mS/cm y se midieron las respuestas de los sensores con cada uno de los sistemas electrónicos.

Se seleccionó el sensor que presentó más estabilidad ante cambios en la conductividad eléctrica, debido a que es una de las variables de interés para realizar una nutrición adecuada en los cultivos.

3.4 caracterización del sensor con los sustratos

Una vez que se dispuso de la caracterización del sensor EC-5 y desarrollo del sistema de adquisición de datos y el diseño de sustratos específicos, se procedió a calibrar el sensor (EC-5) con los materiales agrolita y fibra de coco. La calibración consistió en obtener una función entre diferentes niveles de humedad del sustrato y la señal del sensor dada en mili volts (mV), con el objetivo de conocer el comportamiento de la humedad en cada uno de los sustratos específicos.

Para la calibración del sensor con los sustratos se usaron los resultados de la curva de retención de humedad (en laboratorio) es decir, se conoce el contenido de humedad a diferentes tensiones. A un litro de sustrato se le agrego agua, en la cantidad que nos marca la curva de retención de humedad para cada tensión de succión (100, 50,10 y 0 cm de columna de agua (c.a)). Así, a cada contenido de humedad en el sustrato se midió el voltaje de respuesta del sensor EC-5 con tres dispositivos diferentes: El Datalogger

CR10X de Campbell Scientific, y los dispositivos electrónicos que alimenta al sensor con 2.5 y 5 V de CD, respectivamente para cada combinación sustratos-dispositivo se obtuvo una función de respuesta, como se indico.

Además, con los circuitos electrónicos a 2.5 y 5 V CD se realizo un experimento, en el que se fue agregando agua a un litro de agrolita con intervalos en volumen de 25 ml y se midió con ambos dispositivos la respuesta del sensor EC-5.

3.4.1 Relación de la respuesta del sensor (ec5) con la tensión de succión y diferentes calidades de agua de agua

La calidad del agua de riego es un elemento fundamental para formular y preparar las soluciones nutritivas. Uno de los factores que determinan la calidad es la presencia de sales en la misma, la cual se mide de manera indirecta mediante la CE.

Como se comprobó en un experimento previo que la CE afecta a las lecturas del sensor EC5 (capitulo de resultados), cuando esta se encuentra por arriba de 2.5 mS/cm, se evaluó la respuesta del sensor con cuatro diferentes calidades de agua.

El agua que se evaluó fue recolectada en: La Universidad Autónoma Chapingo, Colegio de Postgraduados, Unidad ISSSTE, y se utilizo también el agua para beber proveniente de una marca comercial.

Se grafico la respuesta del sensor para los valores tensión en cada sustrato, con el fin de observar la curva de respuesta.

3.5. Evaluación del sistema de control electrónico en sustratos.

Figura 3.7. Vista aérea de la ubicación de la zona del experimento.

3.5.1 Zona experimental

La evaluación del sistema de control de riego en sustratos se realizó en los terrenos adjuntos a la estación meteorológica de la Universidad Autónoma Chapingo, Texcoco, Edo. México (Figura 3.8) que se localiza a 19° 29'40.75" la latitud norte y 98° 53'21.32" longitud oeste a una altitud de 2240 msnm.

3.5.2 Sistema de riego

Se diseñó e instaló el sistema de riego por goteo, el cual consta de los siguientes elementos: Bomba centrifuga 1.5 HP a 120 V CA, contenedor de 150 L, tubería PVC cedula 40 de 1", filtro de anillos de 1", válvula de admisión y expulsión de aire 1", manómetro de glicerina a 6 bares, electroválvula de 1", goteros PC y antidrenante de 8 L/h, manguera de polietileno de 16 mm, distribuidor de 4 salidas tubin de 3mm, estacas rectas y válvula de bola 1". Se colocaron dos líneas de riego con separación entre líneas de 0.8 m y separación entre goteros de 0.8 m, para cada gotero de distribuyen 4 estacas de riego (Figura 3.8) el plano del sistema de riego se presenta en el Anexo 1.

FIGURA 3.8. Sistema de riego

Una vez instalado el sistema de riego, se aforaron 3 goteros elegidos al azar para determinar un caudal medio y la diferencia de gasto entre goteros.

3.5.3 Componentes de hardware

Para este trabajo de investigación los principales dispositivos que integraron el sistema de automatización de riego en sustratos fueron: Un sensor de humedad, circuito electrónico de adquisición, transmisión de datos y control, sistema eléctrico y electrónico, computadora personal y sistema de riego.

Una vez calibrado el sensor de de humedad en los sustratos, y ya desarrolladas todas las etapas del proyecto, se procedió a evaluar el sistema de control, bajo condiciones de invernadero, en un sistema de riego por goteo, en el que se escogió al azar un gotero para probar durante unos días el riego en los dos sustratos empleados.

3.5.4 Prueba del sistema de control

Los experimentos se llevaron a cabo los días 13 y 26 de abril del año 2010. Estos consistieron en mantener un nivel de humedad en un sustrato simple (agrolita) y en una mezcla de sustratos (50% Tezontle y 50% fibra de coco) sin cultivo, midiendo únicamente la evaporación del agua, para ello se utilizó el sistema de automatización del riego desarrollado.

Los datos de configuración inicial de usuario se obtuvieron conectando el sensor de humedad al sistema de medición y control, se colocó el sensor de tal manera que nos permitiera medir el dato de humedad en el aire y posteriormente se lleno un recipiente con agua y se sumergió el sensor en él, para medir el dato de humedad en el agua, se tomaron estos valores para generar la ecuación de respuesta del sensor al contenido de humedad

volumétrica, una vez obtenida la función de respuesta del sensor a la humedad volumétrica, se agregó agua al sustrato o la mezcla de sustratos homogénea mente, hasta que el contenido de humedad se encontrará en el rango de agua fácilmente disponible para la planta. Se midió con el sistema electrónico el voltaje de respuesta y con la ecuación de respuesta del sensor se calculó el contenido de humedad. Se programo el sistema para que el sustrato perdiera el 1% del agua suministrada e inmediatamente después fuese recuperada. Se utilizó el umbral para determinar en qué momento se había perdido el 1% de humedad; la forma de hacerlo fue comparando el dato de respuesta con el umbral; si el dato de respuesta del sensor era menor o igual al umbral, el sistema de control encendía electroválvulas y motor para la bomba de riego.

Se utilizaron goteros de 8 litros por hora, auto compensados y antidrenantes, para evitar la variación de gasto y el drenado de las líneas después de terminar el riego. Se ajustó el sistema de riego para que operara a 1 bar de presión. Se midió de nuevo el gasto de tres goteros al azar, después se ajusto el sistema a 1.5 bares, se midió el gasto de tres goteros al azar y se obtuvo un solo promedio de gasto utilizando los datos de ambas presiones, el fabricante (Naandanjain) nos indica en las fichas técnicas del gotero (ClickTIF) que el gasto no variará de manera considerable si mantenemos la presión de operación entre 0.5 y 4 bares y que el coeficiente de uniformidad es menor del 4%.

El período de sensado del dato de humedad fue de un minuto y el tiempo de riego fue de 2 minutos. Si al aplicar agua 2 minutos no es suficiente para que el contenido de humedad se encuentre por arriba del umbral, el sistema aplicará agua durante otros dos minutos y así sucesivamente, hasta que se cumpla la condición.

El procedimiento antes mencionado se debe de llevar a cabo para cada sustrato a utilizar, debido a que cada sustrato tiene sus propias características físicas.

Se instaló el sistema de control, colocando la computadora fuera del invernadero, para evitar daños por altas temperaturas. Se colocó el sensor de humedad EC5 y la estaca de riego dentro de la agrolita, la cual a su vez se encuentra dentro de una maceta con capacidad de 16 litros. Se instalaron todos los componentes electrónicos y se comenzó con el control del contenido de humedad en el medio (figura 3.9).

Figura 3.9. Sistema de control del riego en sustratos

IV. RESULTADOS

4.1 Sustratos seleccionados, caracterización física y formulación de mezclas de sustratos específicos.

4.1.1 Curvas de retención de agua

En la caracterización física se observa que a una misma tensión de succión, cada sustrato retiene diferente cantidad de agua, debido a que cada uno tiene características físicas particulares (cuadro 4.1).

Cuadro 4.1. Propiedades físicas de seis diferentes tipos de sustratos

CURVA DE RETENCIÓN DE AGUA										
En cm de tensión de columna										
	de agua % de Humedad (g/g) Da Dr									
Sustrato	0	10	50	100	(g.cm ⁻³)	(g.cm-3)				
Arena	23.52	19.84	16.49	12.9	1.72	2.56				
Fibra de										
coco	1003.21	709.15	412.88	296.5	0.11	1.33				
Peat										
moos	637.49	554.44	328.2	276.7	0.15	1.29				
Tezontle	34.51	19.59	9.10	7.20	1.36	2.63				
Agrolita	374.05	223.14	118.93	71.6	0.19	0.87				
Tepojal	75.16	36.58	34.68	32.7	0.54	1.42				
		- ~~~~	_							

cm = centímetros; g= gramos

A partir de los resultados de la caracterización física se calculó la curva de retención de agua, que se expresa en % de humedad volumétrica, para cada sustrato, ver cuadro 4.2.

Cuadro 4.2. Retención de humedad de diferentes sustratos expresada en % de humedad volumétrica

	CURVA DE RETENCIÓN DE AGUA								
	cm de tensión de columna de								
		agı							
	% de		d volume	etrica					
		(g.cı	n-s)						
Sustrato	0	10	50	100					
Arena	40.4544	34.1248	28.3628	22.188					
Fibra de									
coco	99.999	78.0065	45.4168	32.615					
Peat									
moos	95.6235	83.166	49.23	41.505					
Tezontle	46.9336	26.6424	12.376	9.792					
Agrolita	71.0695	42.3966	22.5967	13.604					
Tepojal	40.5864	19.7532	18.7272	17.658					

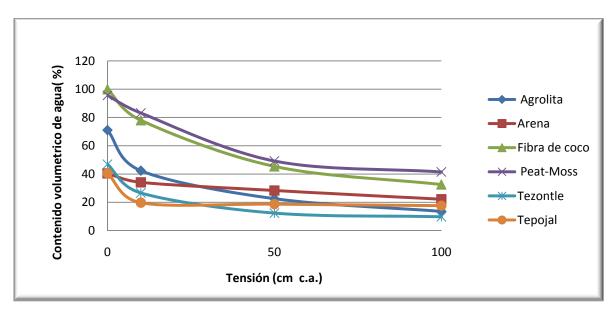


Figura 4.1. Curvas de retención de agua para seis sustratos, en tensión de columna de agua (cm).

4.1.2 Curvas liberación de agua.

En la figura 4.1 y 4.2 se muestran las curvas de liberación de agua para los materiales que se consideraron. Donde la importancia de los valores de esta curva de acuerdo con Bures (1997) parten del hecho de que la mayoría de las macetas que se utilizan comercialmente suelen tener una altura media de unos 10 cm, con lo cual los valores de esta curva para el aire y el agua corresponderían a la capacidad de contenedor para una maceta de esta altura.

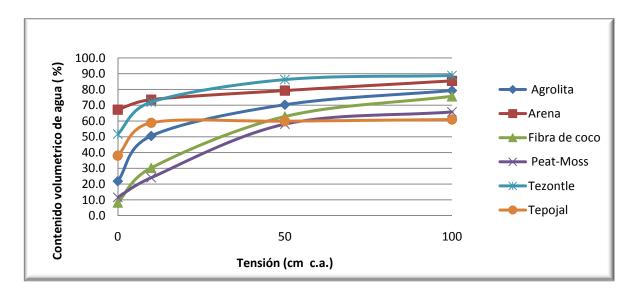


Figura 4.2. Curvas de liberación de agua para siete sustratos (según De Boodt, et al., 1974)

A partir de los resultados se consideró como una variable importante el espacio poroso total (EPT) lo que coincide con lo mencionado por Ansorena (1994), el indica que las propiedades físicas más importantes que permiten evaluar la capacidad de un material como sustrato son aquellas que se obtienen a partir de la curva de liberación de agua, en especial la capacidad de aire (CA) y porosidad (EPT) la cual en un medio de cultivo es el porcentaje de un volumen que no se encuentra ocupado por la fase sólida y que depende de la densidad aparente y real (Cuadro 4.3). Se observa en la figura 4.2 que los

sustratos pet-moss y fibra de coco tienen un rango mayor de agua fácilmente disponible, con respecto al resto, lo que hace que estos materiales más adecuados, para la producción en macetas.

Cuadro 4.3. Variables que integran la curva de liberación de agua para siete sustratos simples.

Sustrato	EPT	MS	CA	AFD	AR	ADD
Arena	32.8125	67.1875	6.3296	5.7620	6.1748	14.5461
Fibra de						
coco	91.7293	8.2707	21.9925	32.5897	12.8018	24.3453
Peat moos	88.3721	11.6279	12.4575	33.9360	7.7250	34.2536
Tezontle	48.2890	51.7110	20.2912	14.2664	2.5840	11.1474
Agrolita	78.1609	21.8391	28.6729	19.7999	8.9927	20.6954
Tepojal	61.9718	38.0282	20.8332	1.0260	1.0692	39.0434

ADD= Agua dificilmente disponible, AR= Agua retenida, AFD= Agua fácilmente disponible, CA= Capacidad de aire, EPT= Espacio poroso total y MS= Material sólido

4.1.3 Punto de equilibrio R

En los resultados de los puntos de equilibrio R, para cada sustrato, se observa que algunos sustratos no presentan punto de equilibrio, como son: La Arena y el Tezontle, los sustratos que si presentan puntos de equilibrio son: Peat-Moss, Fibra de coco, Agrolita y Tepojal, ver Figuras 4.3, 4.4, 4.5, 4.6, 4.7 y 4.8 respectivamente.

Cabe mencionar que el comportamiento del tezontle y el tepojal estuvo influenciado por el diámetro de las partículas, el cual generalmente es muy variable.

En esta arena no existe un punto de equilibrio entre volumen de aire y de agua, de acuerdo al grafico se puede decir que bajo cualquier nivel de humedad (entre 0 y 100 cm c.a.) hay aire, ver figura 4.3.

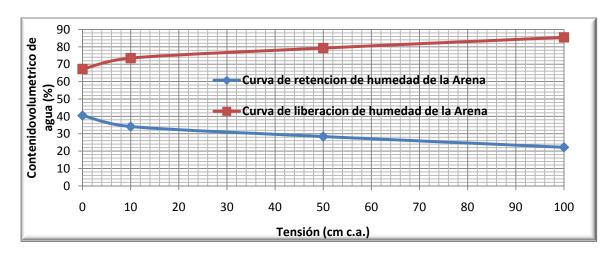


Figura 4.3. Relación del volumen de aire y humedad en arena

En la fibra de coco el punto de equilibrio R (entre el volumen de aire y de agua) lo encontramos a 37 cm de tensión de columna de agua. Para Ansorena (1994) este valor es ideal para contenedores altos, ya que se garantiza que a capacidad de contenedor queda aun suficiente agua disponible. Para Zarate (2007), este valor de R es para contenedores con una altura comprendida entre 10 y 20 cm; una vez regado y drenado el sustrato, el contenido en aire será limitante, por lo que existe riesgo de asfixia radicular (Figura 4.4.).

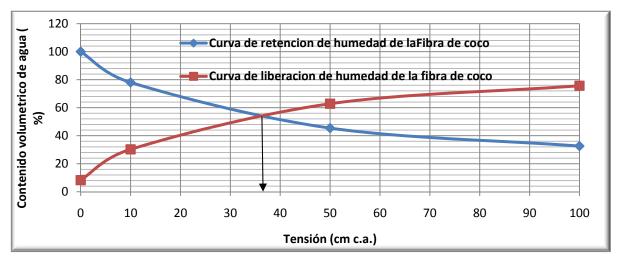


Figura 4.4. Relación del volumen de aire y humedad en fibra de coco

Para el peat-moss se encontró que el punto de equilibrio R a los 42 cm de tensión de columna de agua. Que de acuerdo con Ansorena (1994) es ideal para contenedores altos, ya que se garantiza que a capacidad de contenedor queda aun suficiente agua disponible. Según Zarate (2007) el valor de R resulta para contenedores con una altura comprendida entre 10 y 20 cm, y comenta que un sustrato una vez regado y drenado, el contenido en aire será limitante, por lo que existe riesgo de asfixia radicular (Figura 4.5)

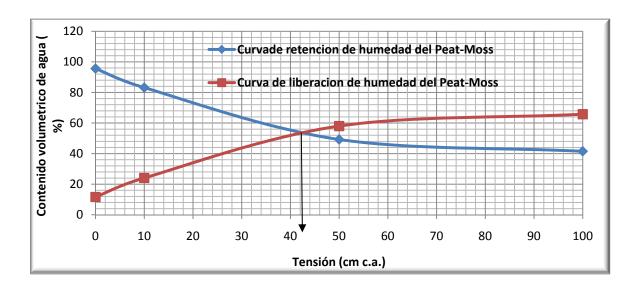


Figura 4.5. Relación del volumen de aire y humedad en peat-moss

En el caso del tezontle no se encontró un punto de equilibrio R, que de acuerdo al grafico se puede decir que bajo cualquier nivel de humedad (entre 0 y 100 cm c.a.) hay aire, ver Figura 4.6.

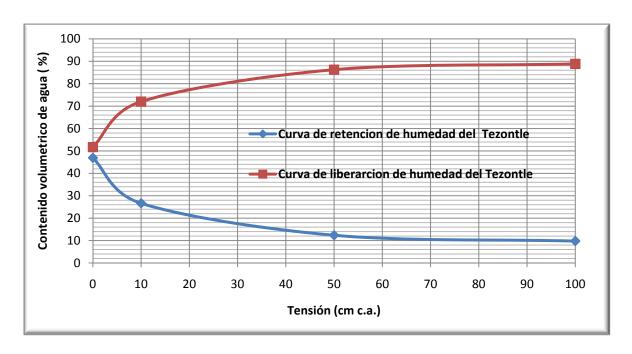


Figura 4.6. Relación del volumen de aire y humedad en Tezontle

Para el caso de la agrolita se observa que el punto de equilibrio R, se encuentra en 8 centímetros de succión de columna de agua. Que de acuerdo con Ansorena (1994) el valor de R es ideal para cultivos que se encuentren en contenedores de altura inferior a 10 cm, ya que de este modo existirá una aireación suficiente en condiciones de capacidad de contenedor. Así para Zarate (2007) según el valor de R es para contenedores con una altura comprendida entre 10 y 20 cm, una vez regado y drenado el sustrato, estará muy aireado, pero apenas dispondrá de agua fácilmente disponible (Figura 4.7).

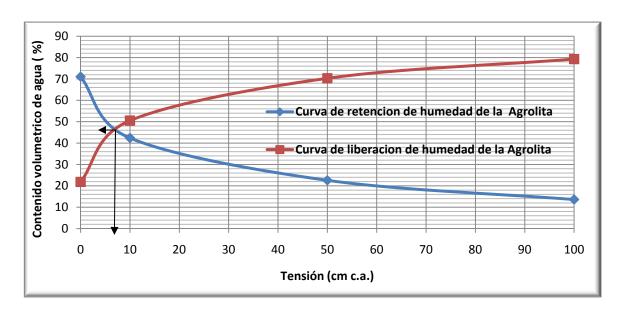


Figura 4.7. Relación del volumen de aire y humedad en agrolita

En el tepojal encontramos el punto de equilibrio R a una tensión de 0 cm de columna de agua, por lo que bajo cualquier nivel de humedad (entre 0 y 100 cm c.a.) hay siempre aire, ver Figura 4.8.

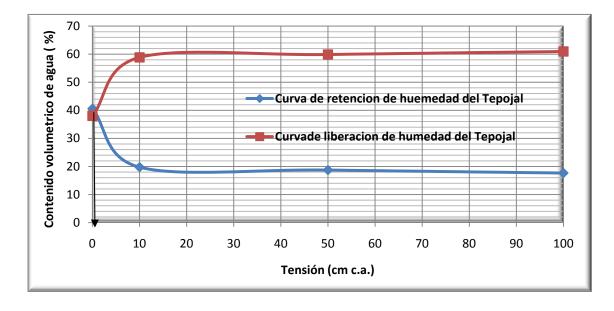


Figura 4.8. Relación del volumen de aire y humedad en tepojal

4.1.4 Materia orgánica

Los resultados del contenido de materia orgánica se muestran en el cuadro 4.4., donde solo dos sustratos contienen materia orgánica: Fibra de coco (con un 94%) y peat-moss (con un 93.88%), información que se uso para el diseño de mezclas de sustratos.

Cuadro 4.4. Contenido de materia orgánica en sustratos.

MATERIA ORGÁNICA						
Sustrato	%					
Arena	0.0000					
Fibra de						
coco	94.0000					
Peat moos	93.8800					
Tezontle	0.0000					
Agrolita	0.0000					
Tepojal	0.0000					

4.1.5 Mezcla de sustratos específicos

Como dato para el diseño de sustratos es el precio por litro (precios de noviembre del 2009) de cada sustrato que se uso en el modelo de programación lineal, para definir la función objetivo.

Cuadro 4.5. Precios por litro de los sustratos.

Sustrato	\$/Litro
Arena	0.150
Fibra de coco	1.768
Peat moos	7.071
Tezontle	0.200
Agrolita	0.950
Tepojal	5.714

El software "DMS", de las combinaciones de sustratos, dió como uno de los resultados factibles la mezcla las siguientes proporciones en volumen de: 50% tezontle y 50% fibra de coco, con un costo por litro de la mezcla de \$0.984, que resultó ser uno de los más baratos.

Los resultados de la caracterización física de la mezcla (Tezontle y Fibra de coco) se presentan en el Cuadro 4.6.

Cuadro 4.6. Propiedades físicas de la mezcla (50% tezontle y 50% fibra de coco).

CURVA DE RETENCIÓN DE AGUA									
cm de tensión de columna de agua									
	% de humedad (g/g)								
Sustrato 0 10 50 100 Da (g.cm ⁻³) Dr (g.cm ⁻³)									
Tezontle-Fibra de coco	60.05	50.4	29.8	23.4	1.03	2.62			

cm = centímetros; g= gramos, La "Da" fue calculada por el método de la probeta y la "Dr" fue calculada por el método del Picnómetro)

CURVA DE RETENCIÓN DE AGUA								
cm de tensión de columna de agua								
% de Humedad volumétrica (g.cm-3)								
0	0 10 50 100							
61.8515	51.912	30.694	24.102					

En la Figura 4.9. Se muestra la curva de retención de agua en tensión (cm de columna de agua) para la mezcla de sustratos, mediante el método de Zamora (2005).

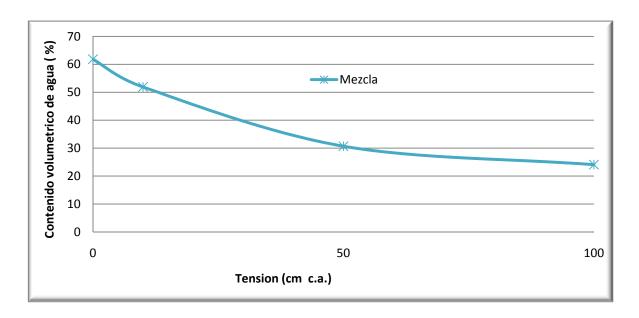


Figura 4.9. Curva de retención de agua de la mezcla de sustratos

A partir de los datos de la curva de retención de humedad, densidad aparente y densidad real se calcularon los datos de la curva de liberación de agua, para la mezcla de sustratos obtenida, mediante el método de Zamora (2005).

Los resultados obtenidos de laboratorio en la caracterización física de la mezcla, coinciden con los resultados teóricos calculados con el software "DMS" Zamora (2005), teniendo un error mínimo. Los datos de diseño fueron: EPT => 60 % y CA=>10% y los datos obtenidos en el laboratorio fueron: EPT = 60.6870% y CA=9.9395 %.

Cuadro 4.7. Datos de la curva de liberación de agua de la mezcla tezontle-fibra de coco

Sustrato	EPT	MS	CA	AFD	AR	ADD
Tezontle-Fibra						22.937
de coco	60.6870	39.3130	9.9395	21.2180	6.5920	5

ADD= Agua dificilmente disponible, AR= Agua retenida, AFD= Agua fácilmente disponible, CA= Capacidad de aire, EPT= Espacio poroso total y MS= Material sólido

Representación grafica de la curva de liberación de agua según De Boodt, Verdonck y Cappaert (1974) para la mezcla de sustratos obtenida, mediante el método de Zamora (2005), ver Figura 4.10.

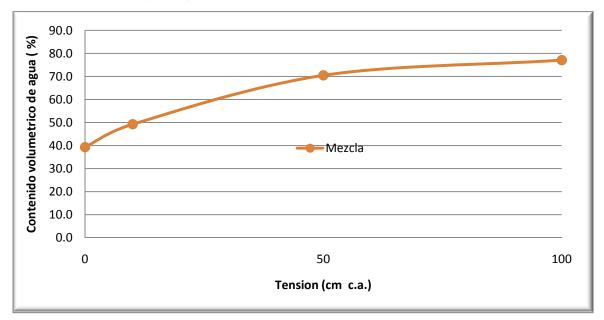


Figura 4.10. Curva de liberación de agua para la mezcla (fibra de coco y tezontle).

En la Figura 4.12, Se observa que la curva de retención de humedad de la mezcla se localiza entre la curva de fibra de coco y la de Tezontle, obteniendo características físicas comprendidas dentro del intervalo de las curvas de los sustratos simples (Tezontle y Fibra de coco).

De acuerdo a los resultados de Zamora (2005) la posición y las características de la curva de retención de humedad de la mezcla varía en función de los porcentajes de cada sustrato simple. Esta curva con otras proporciones de la mezcla se puede ubicar por arriba, por abajo o dentro del intervalo de las curvas de los sustratos simples.

Representación grafica de las curvas de retención de agua según Boodt et ál. (1974) para dos sustratos simples (Tezontle y Fibra de coco) y para la mezcla

de estos de acuerdo a las proporciones (Fibra de coco = 0.5L y Tezontle = 0.5 L) definidas mediante el método de Zamora (2005), ver Figura 4.11.

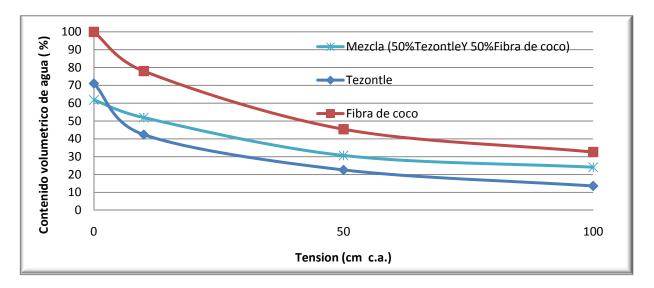


Figura 4.11. Curvas de retención de agua de los sustratos simples (Fibra de coco y Tezontle) y la mezcla.

Representación grafica de la curva de liberación de agua según De Boodt *et ál.* (1974) para dos sustratos simples (Fibra de coco y Tezontle) y para la mezcla de estos de acuerdo a las proporciones (Fibra de coco= 0.5 y Tezontle=0.5) definidas mediante el método de Zamora (2005), ver Figura 4.12. Se observa en la figura 4.12, que la curva de liberación de humedad de la mezcla se encuentra entre la de tezontle y la de fibra de coco.

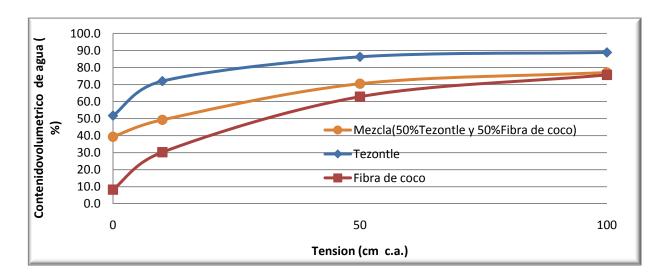


Figura 4.12. Curva de liberación de agua para dos sustratos simples (Fibra de coco y Tezontle) y para la mezcla.

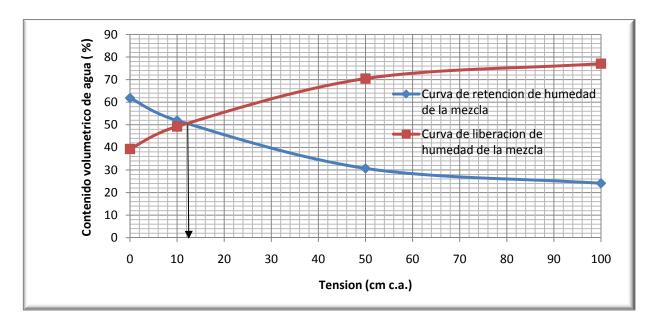


Figura 4.13. Relación de aire y humedad en la mezcla.

Observamos que en la mezcla el punto de equilibrio R, se encuentra en 10 centímetros de succión de columna de agua. De acuerdo a Ansorena (1994), este valor de R es ideal para cultivos que se encuentren en contenedores de altura inferior a 10 cm, ya que de este modo existirá una aireación suficiente

en condiciones de capacidad de contenedor. Y para Zarate (2007), el valor de R es para contenedores con una altura comprendida entre 10 y 20 cm, y se comporta una vez que se riega y drena el sustrato, estará muy aireado, pero apenas dispondrá de agua fácilmente disponible.

4.1.6. Curva teórica de liberación de agua para la mezcla (50% Fibra de coco y 50% Tezontle).

En el cuadro 4.8., se observa los resultados de la curva de liberación de agua (tanto teórica como experimental) de la mezcla que son muy parecidos. Donde la diferencia en los valores puntuales varían entre 11.2024 y 1.1009 (g/g) de liberación de agua. Es importante mencionar que al hacer la mezcla, la fibra de coco es un material muy fibroso que no es fácil medir y es posible haber cometido errores de proporción al medir el volumen.

Cuadro 4.8. Datos teóricos y experimentales de la curva de liberación de agua para la mezcla

				CURVA DE LIBERACION DE AGUA						
							cm de T	ensión de	columna	de agua
							Hur	nedad vol	umétrica	(v/v)
DATOS	EPT	MS	CA	AFD	AR	ADD	0	10	50	100
Experimenta 1	60.6870	39.3130	9.9395	21.218 0	6.592 0	22.9375	39.3130	49.2525	70.4705	77.0625
Teórica	70.0091	29.9909	21.1419	23.428 1	7.692 9	17.7463	29.9909	51.1327	74.5608	82.2537
Diferencia	9.3221	9.3221	11.2024	2.2101	1.100 9	5.1912	9.3221	1.8802	4.0903	5.1912

ADD= Agua dificilmente disponible, AR= Agua retenida, AFD= Agua fácilmente disponible, CA= Capacidad de aire, EPT= Espacio poroso total y MS= Material sólido

En la Figura 4.14. Se presenta la curva de liberación de agua según De Boodt, Verdonck y Cappaert (1974), teórica y experimental, para la mezcla (50%Tezontle y 50% Fibra de coco).

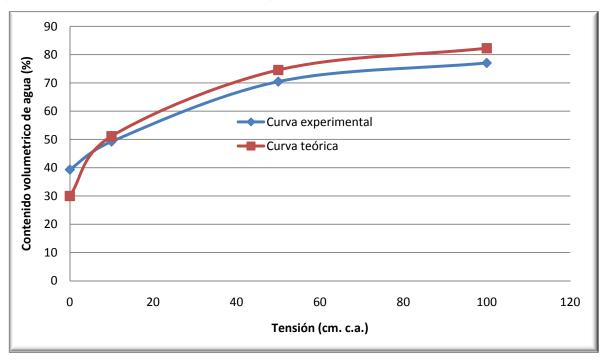


Figura 4.14. Curva de liberación de agua teórica y experimental, para la mezcla.

4.2 Sistema de adquisición de datos y control

4.2.1 Sistema de medición y control

El sistema de medición y control que se utilizó para el desarrollo de este trabajo (Figura 4.16). Conto con diferentes dispositivos para medir y registrar de manera continúa la humedad en el medio (sustratos, aire y agua) los datos se enviaron a una PC. El sistema de control de riego en sustratos se integró por: El sistema electrónico de adquisición de datos y control con base en el micro controlador PIC18f4550, interfaz de usuario, PC, sensor de humedad (modelo EC5 de la empresa DECAGON DIVICES), modulo de

potencia para encender/apagar los dispositivos que trabajan con corriente alterna mediante pulsos de corriente directa (en este caso bomba y electroválvula (con su transformador de 120 V CA a 24 V CA)), contactor (modelo LC1 D2510 de la empresa Telemecanique) y el sistema de riego (ver Figura 4.20)

El sistema electrónico de adquisición de datos y control, se conectó con las terminales del sensor y las salidas al modulo de potencia (Figura 4.15).

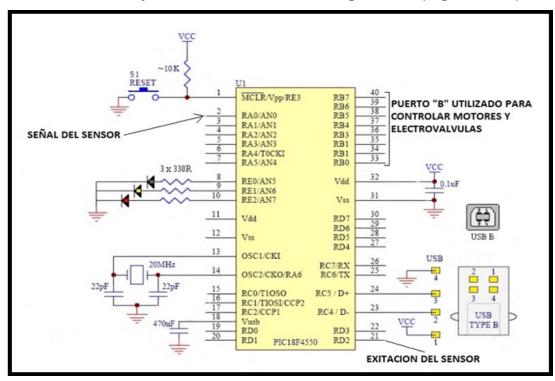


Figura 4.15. Conexión del sensor de humedad EC5 y las salidas al módulo de potencia.

4.2.2 Interfaz del sistema electrónico

Pistas del circuito electrónico del sistema de adquisición, transmisión de datos y control, impreso sobre la placa de fenólica (Figura 4.16) solo se indican las pistas que permiten la interconexión entre los componentes electrónicos.

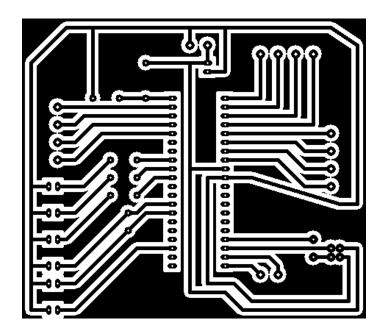


Figura 4.16. Pistas del circuito del sistema de adquisición, transmisión de datos y control.

De manera similar en la Figura 4.17. se indica las pistas del circuito electrónico de la fase de potencia, sobre la placa fenólica, este dispositivo permite interactuar entre la corriente directa y la corriente alterna, que enciende dispositivos que trabajan con corriente alterna a partir de una señal de corriente directa (de pequeño voltaje, normalmente de 5 V).

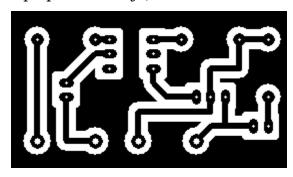


Figura 4.17. Pistas del circuito de potencia.

Una vez que se armo el circuito electrónico del sistema de adquisición, transmisión de datos y control, se albergo dentro de un gabinete de plástico para proteger la tarjeta que contiene el circuito electrónico, ver figuras 4.18 y 4.19.

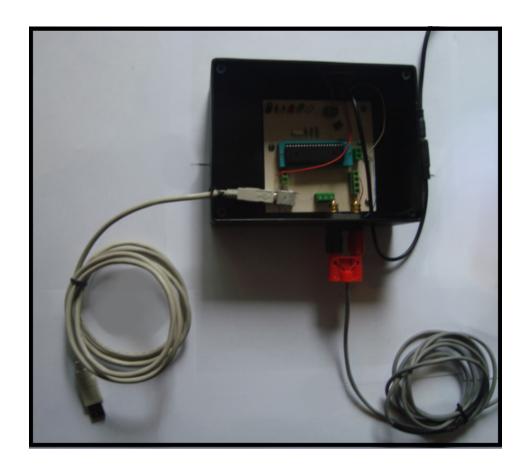


Figura 4.18. Sistema electrónico del sistema de adquisición, transmisión de datos y control

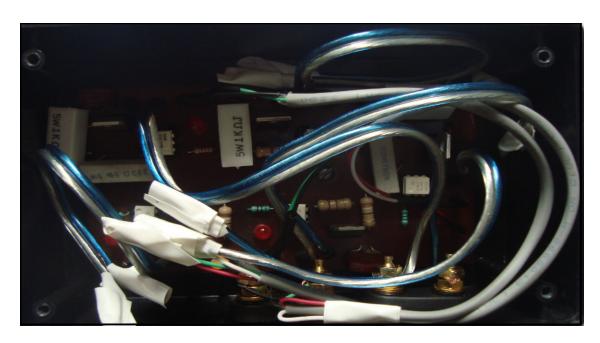


Figura 4.19. Modulo de potencia.

Figura 4.20. Sistema de adquisición, transmisión de datos y control, con sus componentes electrónicos y eléctricos.

4.2.3 Interfaz de usuario

Con el fin de visualizar el sistema de control de riego en sustratos se desarrolló un interfaz de usuario (Software), que está se integra por diferentes componentes (en este caso pestañas que despliegan una máscara).

En la pestaña de configuración del sistema, se introducen los datos mínimos necesarios para que el sistema de control opere (Figura 4.21).

- El umbral, se define al límite en el que iniciará el riego, éste se iniciará cuando el dato del sensor sea igual o menor al umbral.
- El tiempo de riego, indica el tiempo en que el sistema de bombeo que estará encendido para regar. Este se estima con base al gasto de los goteros y la cantidad de agua que se necesite aplicar, y por el tipo de sustrato.
- Los límites extremos, son los valores de respuesta del sensor de humedad, al sensar el agua de riego y el aire; este criterio que se toma, se definió a partir de la caracterización del sensor con los sustratos (capitulo de resultados: Selección del sensor de humedad en sustratos).
- El tiempo de sensado, es el tiempo que el usuario define para monitorear el contenido agua en el sustrato por parte del sensor, valor que depende de la rapidez con que el medio pierde agua figura 4.21.

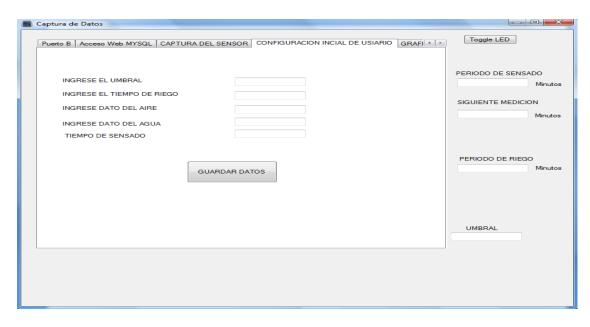


Figura 4.21. Pestaña de configuración inicial de usuario.

En la pestaña de captura del sensor, el sensor de humedad toma 60 mediciones en un intervalo de un segundo y obtiene un promedio, se deja un segundo y se repite el proceso por tres veces y finalmente se promedian los promedios y se obtiene el promedio general. Él cual será tomado como el dato del sensor para 'que posteriormente se compare con el umbral, y toma la decisión de regar o no regar. Además, se muestran los datos de configuración de periodo de sensado, periodo de riego, tiempo restante para la siguiente medición, estado y progreso de la medición, fecha y hora de la medición, y el valor del umbral. Incluso se puede obligar a sensar en el momento en que uno lo decida. Ver Figura 4.22.

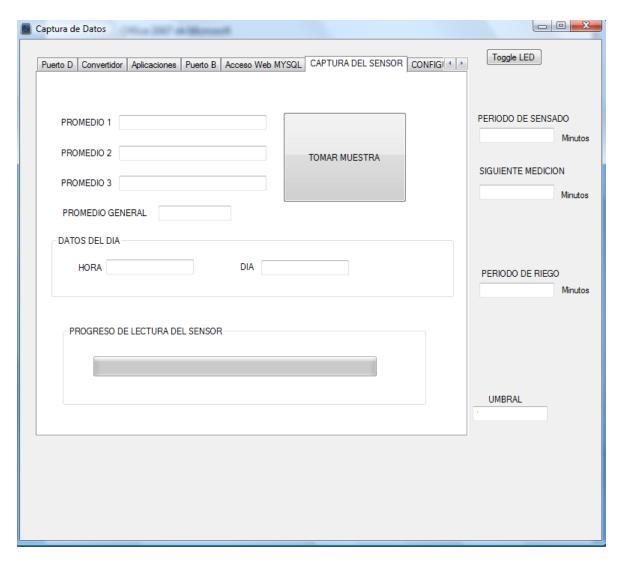


Figura 4.22. Pestaña de captura del sensor

La pestaña de gráfica, permite elegir un día y visualizar de manera tabular (datos sensados) y en gráfica de los eventos ocurridos. La interfaz interactúa con la base de datos (que se implemento en MySQL) para almacenar la información (fecha (día, mes, año), tiempo (hora, minutos y segundos) y el dato de humedad en mili Volts) y con Excel de Microsoft Office, para realizar la consulta de los datos tabulados y la gráfica de eventos (Figura 4.23).

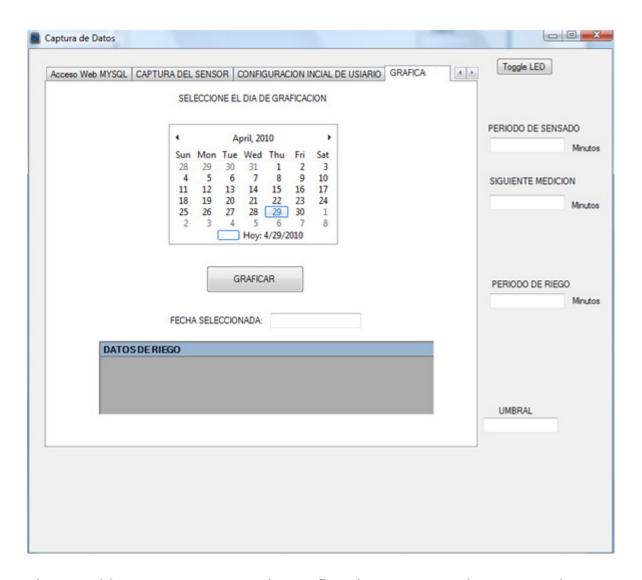


Figura 4.23. Pestaña que permite graficar los eventos y datos sensados.

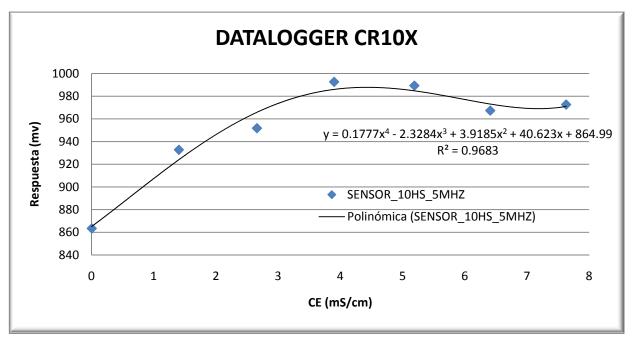
4.3 Selección del sensor de humedad en sustratos

La selección del sensor de humedad (10Hs y EC10) en sustratos, se realizó con base en la respuesta de los sensores a la conductividad eléctrica, dichas respuestas se presentan en el Cuadro 4.9., de los dos sensores y con tres sistemas de adquisición.

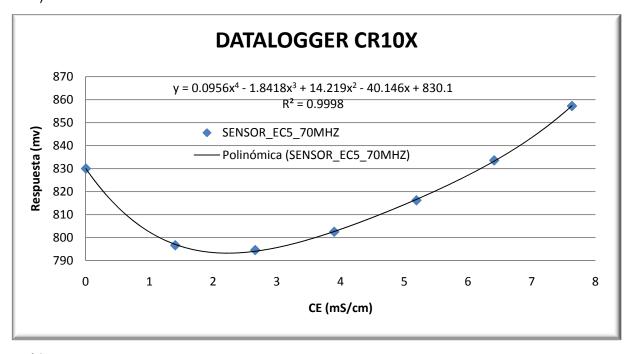
CONCENT	RACION	CONDUCTIVIDAD ELECTRICA		OGGER	SENSOR	R (5 MHz)	SENSOR	т	
Normalidad	ppm	mS/cm		a 5mhz		a 2.5 V	Placa		
			(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	°C
agua purificada	?	0.004	863.380	830.010	748.186	1293.200	756.400	1167.200	20.500
0.01	583.930	1.405	932.770	796.660	841.800	1376.160	732.000	1166.320	20.800
0.02	1167.860	2.660	951.813	794.560	855.626	1407.880	722.240	1166.320	20.700
0.03	1751.790	3.900	992.660	802.540	853.973	1422.520	756.400	1171.200	20.600
0.04	2335.720	5.190	989.325	816.215	858.853	1429.840	746.640	1180.960	20.600
0.05	2919.650	6.410	967.310	833.590	849.120	1429.840	756.400	1195.600	20.500
0.06	3503.580	7.630	972.650	857.240	871.886	1434.720	771.040	1202.920	20.800
0.07	4087.510	8.830	966.975	861.240	849.120	1424.960	800.320	1210.240	20.900
0.08	4671.440	10.040	976.518	865.910	866.194	1439.600	797.880	1220.000	20.900
0.09	5255.370	11.220	969.310	902.600	854.066	1439.600	810.080	1224.880	20.900
0.1 Cuadro	5839.300 4 0 Re	12.480	971.310	884.590	861.250	1434.720	814.960	1234.640	20.800

Cuadro 4.9. Respuesta de los sensores 10HS y EC5 a la conductividad eléctrica.

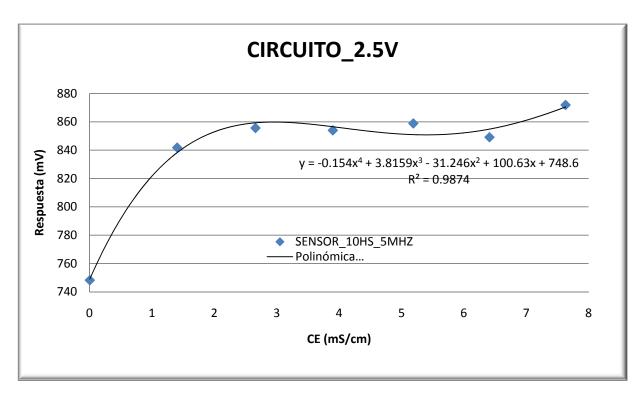
Se formularon diferentes concentraciones de salinidad en agua, a partir de NaCl desde valores cercanos a una normalidad igual a cero (0 ppm), hasta valores de 0.1 normal (5839.3 ppm). La conductividad eléctrica de referencia se midió con el dispositivo Corning Pinnacle Conductivity Meter Model 541, y se midió la respuesta del sensor para cada concentración con cada dispositivo electrónico.

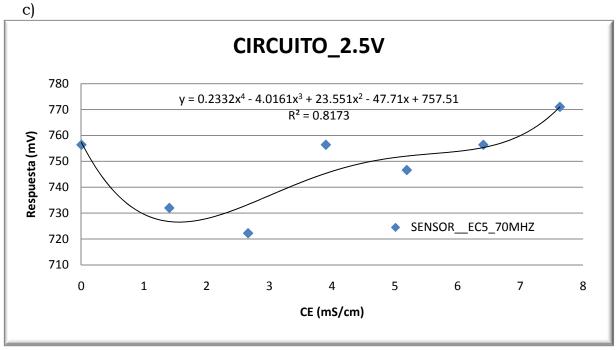

Se observó que los sensores 10HS y EC5 varían su respuesta a medida que cambia la conductividad eléctrica. En el sensor 10HS la respuesta es casi lineal entre 0 y 3 mS/cm y después se comienza a estabilizarse, por lo que su respuesta depende de la salinidad, al usar los tres sistemas de adquisición.

En el caso del sensor EC5 su respuesta con el dataloger ente 0 y 1.5 mS/cm la respuesta de la señal del sensor disminuye (cambio de 30 miliVolts) y se

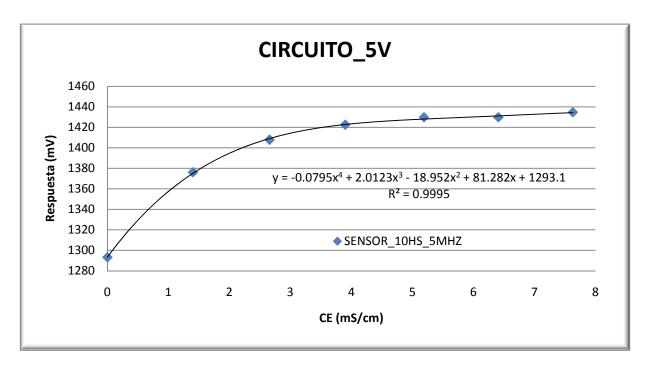

mantiene estable entre 1.5 y 3 mS/cm y por arriba de 3 se incrementa la respuesta casi en forma lineal (ver Fig. 4.24 b). En el sistema de adquisición de 2.5 V de alimentación prácticamente no se estabiliza la respuesta del sensor (ver Figura 4.24 d). Sin embargo, en el sistema de adquisición de 5.0 V de alimentación, la respuesta del sensor es estable entre 0 y 3 mS/cm. Por lo que este sistema de adquisición es más conveniente usar.

Se observa en la Figura 4.24 f, que si se mide el contenido de humedad con el sensor EC-5 en algún medio, al utilizar el circuito, que alimenta con 5 V al sensor, al mantener la humedad en el medio constante, donde se varía la conductividad eléctrica de 0 a 2.7 mS/cm, el dato de respuesta del sensor deberá ser el mismo, esto implica que el sensor en este rango no responde a la salinidad. Por lo que mejor sensor para medir el contenido de humedad en un medio que presente variaciones en la conductividad eléctrica indicadas, es el modelo EC-5 con el circuito que trabaja a cinco volts de corriente directa.


Cabe señalar que las soluciones nutritivas útiles para la mayoría de los cultivos presentan valores inferiores a 4 dS*m⁻¹ (4 mS*cm⁻¹).



a)



b)

d)

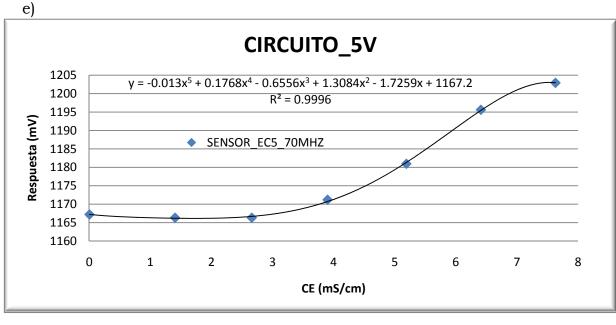
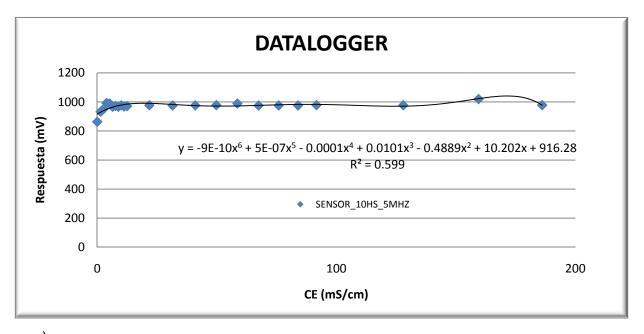
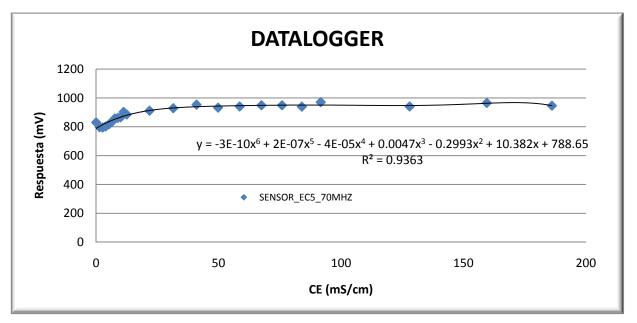
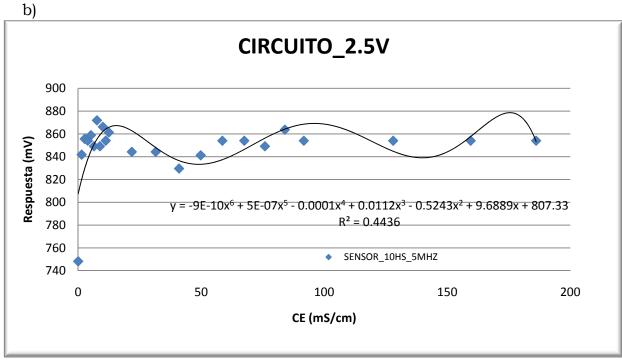


Figura 4.24 Respuesta de los sensores 10HS (a,c y e) y EC-5 (b,d y f) a la conductividad electrica, para diferentes dispositivos electronicos de adquisisción de datos.

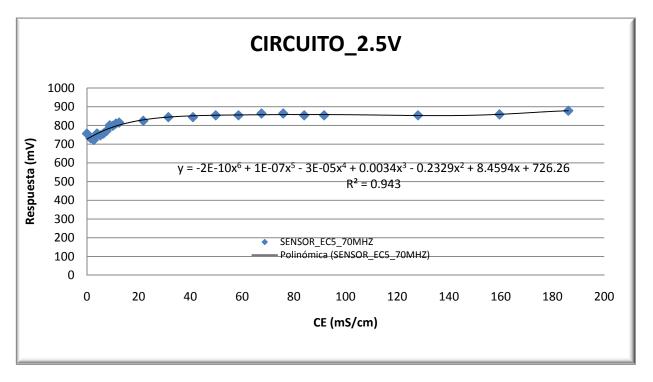

f)

De manera similar se llevo a cabo un experimento para conocer la respuesta de los sensores dentro de un rango más amplio de valores de conductividad eléctrica. Se formularon concentraciones desde 0.0041 mS/cm, hasta 186.1 mS/cm (NaCl en agua) y se midió la respuesta de los sensores con cada uno de los sistemas electrónicos, los resultados que se muestran en la Cuadro 4.10.

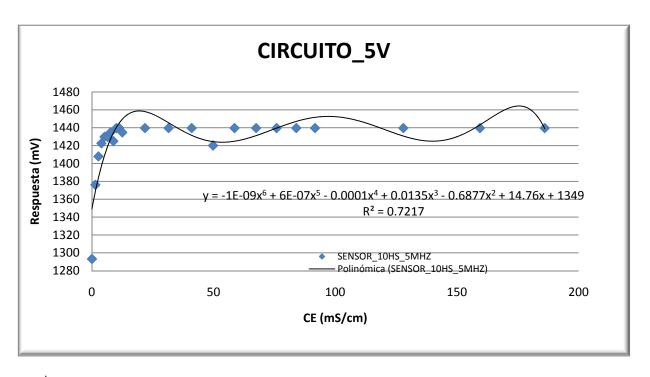

Cuadro 4.10. Respuesta de los sensores 10HS y EC5 a un rango amplio de valores de conductividad eléctrica (CE).


CE	DATAL	OGGER	SENSOR	(5 MHz)	SENSOR	T	
	sensor 5mHz	sensor 70 MHz	Placa a 2.5 V	Placa a 5 V	Placa a 2.5 V	Placa a 5 V	
(mS/cm)	(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	°C
0.0041	863.3800	830.0100	748.1867	1293.2000	756.4000	1167.2000	20.5000
1.4050	932.7700	796.6600	841.8000	1376.1600	732.0000	1166.3200	20.8000
2.6600	951.8133	794.5600	855.6267	1407.8800	722.2400	1166.3200	20.7000
3.9000	992.6600	802.5400	853.9733	1422.5200	756.4000	1171.2000	20.6000
5.1900	989.3250	816.2150	858.8533	1429.8400	746.6400	1180.9600	20.6000
6.4100	967.3100	833.5900	849.1200	1429.8400	756.4000	1195.6000	20.5000
7.6300	972.6500	857.2400	871.8867	1434.7200	771.0400	1202.9200	20.8000
8.8300	966.9750	861.2400	849.1200	1424.9600	800.3200	1210.2400	20.9000
10.0400	976.5180	865.9100	866.1940	1439.6000	797.8800	1220.0000	20.9000
11.2200	969.3100	902.6000	854.0667	1439.6000	810.0800	1224.8800	20.9000
12.4800	971.3100	884.5900	861.2500	1434.7200	814.9600	1234.6400	20.8000
21.8000	977.2900	911.2500	844.2400	1439.6000	824.7200	1263.9200	20.5000
31.5000	975.9600	928.6000	844.2400	1439.6000	844.2000	1273.6800	20.5000
41.0000	976.5900	953.2400	829.6000	1439.6000	844.2000	1283.4400	20.5000
49.8000	977.8200	932.5000	841.2000	1420.0800	854.0000	1283.4400	20.5000
58.6000	989.2100	940.5100	854.0000	1439.6000	854.0000	1288.3200	20.5000
67.5000	975.5800	948.8900	854.0000	1439.6000	863.7600	1288.3200	20.5000
75.9000	976.1200	948.7900	849.1200	1439.6000	863.7600	1293.2000	20.5000
84.0000	976.0900	939.3700	863.7000	1439.6000	854.0000	1293.2000	20.5000
91.7000	978.0200	970.6900	854.0000	1439.6000	854.0000	1293.2000	20.5000
128.0000	977.3500	940.6500	854.0000	1439.6000	854.0000	1298.0080	20.5000
159.5000	1020.0200	965.3200	854.0000	1439.6000	858.8800	1302.9000	20.5000
186.1000	977.9900	945.9700	854.0000	1439.6000	878.4000	1307.8400	20.5000

Se graficaron los datos de cada uno de los dispositivos electrónicos, para diferentes conductividades eléctricas, donde se ajusto a un polinomio de grado seis a cada grupo de datos. Se observa que la menor variabilidad en la respuesta la presenta el sensor EC5 con coeficientes de determinación por arriba de 0.93, mientras que el sensor 10HS presenta coeficientes de determinación menores a 0.7217, ver Fig. 4.25.



a)



c)

d)

e)

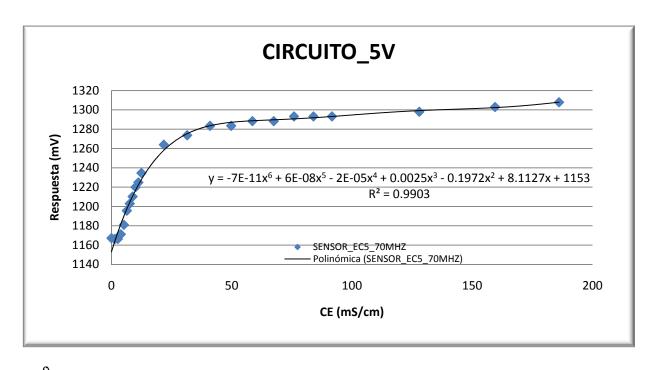
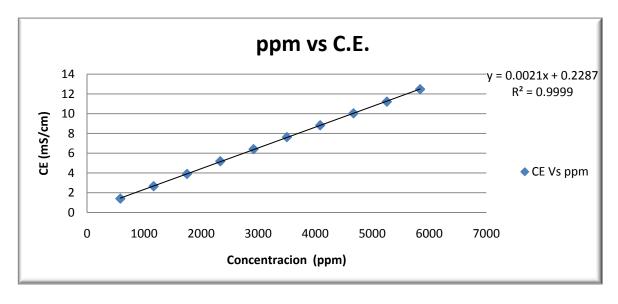
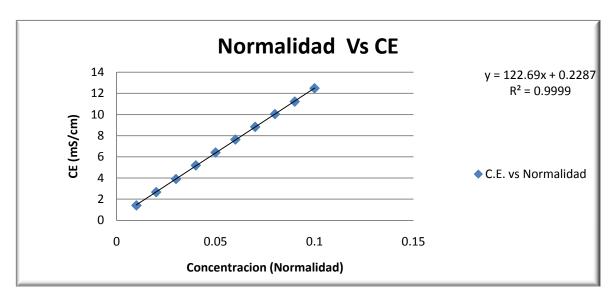




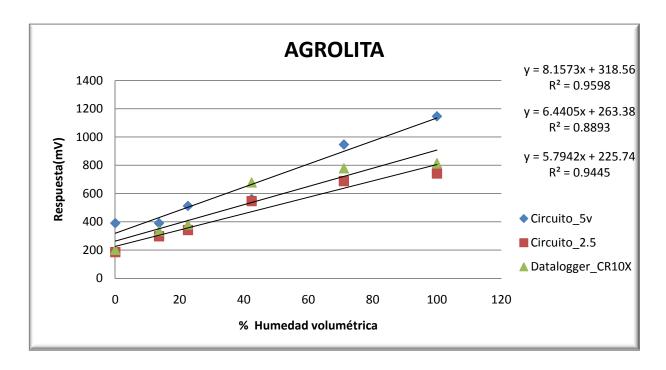
Figura 4.25 Respuesta de los sensores 10HS (a,c y e) y EC-5 (b,d y f) a altas conductividades eléctricas, para diferentes dispositivos electronicos de adquisisción de datos.

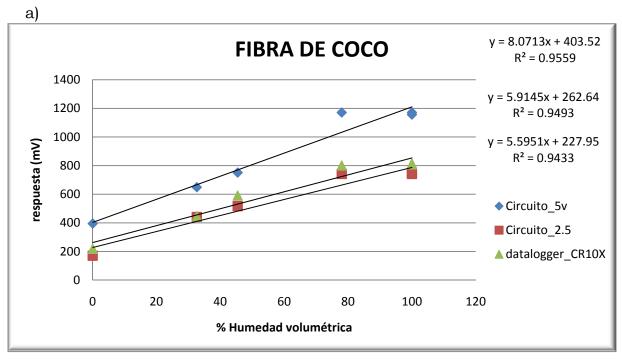
En la Figura 4.26 (a y b) se observa que la relación que existe entre la concentración de NaCl en un medio y la conductividad eléctrica es directamente proporcional.

a)

b)

Figura 4.26 Relación entre conductividad eléctrica y concentración de NaCl


4.4 caracterización del sensor con los sustratos


Al medir la respuesta del sensor de humedad en agrolita y fibra de coco con diferentes contenidos de humedad (a 100, 50, 10 y 0 cm de tensión de columna de agua) previamente calculadas a partir de sus curvas de retención y liberación de agua, se obtuvó lo siguiente.

La respuesta del sensor EC-5 varía a medida que cambia su voltaje de alimentación. En la Figura 4.27 (a y b) se observa que a medida que el voltaje de alimentación se incrementa, la respuesta (mV) del sensor también se incrementa, por lo que tenemos rectas casi paralelas.

Como dato de verificación se midió que el Datalogger CR10X alimenta al sensor con un voltaje superior a 2.5 V CD, dato que se verificó al medir el voltaje de excitación del datalogger, por medio de un osciloscopio (prueba que se realizó en los laboratorios del Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), del IPN) evaluación que también se aplicó en los otros dispositivos.

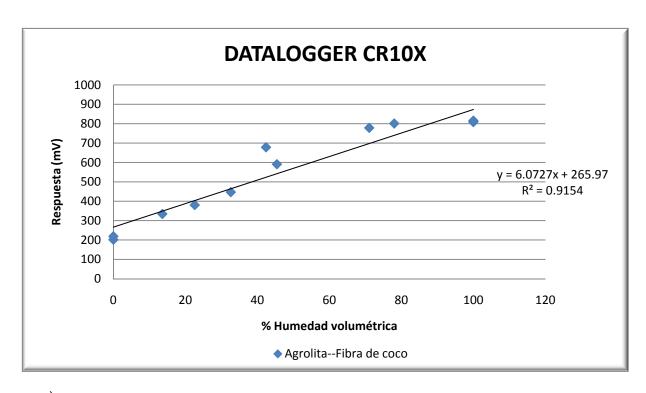
El dispositivo a 5 VCD presenta un coeficiente de determinación en los datos de respuesta del sensor de 0.9598 (agrolita) y 0.9559 (fibra de coco) ver Figura 4.27 (a y b), siendo superior al del datalogger CR10X de 0.8893 (en agrolita) y 0.9493 (en fibra de coco) y al dispositivo a 2.5 V CD 0.9445 (agrolita) y 0.9433 (fibra de coco), como puede observarse todos presentan un buen ajuste.

b)
Figura 4.27 Respuesta del sensor con diferentes porcentajes de humedad,
para tres dispositivos de adquisición.

El fabricante Decagon Devices indica que la que relación contenido de humedad volumétrica (Y) y la respuesta del sensor (X) (Mb) es independiente del medio que se mida y que depende del voltaje de excitación del sensor, siempre y cuando la conductividad eléctrica sea menor de 8 dS/m (o 8 mS/cm), y está dada por la ecuación:

y=0.00119*x-0.40 a 2.5 V CD con datalogger

Los modelos son similares, en el caso de la respuesta a la conductividad eléctrica (CE) no corresponde a la indicada por el fabricante, dado que el sensor EC-5 se altera a CE mayores de 2.7 mS/cm.


Por otra parte la fibra de coco presenta un valor de conductividad eléctrica alrededor de 3.9 mS/cm, reportado por Zamora (2005), por lo que la diferencia entre la ecuación obtenida y la del fabricante puede ser debida a la CE del sustrato.

A continuación se integraron los datos de la respuesta de agrolita y fibra de coco para cada sistema de adquisición, y se obtuvieron los siguientes resultados. La respuesta del sensor se comporta de forma lineal, sin importar el dispositivo que se utilice, además las ecuaciones obtenidas presentan variaciones cuando se alimenta el sensor con diferente voltaje. Al comparar el modelo de porciento de humedad en función de la señal del sensor los parámetros "a y b" son similares, excepto en el coeficiente a del fabricante (0.40). En las figuras 4.28, 4.29 y 4.30 se muestra el comportamiento de los modelos.

En el Cuadro 4. 11. Se muestran los coeficientes del modelo lineal y= a+ bx señal del sensor = a + b (% de humedad) y y= a+ bx (% de humedad= a + b (señal del sensor) con tres dispositivos diferentes.

Cuadro 4. 11. Coeficientes de un modelo lineal obtenidos con tres dispositivos diferentes.

Sistema de adquisición	mV=f (%	% de hu	medad)	% de humedad = f(mV)					
Y = a + bX	а	b	\mathbf{r}^2	а	b	\mathbf{r}^2			
Datalogger a 2.5	265.97	6.0727	0.9154	-	0.0015	0.9154			
VCD				0.3582					
5.0 VCD	323.36	9.2732	0.8073	=.	0.0009	0.8073			
				0.1842					
2.5 VCD	227.55	5.6632	0.946	=.	0.0017	0.946			
				0.3528					
Fabricante	-	-	-	0.4	0.00119	-			

a)

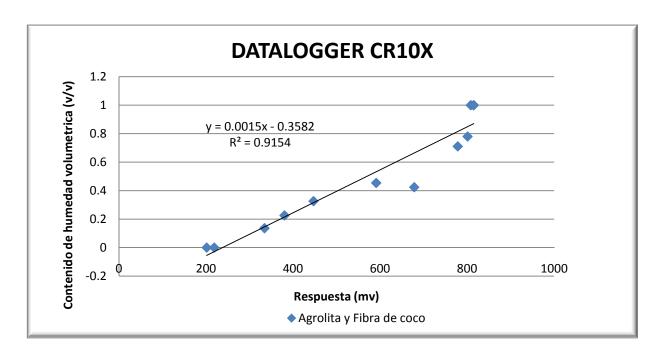
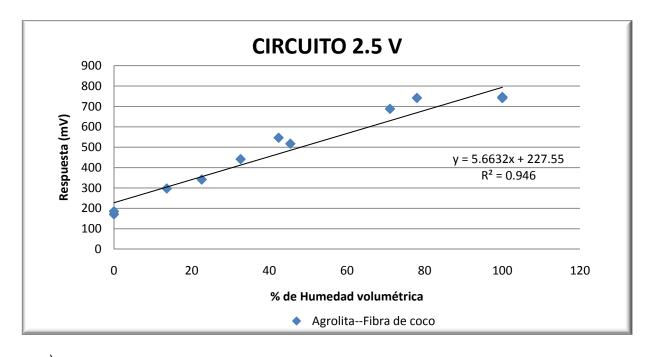



Figura 4.28 (a y b). Respuesta del sensor al contenido de humedad.

a)

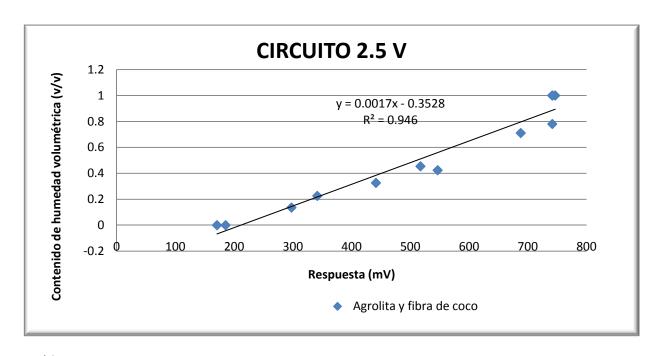
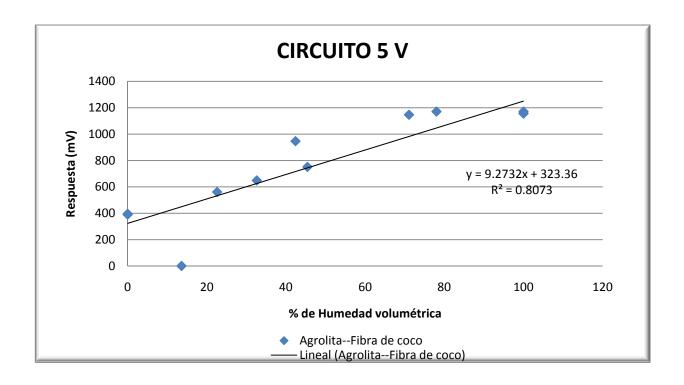
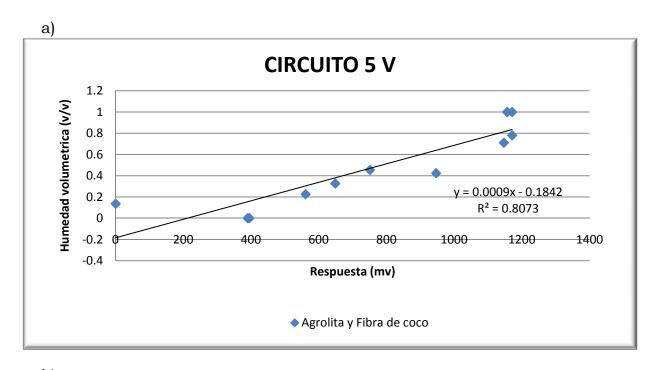




Figura 4.29 (a y b). Respuesta del sensor al contenido de humedad volumétrica.

b)
Figura 4.30. (a y b). Respuesta del sensor al contenido de humedad volumétrica para el circuito de 5V.

Se realizó un último experimento en el que se agregó agua a la agrolita con volúmenes de 25 ml (hasta llegar alrededor de 0.4 v/v de humedad, no se aplicó más agua por arriba de este valor, dado que se saturo el medio, con el fin de buscar la mejor alternativa para definir la ecuación que tome la decisión del riego. Los resultados de la respuesta del sensor con cada circuito electrónico, se muestran en la Figura 4.31.

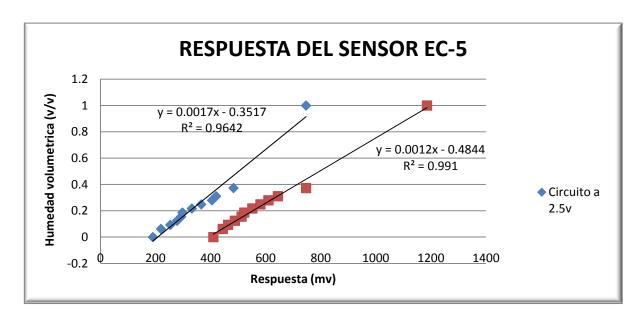


Figura 4.31. Respuesta del sensor al contenido de humedad volumétrica

Tomando en cuenta que no debe de importar el medio en el que se esté midiendo el contenido de humedad, se genero un modelo con dos datos más (la respuesta del sensor en el aire y en el agua) (ver Figura 4.31). Así mismo se obtuvo el modelo entre los pares de datos sensados en con el agua de riego y aire. En ambos casos los modelos son muy similares ver Figura 4.32.

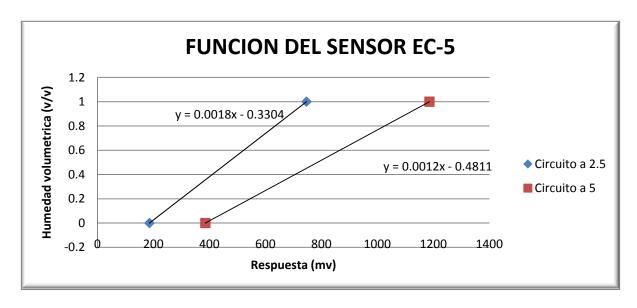


Figura 4.32. Función de respuesta del sensor a partir de dos puntos extremos.

Se observa que el modelo (Y = 0.0017X - 0.3517) que se genero con varios datos, para el circuito a 2.5 V CD es similar al modelo (Y = 0.0018X - 0.3304) que se genero con dos puntos extremos. El modelo (Y = 0.0012x - 0.4844), que se genero con varios datos utilizando el circuito a 5 V CD es igual que el modelo (Y = 0.0012X - 0.4811) que se genero con dos datos.

Al compara los modelos que se obtuvieron con el sistema de adquisición de 2.5 V CD, e todos los casos se obtuvo lo siguiente:

Cuadro 4.12. Coeficiente del modelo lineal y= a+ bx (% de humedad= a + b (señal del sensor) con dos voltajes de alimentación.

SISTEMA DE ADQUISICION DE DATOS	a	ъ	r ²
Datalogger a 2.5 VCD	-0.3582	0.0015	0.9154
2.5 VCD (Agrolita y Fibra de coco)	-0.3528	0.0017	0.946
2.5 VCD con Agrolita , airea y agua	-0.352	0.0017	0.964
2.5 VCD (aire y agua)	-0.33	0.0018	
Fabricante (DECAGON DIVICES)	-0.4	0.0012	-
5.0 VCD (Agrolita y fibra de coco)	-0.1842	0.0009	0.8073
5.0 VCD (Agrolita, aire y agua)	-0.4844	0.0012	0.999
5.0 VCD (agua, aire)	-0.4811	0.0012	-

A partir de cuadro anterior se deduce que el modelo que relaciona el contenido de humedad en el sustrato (en v/v) en función de la respuesta del sensor (mV), depende del voltaje de excitación del sensor, pero los modelos son similares dado un voltaje e independiente del medio, pero es necesario la calibración dado que difiere con la recomendación del fabricante. Sin embargo es necesario contar con un modelo de manera rápida y eficiente por lo que se concluye que este modelo se obtiene a partir de sensar el aire y el agua de

riego con excelente aproximación. En este caso se recomienda usar un sistema de adquisición de 5 V CD.

4.4.1 Relación de la respuesta del sensor (ec5) con la tensión de succión y diferentes tipos de agua.

Con base en lo anterior se realizó la siguiente evaluación, se calculó la respuesta del sensor (modelo EC5) en el aire y para diferentes calidades de agua (que varia debido a que cada agua tiene una conductividad eléctrica diferente). Las muestras de agua fueron cuatro: De la estación meteorológica de Chapingo, del Colegio de Postgraduados, de la Unidad del ISSSTE y agua purificada de Chapingo.

Cuadro 4. 13. Respuesta del sensor de humedad (EC-5) con diferentes calidades de agua.

		Agua1	Agua2	Agua3	Agua4
		Estación Met.	COLPOS	U.H.ISSSTE	Agua purificada
		UACh			Chapingo
Medio	Limites	(mV)	(mV)	(mV)	(mV)
Aire	0	390.40	390.00	389.00	390.10
Agua	1	1164.46	1185.84	1185.00	1167.00

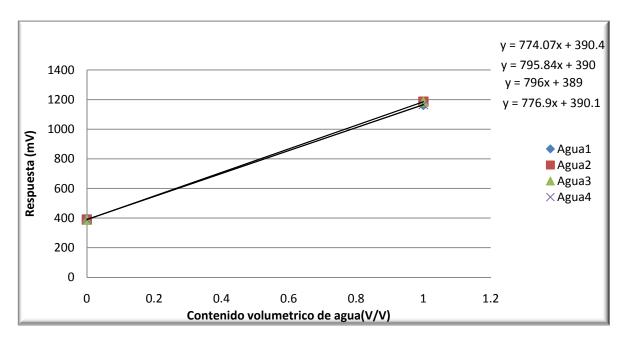


Figura 4.33. Respuesta del sensor a diferentes calidades de agua

Se observó que la respuesta del sensor para cada calidad de agua es muy similar (son rectas casi paralelas y muy cercanas). El dato del aire se encuentra muy cercano a 390 mV para todos los casos, por lo que se puede considerar como constante dado un circuito de adquisición de datos (en este caso el que se alimenta al sensor con 5V CD), ver Cuadro 4.11.

Como parte complementaria se buscó evaluar el efecto del tipo de agua y la señal del sensor. Para ello se seleccionó dos modelos de agua del Colegio y Chapingo, con los modelos y = 390.0 + 795.85x y y= 390.4 + 774.07x respectivamente, donde y = respuesta del sensor en mV y x es el contenido de humedad (v/v).

A cada uno de los cuatro sustratos sometidos a una misma tensión presentan respuestas diferentes del sensor, con diferentes contenidos de humedad volumétrica (v/v), Ver Figura 4.34.

Para dos tipos de agua diferente la respuesta (mV) del sensor varia. Dado un sustrato y con dos tipo de agua la respuesta es paralelas, con una variación mínima (Ver figura 4.34.).

En el Cuadro 4.14 se muestran los resultados de las curvas de respuesta del sensor para cada calidad de agua. Las muestras fueron tomadas en la Universidad Autónoma Chapingo (UACh) y en el Colegio de Postgraduados (COLPOS).

Cuadro 4.14. Respuesta del sensor en los sustratos a la tensión de succión.

CURVA D	DE RETENC	ION DE AGUA
---------	-----------	-------------

	cm de tensión de columna de agua												
	Conten		ımedad vo v/v)	Respuesta (mV) del sensor EC5 _Agua2_COLPOS									
Sustrato	0	10	50	100	0	10	50	100					
Arena	0.4045	0.3412	0.2836	0.2219	711.9523	661.5788	615.7225	566.5810					
Fibra de coco	1.0000	0.7801	0.4542	0.3262	1185.8320	1010.8069	751.4451	649.5632					
Peat moos	0.9562	0.8317	0.4923	0.4151	1151.0101	1051.8683	781.7920	720.3134					
Tezontle	0.4693	0.2664	0.1238	0.0979	763.5164	602.0309	488.4932	467.9287					
Agrolita	0.7107	0.4240	0.2260	0.1360	955.5995	727.4091	569.8336	498.2661					
Tepojal	0.4059	0.1975	0.1873	0.1766	713.0028	547.2039	539.0385	530.5294					

Respuesta (mV)	del sensor EC5	Agua 1	UACh
----------------	----------------	--------	------

Sustrato	0	0 10		100
Arena Fibra de	703.5454	654.5498	609.9479	562.1507
coco	1164.4623	994.2249	741.9578	642.8629
Peat moos	1130.5928	1034.1631	771.4747	711.6778
Tezontle	753.6989	596.6308	486.1989	466.1969
Agrolita	940.5277	718.5794	565.3143	495.7045
Tepojal	704.5671	543.3036	535.3616	527.0853

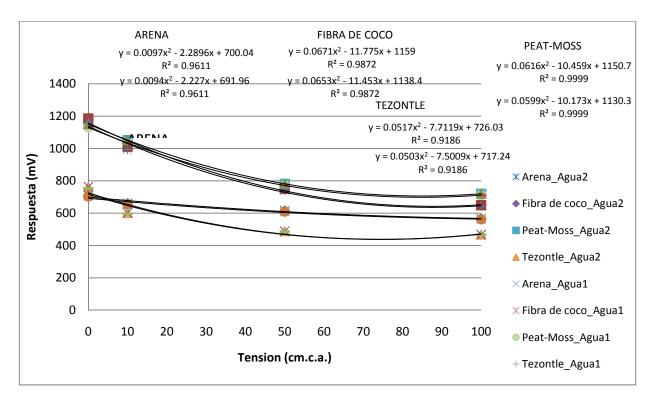


Figura 4.34. Respuesta del sensor para cada tensión de succión en los sustratos, con dos calidades de agua.

Si se asume un tipo de agua, y que la conductividad eléctrica de todos los sustratos, se encuentra por debajo de 2.5 mS/cm. Donde la respuesta del sensor en el aire es igual a 390 mV y en el agua de 1180 mV (datos promedios de los modelos). Al convertir los datos del contenido de humedad de los sustratos en (en v/v de las tensiones de 0, 10, 50 y 100 cm de columna de agua, información de laboratorio) con este modelo se mantiene la respuesta lineal del sensor, siempre y cuando se exprese el agua del medio en v/v, ver Figura 4.35.

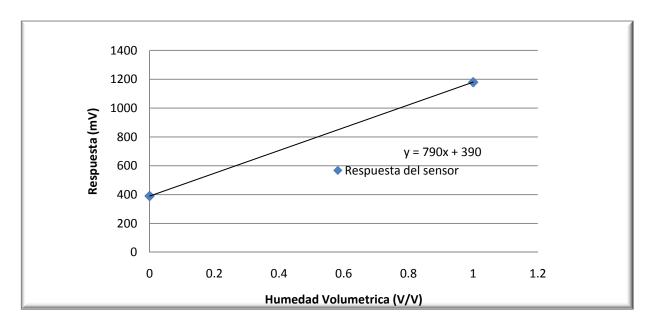


Figura 4.35 Respuesta del sensor (mV) y la humedad volumétrica (V/V), a partir de los datos de aire y agua.

4.5 Evaluación del sistema de automatización de riego en sustratos

Una vez caracterizado el sensor, e instrumentado el sistema de control junto con sus componentes y el sistema de riego, sin cultivo, se hicieron las pruebas de sistema siguiendo los siguientes pasos:

4.5.1 Prueba de aforo

El promedio de gasto medido para la presión de 1 bar fue de 2.2362 L/h, para la presión de 1.5 bares fue de 2.3152 L/h, obteniendo un promedio general del sistema de riego de 2.27 L/h. los experimentos se realizaron a 1 bar de presión.

4.5.2 Experimento1: Control automático del riego en agrolita

Los datos de configuración inicial del primer experimento fueron: Datos del aire = 389 mV (0% de humedad volumétrica); dato del agua =1.215 mV (100% de humedad volumétrica), la ecuación obtenida fue: **Y=121.07(X)-47.094**, en la que "Y" es el contenido de humedad volumétrica en % y "X" el voltaje de respuesta del sensor en (V).

El voltaje medido en el sustrato fue de 0.596, se utilizó la ecuación de respuesta para calcular la humedad volumétrica que fue de 25.06372%. En esta prueba se decidió dejar perder el 1% de este contenido de humedad, es decir, al 24.8130828% de humedad volumétrica (que representa el umbral). Al expresar este valor en función de la respuesta del sensor es de 0.594 mV (24.8130828). Bajo estas condiciones se realizó el experimento, que en la Figura 36, se observa el calendario de riego del día 13 de abril del 2010. El sistema comenzó a sensar a partir de las 12:00 pm, terminando a las 7:59 pm, donde sólo se llevo a cabo dos riegos, debido a que el tiempo atmosférico presentó nubosidad y humedades relativas altas, con poca demanda de evaporación (se reportó una evaporación en el tanque tipo "A" de 4.54 mm en la estación Meteorológica de la Universidad Autónoma Chapingo), ver Cuadro 4.15. En el Anexo II se indican la información que genera el sistema de control en la base de datos.

El control de riego se puede hacer en función de la humedad volumétrica (v/v), o respuesta del sensor en mV, ver figura 4.36 (a, b y c).

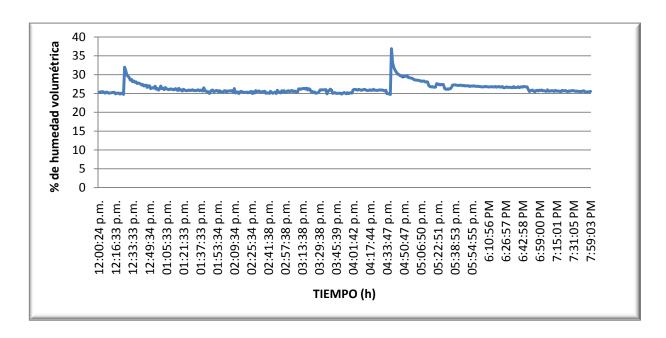


Figura 4.36 a) Calendario de riego del día 13 de abril del 2010 en % v/v. Se observa en la figura 4.37 b), que el umbral está marcado por la línea punteada, el cual es 0.594 mV, en este caso.

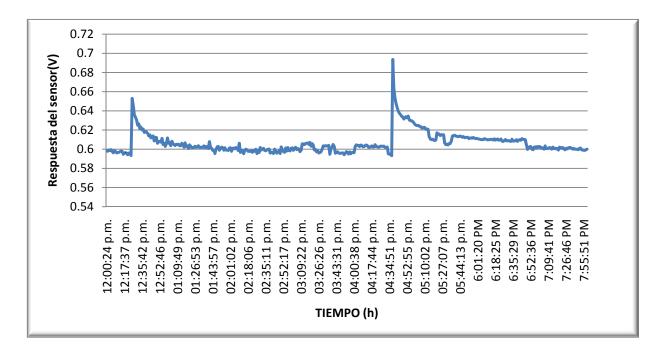


Figura 4.36 b). Calendario de riego del día 13 de abril del 2010 en función de la respuesta del sensor (V).

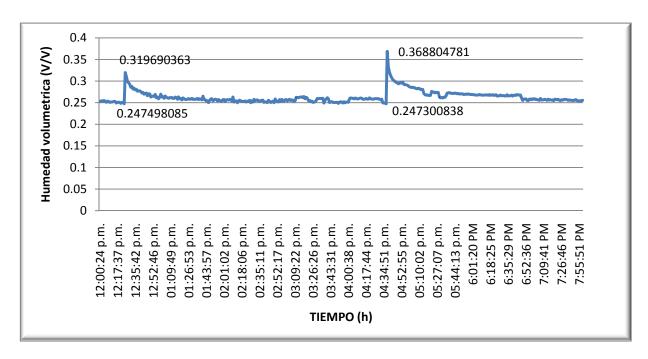


Figura 4.36 c). Calendario de riego del día 13 de abril del 2010 en función de la humedad volumétrica (v/v).

Tabla 4.15. Datos del tiempo atmosférico del día 13 de Abril del 2010.

Tiempo (horas)	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T.Seco(°C) T.Humedo(13	15	16.4	18.3	20.7	22.4	23.9	22.2	20.6	22.5	22.6	21.7	19.9	18.5	17.4
°C)	11.9	12.8	12.6	12.1	11.9	12.6	12.8	11.7	11.4	12.1	12.2	11.3	11	10.5	10.3
T.Punto de rocio(°C)	11.3	11.5	10.4	8.2	6	6.3	5.5	4.1	4.9	4.9	5	3.6	4.8	4.7	5.2
Tensión de vapor(kPa)	13.3	13.6	12.7	10.8	9.3	9.4	8.9	8.3	8.7	8.7	8.8	7.2	8.7	8.5	8.8
Humedad Relativa															
(%) Presión	89	80	68	52	39	35	30	31	36	32	32	31	37	40	44
atmosféric a(mmHg)	782	782. 5	783. 2	783. 3	783. 2	782. 4	781. 5	780. 5	780	779. 5	779.3	779. 3 Med	780 Med	780.8	781.3
Cielo	Nubl ado.	Nubl ado.	Nubl ado.	Nubl ado	Med.des pejado	nubl ado	nubl ado	Desp ejado	Desp ejado						
Visibilidad Fenómeno	4 nebli	4 nebli	6 nebli	7 nebl	10	10	10	8 Bru	8 Bru	9 polv	9	8 Cali	5 Bru	2	2
s Precipitaci	na	na	na	ina	/	/	/	ma	ma	0	Calina	na	ma	/	/
ón(mm) Evaporació	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
n(mm)	4.54														

4.5.3 Experimento2: Control automático del riego en la mezcla (50%Tezontle y 50%Fibra de coco)

Los datos de configuración inicial del experimento 2 fueron: Dato del aire = 35624 mV, dato del agua =1.1224 mV, la ecuación que se obtuvó fue: **y** = **130.52x - 46.497**, en la que "y" es el contenido de humedad volumétrica en % y "x" el voltaje de respuesta del sensor en (V).

El voltaje medido en el sustrato fue de 0.622, se utilizó la ecuación de respuesta para calcular la humedad volumétrica siendo esta de 34.68644%, de igual forma se dejo perder el 1% de esta que fue de 34.3395756% (umbral) y el voltaje medido fue de 0.62 mV.

En la Figura 4.37, 4.38 y 4.39, se observa el calendario de riego del día 26 de abril del 2010, el sistema comenzó a Sensar a partir de las 10:53 am, y concluyo a las 7:10 pm, donde el sistema aplicó 5 riegos. El tiempo atmosférico presentó un cielo despejado durante todo el día, con una evaporación de 6.31 mm, datos reportados por la estación Meteorológica de la Universidad Autónoma Chapingo, ver cuadro 4.14.

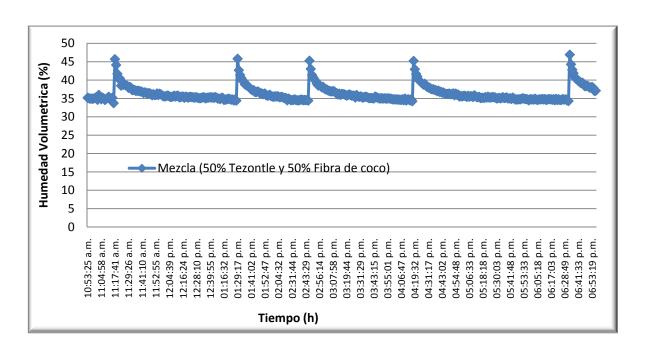


Figura 4.37. Calendario de riego del día 26 de abril del 2010 en función al % de humedad volumétrica.

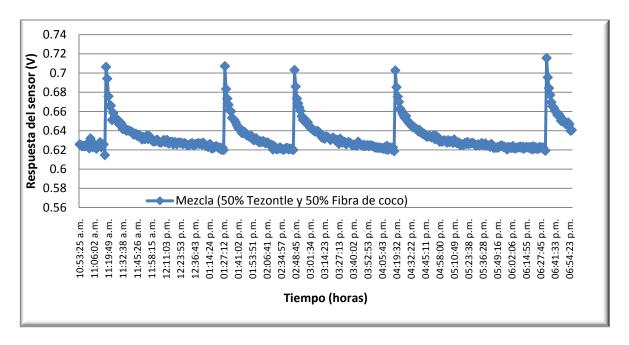


Figura 4.38. Calendario de riego del día 26 de abril del 2010 en función de la respuesta del sensor (V).

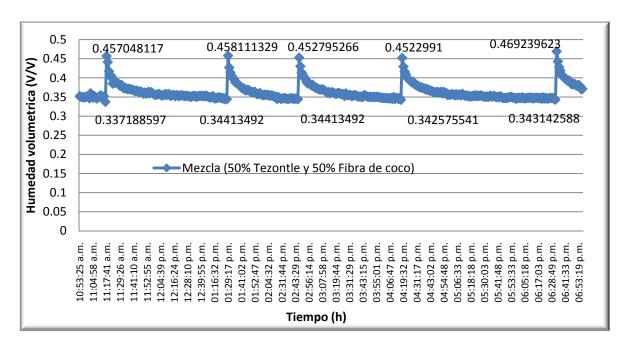


Figura 4.39. Calendario de riego del día 26 de abril del 2010 en función del contenido de humedad volumétrica (v/v).

Tabla 4.16. Datos del tiempo atmosférico del día 26 de Abril del 2010.

Tiempo															
(horas)	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
T.Seco(°C) T.Humedo(11.7	16.9	20	22.8	25.7	26.1	27.5	28.8	29	29.1	28.4	26.2	24	21.8	20.2
°C)	8.9	10.5	11.2	12.9	12.5	12.2	12.8	13.3	13.7	13.5	13.8	12.6	11	10	9.4
Punto de roció (%) Tensión de	6.2	5.9	6	6.6	3.1	1.9	2.2	2.2	3.2	2.4	2.3	2.7	0.6	-0.1	-0.1
vapor(kpa)	9.9	9.3	9.3	9.7	7.6	6.9	7.2	7.2	7.7	7.3	7.2	7.4	6.4	6	6.1
Humedad Relativa (%) Presión atmosféric	71	49	40	35	23	21	20	19	20	19	19	22	21	23	25
a(mmHg)	282.4	282.8	283.2	283.6	783.2	782.7	781.5	780.5	779.3	779.1	778.9	779.2	779.7	780.7	781.2
Cielo	Despe jado														
Visibilidad	6	6	6	6	7	7	8	7	6	6	7	8	6	2	2
Fenómenos Precipitaci	Polvo														
ón(mm) Evaporació	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
n(mm)	6.31														

V. CONCLUSIONES

Se logró el desarrollo del sistema de control automático de riego en sustratos que depende el desempeño de la caracterización del sensor de humedad (modelo EC5), naturaleza del sustrato (características físicas, curva de liberación de agua) e incluso puede auto regular dentro de los niveles de humedad que se desee.

Se encontró que cada sustrato presenta diferentes características físicas propias (p.e. de capacidad de agua, espacio poroso total y la materia orgánica) que retienen diferentes contenidos de humedad a diferentes tensiones.

Se probó que los sensores (EC5) de humedad requieren de caracterización específica y no usar la del fabricante, sin embargo se pueden calibra con solo sensar en el aire y el agua de riego (con CE menores de 2.7 mS/cm), con el ajuste del tiempo de riego en función de tipo de sustrato.

Se logró una buena integración entre hardware y software (Sensores, interfaces de comunicación y control, fuentes de energía y la programación) del sistema de de automatización de riego en sustratos auto controlado.

VI. RECOMENDACIONES

Se deben de desarrollar sistemas de adquisición, transmisión, control y almacenamiento de datos, que acepten diferentes tipos de sensores (analógicos, digitales, de pulsos, de diferencias de voltaje, etc.).

Para trabajos posteriores se deben de utilizar protocolos o métodos de comunicación que permitan monitorear y controlar dispositivos a distancias considerables.

Se deben de desarrollar sistemas de automatización que integren todas las tecnologías de comunicación y control (dispositivos móviles y la red de internet), así como sistemas básicos que solo realicen el trabajo esencial, debido a que en nuestro país contamos tanto con productores de muy bajos recursos económicos, así como grandes productores.

Se debe de desarrollar tecnología de adquisición, transmisión y almacenamiento de datos de datos, así como de control para la agricultura, debido a que los productos comerciales son costosos y muchas veces no se ajustan a nuestras necesidades.

Se deben de hacer desarrollos de automatización y control, tomando como base a los microcontroladores, debido a sus características y costo.

Se debe de realizar más investigación en sustratos agrícolas, debido a que han dado buenos resultados para sistemas de producción intensiva.

VII. LITERATURA CITADA

- Abad, M. 1992. Evaluación Agronómica de los sustratos de cultivos. Actas de la I jornada de sustratos. Sociedad Española de Ciencias Hortícolas. España.
- Abad M, 1991. Los sustratos hortícolas y las técnicas de cultivo sin suelo. *En*:

 L. Rallo y F. Nuez (Eds.). La Horticultura Española en la C.E.. pp.

 270-280. Ediciones de Horticultura S.L., Reus (Tarragona).
- Abad M, Noguera P, 1998. Sustratos para el cultivo sin suelo y fertirrigación.

 En: C Cadahía (Coord.). Fertirrigación. Cultivos Hortícolas y

 Ornamentales. pp. 287- 342. Ediciones Mundi-Prensa, Madrid.
- Amoros, 1993. Riego por goteo en cítricos. Agro guías Mundi-Prensa. Segunda edición.
- Arias A., S.E. 1988. Sustratos para la producción de plántulas de lechuga "Great Lakes 407. Bajo invernadero. Tesis Profesional. Universidad Autónoma Chapingo. Chapingo, Méx., México.
- Ansorena, M. J. 1994. Sustratos. Propiedades y caracterización. Ediciones Mundi-Prensa. Madrid, España.
- Blanc D. (Dir.), 1987. Les Cultures Hors Sol. 2éme éd. Institut National de la Recherche Agronomique (INRA), Paris, 409 pp.
- Boswell, 1989. Manual de diseño y manejo de sistemas de micro irrigación.

 Editorial James Hardie Irrigation (Iberia) s.a.
- Bunt, A.C., 1988. Media and Mixes for Container-Grown Plants. 2nd ed. Unwin Hyman Ltd., London, 309 pp.

- Carrillo F., G. (1999). Sistema automático de fertirriego para cultivos ornamentales bajo condiciones de invernadero. Tesis de Maestría. Colegio de Potsgraduados. Montecillo, Edo. De México.75 p.
- Castro, P., M. (2008). Desarrollo de un sistema de riego automatizado en tiempo real con base en balance hídrico climático, medición de humedad del suelo y lisímetro. Tesis de Doctorado. Colegio de Postgraduados. Montecillo, Edo. De México. 194 p.
- De Boodt, M. & O. Verdonck. 1972. The physical properties of substrates in horticulture. Acta Horticulturae 26:337-344.
- De Boodt, M., O. Verdonckv and I. Cappaert. 1974. Method for measuring the water release curve of organic subtrates. Acta Horticulturae 37:2054-2062.
- Domínguez D., J. R. 1994. Evaluación de sustratos en orquidea (Oncidium sahacelatum) obtenidas mediante la germinación en vitro de semillas. Tesis Profesional. Universidad Autonoma Chapingo. Fitotecnia.
- Fernández, 1994. Evaluación de métodos de cálculo de la evapotranspiración de referencia bajo condiciones de invernadero en Almería. XII Jornadas Técnicas sobre Riegos. Comunicaciones B.2: 63-69.
- Ganssle, J. y Barr, M. 2003. *Embedded Systems Dictionary*. CMP Books. San Francisco, USA.
- Goldberg, D., Gornat and D. Rimon, 1976. Drip Irrigation: Principles, Design and agricultural Practices. Drip Irrigation Scientific Publications, Kfar Shmaryahu, Israel.
- Hanan, J,J., W.D.Hlley and K.L. Goldsberry. 1978. Greehouse Management.

 New York: Springer-Verlag Berlin Heidelberg. NY., USA.

- Horticultura Revista de Industria Distribución y Socioeconomía [en línea].

 España[citado el 18 de enero de 2010]. Disponible para World

 Wide

 Web:

 www.mapa.es/ministerio/pags/biblioteca/.../Hort_1997_120_49_

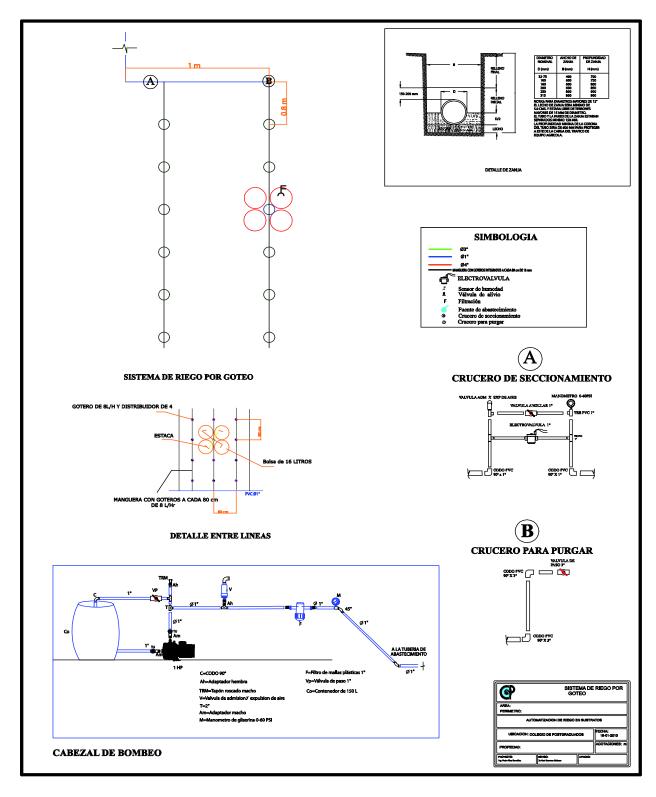
 52.pdf.
- Jaimes, J. G. 1994. Produccion de plántula de brocoli (Brassica oleracea var. Italica) en contenedores con soluciones nutritivas y sustratos especiales bajo invernadero. Tesis Profesional. Universidad Autonoma Chapingo. Chapingo, Méx., México.
- Kuo, B. 1996. Sistemas de control automático. Prentice Hall. México. 905 p. Lorenzo, P., Sánchez-Guerrero, M. C., Medrano, E., García, M. L., Caparrós, I., Coelho, G. y Giménez, M. 2004. Climate Control In The Summer Season: A Comparative Study Of Externa Mobile Shading And Fog System. Acta Horticulturae 659: 189-194.
- Miranda, T. 2008. Diseño de un sistema de control automático para temperatura, humedad relativa y riego en invernadero. Tesis de Maestría. Colegio de Postgraduados. Montecillo, Edo. De México.126 p.
- Morais, R. y Boaventura, J. 2000. Agritronics: A Distributed Data Aquisition

 And Control Network For Agriculture Environments. Acta

 Horticulturae 534: 319-325.
- Noguera, P. & Abad M. 1997. Physical and chemical properties of coir waste and their relation to plant growth. Acta Horticulture. ISHS.
- Noborio, K. 2001. Measurement Of Soil Water Content And Electrical Conductivity By Time Domain Reflectometry: A Review. Computers and electronics in agriculture 31: 213-237.

- Moreno A., S., L. Tijerina Ch., R. Acosta H., V.M. Ruiz C., F.S. Zazaeta R., y G. Crespo P. (1996). Automatizacion de un sistema de riego localizado, aplicado a una plantación de durasno. Agrociencia, Vol. 33,2:191-197.
- Noergaard, T. 2005. Embedded Systems Architecture. A Comprehensive Guide For Engineers And Programmers. Elsevier. USA. 642 p.
- Ogata, K. 1998. *Ingeniería de control moderna*. Pearson Educación. México. 997 p.
- Quiñones, P. R.1995. Influencia del sustrato y fertilizacion en el crecimiento de plantulas de pinus greggi bajo condiciones de vivero. Tesis Profesional. Universidad Autonoma Chapingo. Chapingo, Méx., México.
- Rodríguez F. y Berenguel M. 2004. *Control y robótica en agricultura.*Universidad de Almería. 433 p.
- Terés V, Beunza A I, Artetxe A, 1996. Ensayo comparativo de sustratos en *upressocyparis leylandii* (ciclo largo) 1995-1997. Departamento de Producción Vegetal. Resultados Investigación 1995 (II). Servicio Central de Publicaciones del Gobierno Vasco. Infomes Técnicos nº 72 (2):135-136 (A). ISBN: 84-457-1061-3.
- Terés V, Beunza A I, Artetxe A, 1997. Riego en sustratos (A). Hortultura: Revista de hortalizas, flores, plantas ornamentales y vivero. Nº 120 Abril 1997. p. 49-52.
- Terés V, Artetxe A, Beunza A I, 1997. Caracterización física de los sustratos de cultivo (A). Horticultura: Revista de hortalizas, flores, plantas ornamentales y vivero. Nº 125 Diciembre 1997. p. 38-41.
- Terés V, Artetxe A, Beunza A I, 2000. Lapton control de riego en sustratos de cultivo. Agrícola Vergel Nº 219 Marzo 2000. P 200-206.

- Terés V, 2000. Riego en sustratos de cultivo (A). Horticultura: Revista de hortalizas, flores, plantas ornamentales y vivero. Nº 147 septiembre 2000. p. 16-30.
- Thompson R.B 1997. Programación de riegos mediante sensores de humedad en suelo. Producción vegetal, Universidad de Almería, Almería, España.
- Tomasi, W. 2003. Sistemas de comunicaciones electrónicas. Pearson Educación. México. 976 p.
- Velázquez R., J. M. 1995. Evaluacion de Quercus crassioes en vivero bajo diferentes tipos de sustrato e intensidades de luz. Tesis profesional. Universidad Autonoma Chapingo. Chapingo, Méx., México.
- Velasco, G. S. 1995. Evaluacion de cuatro sustratos en el transplante y desarrollo de miniazalea(Rhododendron indicum) en condiciones de invernadero en chapingo, Mexico. Tesis profesional. Universidad Autonoma Chapingo. Chapingo, Méx., México.
- Warncke, D. 1986. Analyzing greenhouse growth media by the saturation extraction method. HortScience 21(2):223:225.
- Wang, N., Zhang, N. y Wang, M. 2006. Wireless Sensors In Agriculture And
 Food Industry Recent Development And Future Perspective.


 (Review). Computers and electronics in agriculture 50: 1-14.
- Zamora, M. 2005. Formulación de mezclas de sustratos mediante programación lineal. Tesis de Doctorado. Colegio de Postgraduados. Montecillo, Edo. De México.95 p.
- Zarate, S. J. 1995. Evaluacion de cinco sustratos y dos cultivares de crisantemo(Chasantemum morifolium) para maceta bajo

invernadero en la region de Texcoco, Edo. México. Tesis Profesional. Universidad Autonoma Chapingo. Chapingo, Méx., México.

Zarate, N. B. 2007. Producción de tomate (Lycopersicon esculentum Mill.) hidropónico con sustratos, bajo invernadero. Tesis de Maestría. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Oaxaca. Instituto Politécnico Nacional. 159 p.

ANEXOS

ANEXO 1

ANEXO 2 DATOS GENERADOS EN EL EXPERIMENTO DEL DIA 13 DE ABRIL DEL 2010

Tiempo	Respuesta	% Humedad	Humedad
(h)	(mV)	volumétrica	volumétrica (v/v)
12:00:24 p.m.	0.598186	25.328399	0.253284
12:01:28 p.m.	0.597860	25.288949	0.252889
12:02:32 p.m.	0.599272	25.459896	0.254599
12:03:36 p.m.	0.598512	25.367848	0.253678
12:04:40 p.m.	0.599435	25.479621	0.254796
12:05:44 p.m.	0.597534	25.249500	0.252495
12:06:48 p.m.	0.596231	25.091703	0.250917
12:07:52 p.m.	0.598458	25.361273	0.253613
12:08:56 p.m.	0.597589	25.256075	0.252561
12:10:00 p.m.	0.596068	25.071978	0.250720
12:11:04 p.m.	0.596557	25.131152	0.251312
12:12:09 p.m.	0.596720	25.150877	0.251509
12:13:13 p.m.	0.597426	25.236350	0.252364
12:14:24 p.m.	0.598023	25.308674	0.253087
12:15:29 p.m.	0.597697	25.269225	0.252692
12:16:33 p.m.	0.594711	24.907606	0.249076
12:17:37 p.m.	0.595797	25.039104	0.250391
12:18:41 p.m.	0.596448	25.118002	0.251180
12:19:45 p.m.	0.595905	25.052253	0.250523
12:20:49 p.m.	0.594222	24.848432	0.248484
12:21:53 p.m.	0.596068	25.071978	0.250720
12:22:57 p.m.	0.595525	25.006229	0.250062
12:24:01 p.m.	0.593407	24.749809	0.247498
12:26:05 p.m.	0.653036	31.969036	0.319690
12:27:09 p.m.	0.645650	31.074851	0.310749
12:28:13 p.m.	0.635875	29.891371	0.298914
12:29:17 p.m.	0.633540	29.608651	0.296087
12:30:21 p.m.	0.630499	29.240457	0.292405
12:31:25 p.m.	0.624959	28.569819	0.285698
12:32:29 p.m.	0.626371	28.740766	0.287408
12:33:33 p.m.	0.621375	28.135876	0.281359
12:34:37 p.m.	0.623059	28.339698	0.283397
12:35:42 p.m.	0.620072	27.978079	0.279781
12:36:46 p.m.	0.621049	28.096427	0.280964
12:37:50 p.m.	0.617465	27.662484	0.276625
12:38:53 p.m.	0.618388	27.774257	0.277743
12:39:57 p.m.	0.617899	27.715083	0.277151

12:41:01 p.m.	0.616596	27.557286	0.275573
12:42:05 p.m.	0.613935	27.235116	0.272351
12:43:09 p.m.	0.614967	27.360039	0.273600
12:44:13 p.m.	0.611817	26.978696	0.269787
12:45:17 p.m.	0.613229	27.149643	0.271496
12:46:21 p.m.	0.613826	27.221967	0.272220
12:47:26 p.m.	0.608667	26.597352	0.265974
12:48:30 p.m.	0.612360	27.044445	0.270444
12:49:34 p.m.	0.612143	27.018145	0.270181
12:50:38 p.m.	0.606169	26.294907	0.262949
12:51:42 p.m.	0.607690	26.479004	0.264790
12:52:46 p.m.	0.608179	26.538178	0.265382
12:53:50 p.m.	0.607364	26.439555	0.264396
12:54:54 p.m.	0.611274	26.912947	0.269129
12:55:58 p.m.	0.604920	26.143685	0.261437
12:57:02 p.m.	0.606224	26.301482	0.263015
12:58:06 p.m.	0.602857	25.893839	0.258938
12:59:10 p.m.	0.605789	26.248883	0.262489
01:00:13 p.m.	0.611763	26.972121	0.269721
01:01:17 p.m.	0.606224	26.301482	0.263015
01:02:21 p.m.	0.606930	26.386956	0.263870
01:03:25 p.m.	0.603725	25.999037	0.259990
01:04:29 p.m.	0.608287	26.551328	0.265513
01:05:33 p.m.	0.605680	26.235733	0.262357
01:06:37 p.m.	0.604703	26.117385	0.261174
01:07:42 p.m.	0.603780	26.005612	0.260056
01:08:45 p.m.	0.605137	26.169984	0.261700
01:09:49 p.m.	0.604866	26.137110	0.261371
01:10:53 p.m.	0.605246	26.183134	0.261831
01:11:58 p.m.	0.603617	25.985888	0.259859
01:13:02 p.m.	0.603563	25.979313	0.259793
01:14:06 p.m.	0.606115	26.288332	0.262883
01:15:10 p.m.	0.604920	26.143685	0.261437
01:16:14 p.m.	0.601933	25.782066	0.257821
01:17:17 p.m.	0.606604	26.347506	0.263475
01:18:21 p.m.	0.602911	25.900414	0.259004
01:19:25 p.m.	0.603454	25.966163	0.259662
01:20:29 p.m.	0.600739	25.637418	0.256374
01:21:33 p.m.	0.604540	26.097661	0.260977
01:22:37 p.m.	0.603128	25.926714	0.259267

01:23:41 p.m.	0.601662	25.749192	0.257492
01:24:45 p.m.	0.601553	25.736042	0.257360
01:25:49 p.m.	0.601879	25.775491	0.257755
01:26:53 p.m.	0.603128	25.926714	0.259267
01:27:57 p.m.	0.601933	25.782066	0.257821
01:29:01 p.m.	0.602313	25.828090	0.258281
01:30:05 p.m.	0.603617	25.985888	0.259859
01:31:10 p.m.	0.601770	25.762341	0.257623
01:32:14 p.m.	0.602151	25.808366	0.258084
01:33:18 p.m.	0.601607	25.742617	0.257426
01:34:22 p.m.	0.602368	25.834665	0.258347
01:35:25 p.m.	0.603508	25.972738	0.259727
01:36:29 p.m.	0.601282	25.703167	0.257032
01:37:33 p.m.	0.602911	25.900414	0.259004
01:38:37 p.m.	0.602259	25.821515	0.258215
01:39:41 p.m.	0.600793	25.643993	0.256440
01:40:45 p.m.	0.607907	26.505304	0.265053
01:41:49 p.m.	0.601390	25.716317	0.257163
01:42:53 p.m.	0.600956	25.663718	0.256637
01:43:57 p.m.	0.598784	25.400722	0.254007
01:45:02 p.m.	0.599164	25.446747	0.254467
01:46:06 p.m.	0.595471	24.999654	0.249997
01:47:10 p.m.	0.599924	25.538795	0.255388
01:48:14 p.m.	0.602531	25.854390	0.258544
01:49:18 p.m.	0.602802	25.887264	0.258873
01:50:22 p.m.	0.598838	25.407297	0.254073
01:51:26 p.m.	0.600467	25.604544	0.256045
01:52:30 p.m.	0.602096	25.801791	0.258018
01:53:34 p.m.	0.601553	25.736042	0.257360
01:54:38 p.m.	0.598946	25.420447	0.254204
01:55:42 p.m.	0.601553	25.736042	0.257360
01:56:46 p.m.	0.599055	25.433597	0.254336
01:57:50 p.m.	0.599109	25.440172	0.254402
01:58:54 p.m.	0.598621	25.380998	0.253810
01:59:58 p.m.	0.601227	25.696592	0.256966
02:01:02 p.m.	0.601499	25.729467	0.257295
02:02:06 p.m.	0.597806	25.282374	0.252824
02:03:10 p.m.	0.600847	25.650568	0.256506
02:04:14 p.m.	0.601227	25.696592	0.256966
02:05:18 p.m.	0.600413	25.597969	0.255980

02:06:22 p.m.	0.601716	25.755766	0.257558
02:07:26 p.m.	0.601227	25.696592	0.256966
02:08:30 p.m.	0.598621	25.380998	0.253810
02:09:34 p.m.	0.606224	26.301482	0.263015
02:10:38 p.m.	0.596666	25.144302	0.251443
02:11:42 p.m.	0.598023	25.308674	0.253087
02:12:46 p.m.	0.598946	25.420447	0.254204
02:13:50 p.m.	0.595308	24.979930	0.249799
02:14:54 p.m.	0.598675	25.387573	0.253876
02:15:58 p.m.	0.600087	25.558520	0.255585
02:17:02 p.m.	0.599272	25.459896	0.254599
02:18:06 p.m.	0.597752	25.275800	0.252758
02:19:10 p.m.	0.597806	25.282374	0.252824
02:20:14 p.m.	0.597697	25.269225	0.252692
02:21:18 p.m.	0.598675	25.387573	0.253876
02:22:22 p.m.	0.596829	25.164027	0.251640
02:23:26 p.m.	0.598349	25.348123	0.253481
02:24:30 p.m.	0.597806	25.282374	0.252824
02:25:34 p.m.	0.599978	25.545370	0.255454
02:26:38 p.m.	0.595417	24.993079	0.249931
02:27:42 p.m.	0.599001	25.427022	0.254270
02:28:47 p.m.	0.596557	25.131152	0.251312
02:29:51 p.m.	0.601770	25.762341	0.257623
02:30:55 p.m.	0.599109	25.440172	0.254402
02:31:59 p.m.	0.600250	25.578244	0.255782
02:33:03 p.m.	0.600901	25.657143	0.256571
02:34:07 p.m.	0.598784	25.400722	0.254007
02:35:11 p.m.	0.598295	25.341548	0.253415
02:36:18 p.m.	0.599381	25.473046	0.254730
02:37:21 p.m.	0.599815	25.525645	0.255256
02:38:25 p.m.	0.600250	25.578244	0.255782
02:39:29 p.m.	0.595960	25.058828	0.250588
02:40:34 p.m.	0.596937	25.177176	0.251772
02:41:38 p.m.	0.596557	25.131152	0.251312
02:42:42 p.m.	0.595579	25.012804	0.250128
02:43:46 p.m.	0.600033	25.551945	0.255519
02:44:50 p.m.	0.598132	25.321824	0.253218
02:45:53 p.m.	0.595905	25.052253	0.250523
02:46:57 p.m.	0.597100	25.196901	0.251969
02:48:01 p.m.	0.598349	25.348123	0.253481

02:49:05 p.m.	0.595417	24.993079	0.249931
02:50:09 p.m.	0.602422	25.841240	0.258412
02:51:13 p.m.	0.599490	25.486196	0.254862
02:52:17 p.m.	0.597534	25.249500	0.252495
02:53:21 p.m.	0.596774	25.157452	0.251575
02:54:25 p.m.	0.601282	25.703167	0.257032
02:55:29 p.m.	0.598023	25.308674	0.253087
02:56:34 p.m.	0.601716	25.755766	0.257558
02:57:38 p.m.	0.598566	25.374423	0.253744
02:58:42 p.m.	0.598240	25.334974	0.253350
02:59:46 p.m.	0.601064	25.676868	0.256769
03:00:50 p.m.	0.601390	25.716317	0.257163
03:01:54 p.m.	0.598784	25.400722	0.254007
03:02:58 p.m.	0.600956	25.663718	0.256637
03:04:03 p.m.	0.601988	25.788641	0.257886
03:05:07 p.m.	0.599544	25.492771	0.254928
03:06:11 p.m.	0.600630	25.624269	0.256243
03:07:15 p.m.	0.600304	25.584819	0.255848
03:08:18 p.m.	0.597480	25.242925	0.252429
03:09:22 p.m.	0.598892	25.413872	0.254139
03:10:26 p.m.	0.605626	26.229158	0.262292
03:11:30 p.m.	0.605463	26.209434	0.262094
03:12:34 p.m.	0.604812	26.130535	0.261305
03:13:38 p.m.	0.605843	26.255458	0.262555
03:14:42 p.m.	0.606224	26.301482	0.263015
03:15:46 p.m.	0.606549	26.340932	0.263409
03:16:50 p.m.	0.605083	26.163410	0.261634
03:17:54 p.m.	0.607092	26.406680	0.264067
03:18:58 p.m.	0.603019	25.913564	0.259136
03:20:02 p.m.	0.605843	26.255458	0.262555
03:21:06 p.m.	0.604160	26.051636	0.260516
03:22:10 p.m.	0.599218	25.453322	0.254533
03:23:14 p.m.	0.599707	25.512496	0.255125
03:24:18 p.m.	0.597317	25.223200	0.252232
03:25:22 p.m.	0.598458	25.361273	0.253613
03:26:26 p.m.	0.596068	25.071978	0.250720
03:27:30 p.m.	0.596448	25.118002	0.251180
03:28:34 p.m.	0.597209	25.210051	0.252101
03:29:38 p.m.	0.599707	25.512496	0.255125
03:30:42 p.m.	0.603454	25.966163	0.259662

03:31:46 p.m.	0.603019	25.913564	0.259136
03:32:50 p.m.	0.603671	25.992462	0.259925
03:33:54 p.m.	0.603454	25.966163	0.259662
03:34:58 p.m.	0.603291	25.946438	0.259464
03:36:02 p.m.	0.603943	26.025337	0.260253
03:37:06 p.m.	0.594711	24.907606	0.249076
03:38:10 p.m.	0.600739	25.637418	0.256374
03:39:14 p.m.	0.602368	25.834665	0.258347
03:40:18 p.m.	0.604920	26.143685	0.261437
03:41:22 p.m.	0.602857	25.893839	0.258938
03:42:26 p.m.	0.595797	25.039104	0.250391
03:43:31 p.m.	0.596394	25.111427	0.251114
03:44:35 p.m.	0.597317	25.223200	0.252232
03:45:39 p.m.	0.596123	25.078553	0.250786
03:46:43 p.m.	0.595634	25.019379	0.250194
03:47:47 p.m.	0.595851	25.045679	0.250457
03:48:51 p.m.	0.596068	25.071978	0.250720
03:49:55 p.m.	0.596123	25.078553	0.250786
03:51:00 p.m.	0.594167	24.841857	0.248419
03:52:04 p.m.	0.595960	25.058828	0.250588
03:53:08 p.m.	0.597426	25.236350	0.252364
03:54:12 p.m.	0.596448	25.118002	0.251180
03:55:17 p.m.	0.594928	24.933905	0.249339
03:56:21 p.m.	0.597209	25.210051	0.252101
03:57:25 p.m.	0.595254	24.973355	0.249734
03:58:29 p.m.	0.596557	25.131152	0.251312
03:59:34 p.m.	0.596774	25.157452	0.251575
04:00:38 p.m.	0.596340	25.104853	0.251049
04:01:42 p.m.	0.602857	25.893839	0.258938
04:02:46 p.m.	0.604540	26.097661	0.260977
04:03:50 p.m.	0.603943	26.025337	0.260253
04:04:54 p.m.	0.603997	26.031912	0.260319
04:05:58 p.m.	0.602748	25.880689	0.258807
04:07:02 p.m.	0.604323	26.071361	0.260714
04:08:06 p.m.	0.603888	26.018762	0.260188
04:09:10 p.m.	0.602531	25.854390	0.258544
04:10:15 p.m.	0.602748	25.880689	0.258807
04:11:19 p.m.	0.603780	26.005612	0.260056
04:12:23 p.m.	0.604377	26.077936	0.260779
04:13:27 p.m.	0.603780	26.005612	0.260056

04:14:31 p.m.	0.602151	25.808366	0.258084
04:15:36 p.m.	0.601879	25.775491	0.257755
04:16:40 p.m.	0.602476	25.847815	0.258478
04:17:44 p.m.	0.603454	25.966163	0.259662
04:18:48 p.m.	0.602151	25.808366	0.258084
04:19:53 p.m.	0.602313	25.828090	0.258281
04:20:57 p.m.	0.604757	26.123960	0.261240
04:22:01 p.m.	0.602694	25.874114	0.258741
04:23:05 p.m.	0.602531	25.854390	0.258544
04:24:09 p.m.	0.602151	25.808366	0.258084
04:25:13 p.m.	0.602368	25.834665	0.258347
04:26:17 p.m.	0.603237	25.939863	0.259399
04:27:22 p.m.	0.603128	25.926714	0.259267
04:28:26 p.m.	0.602857	25.893839	0.258938
04:29:30 p.m.	0.603182	25.933288	0.259333
04:30:34 p.m.	0.601988	25.788641	0.257886
04:31:38 p.m.	0.601119	25.683443	0.256834
04:32:43 p.m.	0.602313	25.828090	0.258281
04:33:47 p.m.	0.595199	24.966780	0.249668
04:34:51 p.m.	0.594819	24.920756	0.249208
04:35:55 p.m.	0.594765	24.914181	0.249142
04:36:59 p.m.	0.593244	24.730084	0.247301
04:39:03 p.m.	0.693603	36.880478	0.368805
04:40:07 p.m.	0.663897	33.284014	0.332840
04:41:11 p.m.	0.653524	32.028210	0.320282
04:42:15 p.m.	0.647496	31.298398	0.312984
04:43:19 p.m.	0.643206	30.778981	0.307790
04:44:23 p.m.	0.639676	30.351614	0.303516
04:45:27 p.m.	0.637504	30.088618	0.300886
04:46:31 p.m.	0.636201	29.930821	0.299308
04:47:35 p.m.	0.634246	29.694125	0.296941
04:48:39 p.m.	0.633757	29.634951	0.296350
04:49:43 p.m.	0.631530	29.365380	0.293654
04:50:47 p.m.	0.632508	29.483728	0.294837
04:51:52 p.m.	0.634028	29.667825	0.296678
04:52:55 p.m.	0.632671	29.503453	0.295035
04:54:00 p.m.	0.634517	29.726999	0.297270
04:55:04 p.m.	0.630499	29.240457	0.292405
04:56:09 p.m.	0.629738	29.148409	0.291484
04:57:13 p.m.	0.629684	29.141834	0.291418

04:58:17 p.m.	0.628978	29.056361	0.290564
04:59:21 p.m.	0.627512	28.878839	0.288788
05:00:25 p.m.	0.625882	28.681592	0.286816
05:01:30 p.m.	0.625068	28.582969	0.285830
05:02:33 p.m.	0.624633	28.530370	0.285304
05:03:37 p.m.	0.624851	28.556669	0.285567
05:04:41 p.m.	0.623982	28.451471	0.284515
05:05:45 p.m.	0.623765	28.425171	0.284252
05:06:50 p.m.	0.622407	28.260799	0.282608
05:07:54 p.m.	0.621972	28.208200	0.282082
05:08:58 p.m.	0.622841	28.313398	0.283134
05:10:02 p.m.	0.622570	28.280524	0.282805
05:11:06 p.m.	0.620669	28.050403	0.280504
05:12:11 p.m.	0.620995	28.089852	0.280899
05:13:15 p.m.	0.620832	28.070127	0.280701
05:14:19 p.m.	0.613012	27.123343	0.271233
05:15:22 p.m.	0.610622	26.834048	0.268340
05:16:27 p.m.	0.609971	26.755150	0.267551
05:17:31 p.m.	0.610514	26.820898	0.268209
05:18:35 p.m.	0.609428	26.689401	0.266894
05:19:39 p.m.	0.609156	26.656526	0.266565
05:20:43 p.m.	0.609482	26.695976	0.266960
05:21:47 p.m.	0.617085	27.616460	0.276165
05:22:51 p.m.	0.615564	27.432363	0.274324
05:23:55 p.m.	0.615781	27.458663	0.274587
05:24:59 p.m.	0.614261	27.274566	0.272746
05:26:03 p.m.	0.615130	27.379764	0.273798
05:27:07 p.m.	0.614858	27.346890	0.273469
05:28:11 p.m.	0.615075	27.373189	0.273732
05:29:15 p.m.	0.606549	26.340932	0.263409
05:30:20 p.m.	0.604757	26.123960	0.261240
05:31:24 p.m.	0.605300	26.189709	0.261897
05:32:28 p.m.	0.604431	26.084511	0.260845
05:33:32 p.m.	0.605789	26.248883	0.262489
05:34:36 p.m.	0.605789	26.248883	0.262489
05:35:41 p.m.	0.608341	26.557903	0.265579
05:36:45 p.m.	0.613664	27.202242	0.272022
05:37:49 p.m.	0.614152	27.261416	0.272614
05:38:53 p.m.	0.614532	27.307440	0.273074
05:39:57 p.m.	0.613772	27.215392	0.272154

05:41:01 p.m	. 0.613501	27.182517	0.271825
05:42:05 p.m	. 0.613066	27.129918	0.271299
05:43:09 p.m	. 0.613283	27.156218	0.271562
05:44:13 p.m	. 0.613718	27.208817	0.272088
05:45:17 p.m	. 0.613283	27.156218	0.271562
05:46:22 p.m	. 0.612469	27.057594	0.270576
05:47:26 p.m	. 0.613120	27.136493	0.271365
05:48:30 p.m	. 0.612034	27.004995	0.270050
05:49:34 p.m	. 0.612143	27.018145	0.270181
05:50:38 p.m	. 0.612414	27.051020	0.270510
05:51:42 p.m	. 0.612360	27.044445	0.270444
05:52:47 p.m	. 0.610948	26.873498	0.268735
05:53:51 p.m	. 0.611491	26.939246	0.269392
05:54:55 p.m	. 0.611871	26.985271	0.269853
05:55:59 p.m	. 0.611491	26.939246	0.269392
05:57:03 p.m	. 0.612252	27.031295	0.270313
05:58:07 p.m	. 0.611437	26.932672	0.269327
05:59:11 p.m	. 0.611002	26.880072	0.268801
06:00:15 p.m	. 0.611328	26.919522	0.269195
06:01:20 p.m	. 0.610785	26.853773	0.268538
06:02:24 p.m	. 0.610622	26.834048	0.268340
06:03:28 p.m	. 0.610297	26.794599	0.267946
06:04:32 p.m	. 0.609971	26.755150	0.267551
06:05:36 p.m	. 0.610025	26.761724	0.267617
06:06:40 p.m	. 0.610025	26.761724	0.267617
06:07:44 p.m	. 0.610948	26.873498	0.268735
06:08:48 p.m	. 0.610459	26.814324	0.268143
06:09:52 p.m	. 0.610134	26.774874	0.267749
06:10:56 p.m	. 0.609753	26.728850	0.267289
06:12:00 p.m	. 0.609916	26.748575	0.267486
06:13:04 p.m	. 0.610079	26.768299	0.267683
06:14:08 p.m	. 0.610297	26.794599	0.267946
06:15:12 p.m	. 0.610025	26.761724	0.267617
06:16:17 p.m	. 0.609536	26.702550	0.267026
06:17:21 p.m	. 0.610785	26.853773	0.268538
06:18:25 p.m	. 0.609482	26.695976	0.266960
06:19:29 p.m	. 0.610134	26.774874	0.267749
06:20:33 p.m	. 0.610677	26.840623	0.268406
06:21:37 p.m	. 0.609428	26.689401	0.266894
06:22:41 p.m	. 0.609645	26.715700	0.267157

06:23:44 p.m.	0.610677	26.840623	0.268406
06:24:49 p.m.	0.608396	26.564478	0.265645
06:25:53 p.m.	0.608016	26.518454	0.265185
06:26:57 p.m.	0.608939	26.630227	0.266302
06:28:01 p.m.	0.610025	26.761724	0.267617
06:29:05 p.m.	0.608667	26.597352	0.265974
06:30:09 p.m.	0.608885	26.623652	0.266237
06:31:13 p.m.	0.608993	26.636802	0.266368
06:32:17 p.m.	0.608396	26.564478	0.265645
06:33:21 p.m.	0.608179	26.538178	0.265382
06:34:25 p.m.	0.610514	26.820898	0.268209
06:35:29 p.m.	0.608450	26.571053	0.265711
06:36:34 p.m.	0.608504	26.577628	0.265776
06:37:38 p.m.	0.608885	26.623652	0.266237
06:38:42 p.m.	0.609862	26.742000	0.267420
06:39:46 p.m.	0.608124	26.531603	0.265316
06:40:50 p.m.	0.609591	26.709125	0.267091
06:41:54 p.m.	0.609862	26.742000	0.267420
06:42:58 p.m.	0.609428	26.689401	0.266894
06:44:02 p.m.	0.611057	26.886647	0.268866
06:45:07 p.m.	0.610351	26.801174	0.268012
06:46:11 p.m.	0.609971	26.755150	0.267551
06:47:15 p.m.	0.610025	26.761724	0.267617
06:48:19 p.m.	0.604540	26.097661	0.260977
06:49:23 p.m.	0.599815	25.525645	0.255256
06:50:27 p.m.	0.601879	25.775491	0.257755
06:51:32 p.m.	0.602531	25.854390	0.258544
06:52:36 p.m.	0.602694	25.874114	0.258741
06:53:40 p.m.	0.600033	25.551945	0.255519
06:54:44 p.m.	0.599490	25.486196	0.254862
06:55:48 p.m.	0.602042	25.795216	0.257952
06:56:52 p.m.	0.602476	25.847815	0.258478
06:57:56 p.m.	0.601010	25.670293	0.256703
06:59:00 p.m.	0.602802	25.887264	0.258873
07:00:04 p.m.	0.601988	25.788641	0.257886
07:01:08 p.m.	0.602911	25.900414	0.259004
07:02:12 p.m.	0.601336	25.709742	0.257097
07:03:16 p.m.	0.601607	25.742617	0.257426
07:04:20 p.m.	0.600630	25.624269	0.256243
07:05:24 p.m.	0.600033	25.551945	0.255519

07:06:28 p.m.	0.603508	25.972738	0.259727
07:07:33 p.m.	0.600521	25.611119	0.256111
07:08:37 p.m.	0.600901	25.657143	0.256571
07:09:41 p.m.	0.600901	25.657143	0.256571
07:10:45 p.m.	0.601825	25.768916	0.257689
07:11:49 p.m.	0.601064	25.676868	0.256769
07:12:53 p.m.	0.600033	25.551945	0.255519
07:13:57 p.m.	0.602151	25.808366	0.258084
07:15:01 p.m.	0.600630	25.624269	0.256243
07:16:05 p.m.	0.601010	25.670293	0.256703
07:17:09 p.m.	0.600358	25.591394	0.255914
07:18:13 p.m.	0.600684	25.630844	0.256308
07:19:17 p.m.	0.599164	25.446747	0.254467
07:20:21 p.m.	0.602096	25.801791	0.258018
07:21:25 p.m.	0.601770	25.762341	0.257623
07:22:29 p.m.	0.600847	25.650568	0.256506
07:23:33 p.m.	0.601825	25.768916	0.257689
07:24:38 p.m.	0.600304	25.584819	0.255848
07:25:42 p.m.	0.599381	25.473046	0.254730
07:26:46 p.m.	0.601064	25.676868	0.256769
07:27:51 p.m.	0.600304	25.584819	0.255848
07:28:55 p.m.	0.601390	25.716317	0.257163
07:29:59 p.m.	0.601770	25.762341	0.257623
07:31:05 p.m.	0.601607	25.742617	0.257426
07:37:25 p.m.	0.601064	25.676868	0.256769
07:38:29 p.m.	0.600033	25.551945	0.255519
07:41:08 p.m.	0.600684	25.630844	0.256308
07:47:19 p.m.	0.600087	25.558520	0.255585
07:48:23 p.m.	0.599924	25.538795	0.255388
07:49:27 p.m.	0.599870	25.532220	0.255322
07:50:31 p.m.	0.599435	25.479621	0.254796
07:51:35 p.m.	0.600684	25.630844	0.256308
07:52:39 p.m.	0.601227	25.696592	0.256966
07:53:43 p.m.	0.599435	25.479621	0.254796
07:54:47 p.m.	0.599055	25.433597	0.254336
07:55:51 p.m.	0.598838	25.407297	0.254073
07:56:55 p.m.	0.598784	25.400722	0.254007
07:57:59 p.m.	0.599490	25.486196	0.254862
07:59:03 p.m.	0.599924	25.538795	0.255388

ANEXO 2

DATOS GENERADOS EN EL EXPERIMENTO DEL DIA 26 DE ABRIL DEL 2010

Tiempo	VALOR	% Humedad	Humedad
(h)	(mV)	volumétrica	volumétrica (v/v)
10:53:25 a.m.	0.625774	35.179005	0.351790
10:54:18 a.m.	0.625014	35.079772	0.350798
10:55:22 a.m.	0.623819	34.923834	0.349238
10:56:26 a.m.	0.624199	34.973451	0.349735
10:57:30 a.m.	0.623819	34.923834	0.349238
10:58:34 a.m.	0.624253	34.980539	0.349805
10:59:38 a.m.	0.625611	35.157741	0.351577
11:00:42 a.m.	0.627186	35.363295	0.353633
11:01:46 a.m.	0.621647	34.640311	0.346403
11:02:50 a.m.	0.631965	35.987047	0.359870
11:03:54 a.m.	0.625991	35.207358	0.352074
11:04:58 a.m.	0.622841	34.796249	0.347962
11:06:02 a.m.	0.626263	35.242798	0.352428
11:07:06 a.m.	0.624471	35.008891	0.350089
11:08:10 a.m.	0.621158	34.576518	0.345765
11:09:14 a.m.	0.623439	34.874218	0.348742
11:10:18 a.m.	0.625557	35.150653	0.351507
11:11:22 a.m.	0.628000	35.469617	0.354696
11:12:26 a.m.	0.622896	34.803337	0.348033
11:13:30 a.m.	0.624579	35.023067	0.350231
11:14:34 a.m.	0.625882	35.193181	0.351932
11:15:38 a.m.	0.614587	33.718860	0.337189
11:17:41 a.m.	0.706419	45.704812	0.457048
11:18:45 a.m.	0.694254	44.117081	0.441171
11:19:49 a.m.	0.675844	41.714220	0.417142
11:20:53 a.m.	0.665689	40.388748	0.403887
11:21:58 a.m.	0.666178	40.452541	0.404525
11:23:02 a.m.	0.651135	38.489141	0.384891
11:24:06 a.m.	0.658466	39.446032	0.394460
11:25:10 a.m.	0.652764	38.701784	0.387018
11:26:14 a.m.	0.653633	38.815193	0.388152
11:27:18 a.m.	0.651298	38.510405	0.385104
11:28:22 a.m.	0.650646	38.425348	0.384253
11:29:26 a.m.	0.646573	37.893742	0.378937

11:30:30 a.m.	0.648691	38.170177	0.381702
11:31:34 a.m.	0.646899	37.936270	0.379363
11:32:38 a.m.	0.641577	37.241638	0.372416
11:33:42 a.m.	0.642283	37.333783	0.373338
11:34:46 a.m.	0.641957	37.291255	0.372913
11:35:50 a.m.	0.639948	37.028995	0.370290
11:36:54 a.m.	0.640708	37.128229	0.371282
11:37:58 a.m.	0.640165	37.057348	0.370573
11:39:02 a.m.	0.639568	36.979379	0.369794
11:40:06 a.m.	0.639025	36.908498	0.369085
11:41:10 a.m.	0.638156	36.795089	0.367951
11:42:14 a.m.	0.635983	36.511565	0.365116
11:43:18 a.m.	0.637015	36.646239	0.366462
11:44:22 a.m.	0.636635	36.596622	0.365966
11:45:26 a.m.	0.634517	36.320187	0.363202
11:46:30 a.m.	0.635658	36.469037	0.364690
11:47:34 a.m.	0.635169	36.405244	0.364052
11:48:38 a.m.	0.633974	36.249306	0.362493
11:49:43 a.m.	0.630933	35.852373	0.358524
11:50:47 a.m.	0.633377	36.171337	0.361713
11:51:51 a.m.	0.631422	35.916166	0.359162
11:52:55 a.m.	0.631639	35.944518	0.359445
11:53:59 a.m.	0.634897	36.369804	0.363698
11:55:03 a.m.	0.631422	35.916166	0.359162
11:56:07 a.m.	0.634409	36.306011	0.363060
11:57:11 a.m.	0.633160	36.142985	0.361430
11:58:15 a.m.	0.631150	35.880726	0.358807
11:59:19 a.m.	0.628924	35.590114	0.355901
12:00:23 p.m.	0.628978	35.597202	0.355972
12:01:27 p.m.	0.628815	35.575938	0.355759
12:02:31 p.m.	0.630281	35.767316	0.357673
12:03:35 p.m.	0.630281	35.767316	0.357673
12:04:39 p.m.	0.628489	35.533409	0.355334
12:05:43 p.m.	0.627620	35.420000	0.354200
12:06:47 p.m.	0.627838	35.448352	0.354484
12:07:51 p.m.	0.628815	35.575938	0.355759
12:08:55 p.m.	0.630281	35.767316	0.357673
12:09:59 p.m.	0.628218	35.497969	0.354980
12:11:03 p.m.	0.629901	35.717700	0.357177
12:12:07 p.m.	0.630227	35.760228	0.357602

12:13:11 p.m.	0.626588	35.285326	0.352853
12:14:16 p.m.	0.627294	35.377472	0.353775
12:15:20 p.m.	0.628381	35.519233	0.355192
12:16:24 p.m.	0.628326	35.512145	0.355121
12:17:28 p.m.	0.625774	35.179005	0.351790
12:18:32 p.m.	0.628218	35.497969	0.354980
12:19:36 p.m.	0.627620	35.420000	0.354200
12:20:40 p.m.	0.625882	35.193181	0.351932
12:21:44 p.m.	0.627675	35.427088	0.354271
12:22:49 p.m.	0.627566	35.412912	0.354129
12:23:53 p.m.	0.627457	35.398736	0.353987
12:24:57 p.m.	0.627023	35.342031	0.353420
12:26:01 p.m.	0.626045	35.214446	0.352144
12:27:05 p.m.	0.626969	35.334943	0.353349
12:28:10 p.m.	0.626751	35.306591	0.353066
12:29:14 p.m.	0.625774	35.179005	0.351790
12:30:18 p.m.	0.624959	35.072684	0.350727
12:31:22 p.m.	0.624905	35.065596	0.350656
12:32:26 p.m.	0.625937	35.200269	0.352003
12:33:30 p.m.	0.626751	35.306591	0.353066
12:34:34 p.m.	0.626860	35.320767	0.353208
12:35:39 p.m.	0.624633	35.030155	0.350302
12:36:43 p.m.	0.625720	35.171917	0.351719
12:37:47 p.m.	0.626100	35.221534	0.352215
12:38:51 p.m.	0.626480	35.271150	0.352712
12:39:55 p.m.	0.626914	35.327855	0.353279
12:40:59 p.m.	0.626208	35.235710	0.352357
12:42:04 p.m.	0.626697	35.299503	0.352995
12:43:08 p.m.	0.625611	35.157741	0.351577
01:09:04 p.m.	0.627512	35.405824	0.354058
01:10:08 p.m.	0.626100	35.221534	0.352215
01:11:12 p.m.	0.624145	34.966363	0.349664
01:12:16 p.m.	0.624145	34.966363	0.349664
01:13:20 p.m.	0.623059	34.824601	0.348246
01:14:24 p.m.	0.625665	35.164829	0.351648
01:15:28 p.m.	0.625828	35.186093	0.351861
01:16:32 p.m.	0.621484	34.619046	0.346190
01:17:36 p.m.	0.621864	34.668663	0.346687
01:18:40 p.m.	0.622353	34.732456	0.347325
01:19:44 p.m.	0.623602	34.895482	0.348955

01:20:48 p.m.	0.623765	34.916746	0.349167
01:21:52 p.m.	0.622678	34.774984	0.347750
01:22:56 p.m.	0.621972	34.682839	0.346828
01:24:00 p.m.	0.622407	34.739544	0.347395
01:25:04 p.m.	0.620072	34.434756	0.344348
01:26:08 p.m.	0.622461	34.746632	0.347466
01:27:12 p.m.	0.619909	34.413492	0.344135
01:29:17 p.m.	0.707234	45.811133	0.458111
01:30:21 p.m.	0.683393	42.699464	0.426995
01:31:25 p.m.	0.673401	41.395256	0.413953
01:32:29 p.m.	0.666993	40.558862	0.405589
01:33:33 p.m.	0.661508	39.842965	0.398430
01:34:37 p.m.	0.660041	39.651587	0.396516
01:35:41 p.m.	0.653470	38.793929	0.387939
01:36:45 p.m.	0.652004	38.602550	0.386026
01:37:50 p.m.	0.650972	38.467877	0.384679
01:38:54 p.m.	0.648637	38.163089	0.381631
01:39:58 p.m.	0.645704	37.780332	0.377803
01:41:02 p.m.	0.643043	37.433016	0.374330
01:42:06 p.m.	0.641414	37.220374	0.372204
01:43:10 p.m.	0.641849	37.277078	0.372771
01:44:14 p.m.	0.637776	36.745472	0.367455
01:45:18 p.m.	0.637613	36.724208	0.367242
01:46:22 p.m.	0.638970	36.901410	0.369014
01:47:27 p.m.	0.638101	36.788001	0.367880
01:48:31 p.m.	0.635278	36.419420	0.364194
01:49:35 p.m.	0.635060	36.391068	0.363911
01:50:39 p.m.	0.634300	36.291835	0.362918
01:51:43 p.m.	0.633268	36.157161	0.361572
01:52:47 p.m.	0.634843	36.362715	0.363627
01:53:51 p.m.	0.631259	35.894902	0.358949
01:54:56 p.m.	0.630227	35.760228	0.357602
01:56:00 p.m.	0.630661	35.816933	0.358169
01:57:04 p.m.	0.632236	36.022487	0.360225
01:58:08 p.m.	0.629521	35.668083	0.356681
01:59:12 p.m.	0.628598	35.547586	0.355476
02:00:16 p.m.	0.627892	35.455441	0.354554
02:01:20 p.m.	0.629032	35.604290	0.356043
02:02:24 p.m.	0.628272	35.505057	0.355051
02:03:28 p.m.	0.629195	35.625555	0.356256

02:04:32 p.m.	0.628163	35.490881	0.354909
02:05:36 p.m.	0.626806	35.313679	0.353137
02:06:41 p.m.	0.627620	35.420000	0.354200
02:07:45 p.m.	0.627620	35.420000	0.354200
02:08:49 p.m.	0.625774	35.179005	0.351790
02:09:53 p.m.	0.625068	35.086860	0.350869
02:10:57 p.m.	0.625448	35.136477	0.351365
02:28:32 p.m.	0.620452	34.484373	0.344844
02:29:23 p.m.	0.624036	34.952186	0.349522
02:29:36 p.m.	0.622841	34.796249	0.347962
02:30:40 p.m.	0.620723	34.519813	0.345198
02:31:44 p.m.	0.621212	34.583606	0.345836
02:32:48 p.m.	0.621484	34.619046	0.346190
02:33:53 p.m.	0.622570	34.760808	0.347608
02:34:57 p.m.	0.621266	34.590694	0.345907
02:36:01 p.m.	0.620832	34.533989	0.345340
02:37:05 p.m.	0.620180	34.448932	0.344489
02:38:09 p.m.	0.621321	34.597782	0.345978
02:39:13 p.m.	0.621755	34.654487	0.346545
02:40:17 p.m.	0.622081	34.697015	0.346970
02:41:21 p.m.	0.620560	34.498549	0.344985
02:42:25 p.m.	0.621375	34.604870	0.346049
02:43:29 p.m.	0.620886	34.541078	0.345411
02:44:33 p.m.	0.621321	34.597782	0.345978
02:45:37 p.m.	0.619909	34.413492	0.344135
02:47:41 p.m.	0.703161	45.279527	0.452795
02:48:45 p.m.	0.685945	43.032604	0.430326
02:49:49 p.m.	0.673455	41.402344	0.414023
02:50:53 p.m.	0.668459	40.750240	0.407502
02:51:57 p.m.	0.664277	40.204458	0.402045
02:53:02 p.m.	0.660639	39.729556	0.397296
02:54:06 p.m.	0.654936	38.985307	0.389853
02:55:10 p.m.	0.651298	38.510405	0.385104
02:56:14 p.m.	0.652710	38.694695	0.386947
02:57:18 p.m.	0.649995	38.340291	0.383403
02:58:22 p.m.	0.647442	38.007151	0.380072
02:59:26 p.m.	0.648746	38.177265	0.381773
03:00:30 p.m.	0.644998	37.688187	0.376882
03:01:34 p.m.	0.643206	37.454281	0.374543
03:02:38 p.m.	0.643206	37.454281	0.374543

03:03:42 p.m.	0.641034	37.170757	0.371708
03:04:46 p.m.	0.640328	37.078612	0.370786
03:05:50 p.m.	0.639188	36.929762	0.369298
03:06:54 p.m.	0.639296	36.943938	0.369439
03:07:58 p.m.	0.639568	36.979379	0.369794
03:09:02 p.m.	0.639133	36.922674	0.369227
03:10:06 p.m.	0.636255	36.547006	0.365470
03:11:10 p.m.	0.635386	36.433596	0.364336
03:12:14 p.m.	0.632725	36.086280	0.360863
03:13:18 p.m.	0.634463	36.313099	0.363131
03:14:23 p.m.	0.631639	35.944518	0.359445
03:15:27 p.m.	0.633811	36.228042	0.362280
03:16:31 p.m.	0.633757	36.220954	0.362210
03:17:35 p.m.	0.633105	36.135897	0.361359
03:18:40 p.m.	0.631639	35.944518	0.359445
03:19:44 p.m.	0.630336	35.774404	0.357744
03:20:48 p.m.	0.631639	35.944518	0.359445
03:21:52 p.m.	0.632779	36.093368	0.360934
03:22:56 p.m.	0.631911	35.979959	0.359800
03:24:00 p.m.	0.630118	35.746052	0.357461
03:25:04 p.m.	0.630390	35.781492	0.357815
03:26:08 p.m.	0.630118	35.746052	0.357461
03:27:13 p.m.	0.626263	35.242798	0.352428
03:28:17 p.m.	0.631693	35.951606	0.359516
03:29:21 p.m.	0.629304	35.639731	0.356397
03:30:25 p.m.	0.627675	35.427088	0.354271
03:31:29 p.m.	0.628652	35.554674	0.355547
03:32:33 p.m.	0.628163	35.490881	0.354909
03:33:38 p.m.	0.625828	35.186093	0.351861
03:34:42 p.m.	0.627132	35.356207	0.353562
03:35:46 p.m.	0.628163	35.490881	0.354909
03:36:50 p.m.	0.627566	35.412912	0.354129
03:37:54 p.m.	0.626643	35.292415	0.352924
03:38:58 p.m.	0.625014	35.079772	0.350798
03:40:02 p.m.	0.625394	35.129389	0.351294
03:41:06 p.m.	0.625339	35.122301	0.351223
03:42:11 p.m.	0.624796	35.051420	0.350514
03:43:15 p.m.	0.624362	34.994715	0.349947
03:44:19 p.m.	0.628489	35.533409	0.355334
03:45:23 p.m.	0.627077	35.349119	0.353491

03:46:27 p.m.	0.625991	35.207358	0.352074
03:47:32 p.m.	0.624796	35.051420	0.350514
03:48:36 p.m.	0.624036	34.952186	0.349522
03:49:40 p.m.	0.625285	35.115212	0.351152
03:50:44 p.m.	0.624145	34.966363	0.349664
03:51:48 p.m.	0.624471	35.008891	0.350089
03:52:53 p.m.	0.624959	35.072684	0.350727
03:53:57 p.m.	0.623873	34.930922	0.349309
03:55:01 p.m.	0.624633	35.030155	0.350302
03:56:05 p.m.	0.624688	35.037244	0.350372
03:57:09 p.m.	0.623927	34.938010	0.349380
03:58:13 p.m.	0.623710	34.909658	0.349097
03:59:17 p.m.	0.622461	34.746632	0.347466
04:00:22 p.m.	0.622950	34.810425	0.348104
04:01:26 p.m.	0.622081	34.697015	0.346970
04:02:30 p.m.	0.622624	34.767896	0.347679
04:03:34 p.m.	0.622190	34.711192	0.347112
04:04:38 p.m.	0.622190	34.711192	0.347112
04:05:43 p.m.	0.621647	34.640311	0.346403
04:06:47 p.m.	0.621266	34.590694	0.345907
04:07:51 p.m.	0.622733	34.782072	0.347821
04:08:55 p.m.	0.620615	34.505637	0.345056
04:09:59 p.m.	0.624308	34.987627	0.349876
04:11:03 p.m.	0.620072	34.434756	0.344348
04:12:07 p.m.	0.622135	34.704104	0.347041
04:13:11 p.m.	0.622570	34.760808	0.347608
04:14:16 p.m.	0.620343	34.470197	0.344702
04:15:20 p.m.	0.622624	34.767896	0.347679
04:16:24 p.m.	0.618714	34.257554	0.342576
04:18:28 p.m.	0.702780	45.229910	0.452299
04:19:32 p.m.	0.685294	42.947547	0.429475
04:20:36 p.m.	0.675519	41.671691	0.416717
04:21:41 p.m.	0.670034	40.955795	0.409558
04:22:45 p.m.	0.663082	40.048520	0.400485
04:23:49 p.m.	0.660747	39.743732	0.397437
04:24:53 p.m.	0.657978	39.382240	0.393822
04:25:57 p.m.	0.655480	39.056188	0.390562
04:27:01 p.m.	0.653253	38.765576	0.387656
04:28:05 p.m.	0.655208	39.020747	0.390207
04:29:09 p.m.	0.650538	38.411172	0.384112

04:30:13 p.m.	0.648528	38.148913	0.381489
04:31:17 p.m.	0.647171	37.971711	0.379717
04:32:22 p.m.	0.646899	37.936270	0.379363
04:33:26 p.m.	0.644238	37.588954	0.375890
04:34:30 p.m.	0.643586	37.503897	0.375039
04:35:34 p.m.	0.643532	37.496809	0.374968
04:36:38 p.m.	0.642283	37.333783	0.373338
04:37:42 p.m.	0.641523	37.234550	0.372345
04:38:46 p.m.	0.639459	36.965203	0.369652
04:39:50 p.m.	0.640980	37.163669	0.371637
04:40:54 p.m.	0.638210	36.802177	0.368022
04:41:58 p.m.	0.638482	36.837617	0.368376
04:43:02 p.m.	0.636527	36.582446	0.365824
04:44:06 p.m.	0.636961	36.639151	0.366392
04:45:11 p.m.	0.635006	36.383980	0.363840
04:46:15 p.m.	0.634028	36.256394	0.362564
04:47:19 p.m.	0.633866	36.235130	0.362351
04:48:23 p.m.	0.634354	36.298923	0.362989
04:49:27 p.m.	0.634517	36.320187	0.363202
04:50:31 p.m.	0.633051	36.128809	0.361288
04:51:35 p.m.	0.633866	36.235130	0.362351
04:52:39 p.m.	0.635115	36.398156	0.363982
04:53:43 p.m.	0.631150	35.880726	0.358807
04:54:48 p.m.	0.634626	36.334363	0.363344
04:55:52 p.m.	0.631965	35.987047	0.359870
04:56:56 p.m.	0.632562	36.065016	0.360650
04:58:00 p.m.	0.628435	35.526321	0.355263
04:59:04 p.m.	0.629684	35.689347	0.356893
05:00:08 p.m.	0.628435	35.526321	0.355263
05:01:12 p.m.	0.629684	35.689347	0.356893
05:02:16 p.m.	0.629955	35.724788	0.357248
05:03:21 p.m.	0.629249	35.632643	0.356326
05:04:25 p.m.	0.627620	35.420000	0.354200
05:05:29 p.m.	0.630118	35.746052	0.357461
05:06:33 p.m.	0.628055	35.476705	0.354767
05:07:37 p.m.	0.629249	35.632643	0.356326
05:08:41 p.m.	0.629032	35.604290	0.356043
05:09:45 p.m.	0.627294	35.377472	0.353775
05:10:49 p.m.	0.630933	35.852373	0.358524
05:11:53 p.m.	0.629195	35.625555	0.356256

05:12:57 p.m.	0.627077	35.349119	0.353491
05:14:01 p.m.	0.627132	35.356207	0.353562
05:15:05 p.m.	0.627729	35.434176	0.354342
05:16:09 p.m.	0.625122	35.093948	0.350939
05:17:13 p.m.	0.625937	35.200269	0.352003
05:18:18 p.m.	0.625665	35.164829	0.351648
05:19:21 p.m.	0.625557	35.150653	0.351507
05:20:25 p.m.	0.627349	35.384560	0.353846
05:21:30 p.m.	0.626100	35.221534	0.352215
05:22:34 p.m.	0.628218	35.497969	0.354980
05:23:38 p.m.	0.626208	35.235710	0.352357
05:24:42 p.m.	0.626643	35.292415	0.352924
05:25:46 p.m.	0.626751	35.306591	0.353066
05:26:50 p.m.	0.627457	35.398736	0.353987
05:27:54 p.m.	0.626697	35.299503	0.352995
05:28:59 p.m.	0.626208	35.235710	0.352357
05:30:03 p.m.	0.624525	35.015979	0.350160
05:31:07 p.m.	0.624796	35.051420	0.350514
05:32:11 p.m.	0.625828	35.186093	0.351861
05:33:15 p.m.	0.624579	35.023067	0.350231
05:34:19 p.m.	0.625665	35.164829	0.351648
05:35:24 p.m.	0.627186	35.363295	0.353633
05:36:28 p.m.	0.625231	35.108124	0.351081
05:37:32 p.m.	0.625448	35.136477	0.351365
05:38:36 p.m.	0.626751	35.306591	0.353066
05:39:40 p.m.	0.624633	35.030155	0.350302
05:40:44 p.m.	0.624471	35.008891	0.350089
05:41:48 p.m.	0.624742	35.044332	0.350443
05:42:52 p.m.	0.623221	34.845865	0.348459
05:43:56 p.m.	0.626208	35.235710	0.352357
05:45:00 p.m.	0.624416	35.001803	0.350018
05:46:04 p.m.	0.622135	34.704104	0.347041
05:47:08 p.m.	0.622570	34.760808	0.347608
05:48:12 p.m.	0.622353	34.732456	0.347325
05:49:16 p.m.	0.622841	34.796249	0.347962
05:50:20 p.m.	0.622461	34.746632	0.347466
05:51:24 p.m.	0.623873	34.930922	0.349309
05:52:29 p.m.	0.624471	35.008891	0.350089
05:53:33 p.m.	0.624471	35.008891	0.350089
05:54:37 p.m.	0.623004	34.817513	0.348175

05:55:41 p.m.	0.623330	34.860041	0.348600
05:56:45 p.m.	0.622244	34.718280	0.347183
05:57:49 p.m.	0.620452	34.484373	0.344844
05:58:53 p.m.	0.623059	34.824601	0.348246
05:59:58 p.m.	0.622298	34.725368	0.347254
06:01:02 p.m.	0.622678	34.774984	0.347750
06:02:06 p.m.	0.621918	34.675751	0.346758
06:03:10 p.m.	0.623982	34.945098	0.349451
06:04:14 p.m.	0.621918	34.675751	0.346758
06:05:18 p.m.	0.621484	34.619046	0.346190
06:06:22 p.m.	0.622353	34.732456	0.347325
06:07:26 p.m.	0.622515	34.753720	0.347537
06:08:30 p.m.	0.622733	34.782072	0.347821
06:09:34 p.m.	0.623330	34.860041	0.348600
06:10:38 p.m.	0.622190	34.711192	0.347112
06:11:42 p.m.	0.623439	34.874218	0.348742
06:12:46 p.m.	0.621212	34.583606	0.345836
06:13:50 p.m.	0.622298	34.725368	0.347254
06:14:55 p.m.	0.623113	34.831689	0.348317
06:15:59 p.m.	0.622624	34.767896	0.347679
06:17:03 p.m.	0.622787	34.789161	0.347892
06:18:07 p.m.	0.621701	34.647399	0.346474
06:19:11 p.m.	0.623059	34.824601	0.348246
06:20:15 p.m.	0.620560	34.498549	0.344985
06:21:19 p.m.	0.623710	34.909658	0.349097
06:22:24 p.m.	0.621212	34.583606	0.345836
06:23:28 p.m.	0.622787	34.789161	0.347892
06:24:32 p.m.	0.621266	34.590694	0.345907
06:25:37 p.m.	0.620995	34.555254	0.345553
06:26:40 p.m.	0.623004	34.817513	0.348175
06:27:45 p.m.	0.622353	34.732456	0.347325
06:28:49 p.m.	0.622298	34.725368	0.347254
06:29:53 p.m.	0.622515	34.753720	0.347537
06:30:57 p.m.	0.620126	34.441844	0.344418
06:32:02 p.m.	0.619148	34.314259	0.343143
06:34:06 p.m.	0.715760	46.923962	0.469240
06:35:10 p.m.	0.695558	44.287195	0.442872
06:36:14 p.m.	0.684371	42.827049	0.428270
06:37:18 p.m.	0.677311	41.905598	0.419056
06:38:21 p.m.	0.669599	40.899090	0.408991

06:39:25 p.m.	0.665418	40.353307	0.403533
06:40:29 p.m.	0.663897	40.154841	0.401548
06:41:33 p.m.	0.660530	39.715380	0.397154
06:42:38 p.m.	0.659770	39.616147	0.396161
06:43:42 p.m.	0.656403	39.176685	0.391767
06:44:46 p.m.	0.657543	39.325535	0.393255
06:45:50 p.m.	0.655697	39.084540	0.390845
06:46:54 p.m.	0.650375	38.389908	0.383899
06:47:59 p.m.	0.649886	38.326115	0.383261
06:49:03 p.m.	0.650863	38.453701	0.384537
06:50:07 p.m.	0.649832	38.319027	0.383190
06:51:11 p.m.	0.646790	37.922094	0.379221
06:52:15 p.m.	0.647605	38.028415	0.380284
06:53:19 p.m.	0.648528	38.148913	0.381489
06:54:23 p.m.	0.646465	37.879566	0.378796
07:09:11 p.m.	0.640002	37.036084	0.370361
07:10:15 p.m.	0.640654	37.121141	0.371211

ANEXO 4

HERRAMIENTAS UTILIZADAS EN LA CONSTRUCCION DE LOS CIRCITOS ELECTRONICOS

		\$	
MATERIAL	CANTIDAD	UNITARIO	IMPORTE
Multimetro	1	\$340.00	\$340.00
Protoboar	4	\$82.00	\$328.00
Fuente de poder regulada	1	\$400.00	\$400.00
Computadora personal	1	\$7,000.00	\$7,000.00
Impresora Láser	1	\$1,200.00	\$1,200.00
Pasta para soldar	2	\$9.00	\$18.00
Rollo mediano de estaño 60% estaño y 40% plomo	1	\$370.00	\$370.00
Cautin	1	\$280.00	\$280.00
Soporte	1	\$180.00	\$180.00
Extractor de soldadura	1	\$73.00	\$73.00
Bases para circuitos integrados de 40 pines	4	\$42.00	\$168.00
Cloruro Ferrico	1	\$71.00	\$71.00
Acetona	1	\$23.00	\$23.00
Juego de brocas para perforar madera	1	\$220.00	\$220.00
Taladro electrico	1	\$560.00	\$560.00
Placa fenólica virgen para circuito impreso de 10X10	3	\$15.00	\$45.00
	TOTAL		\$11,276.00

MATERIAL UTILIZADO EN EL CIRCUITO DE ADQUISICION Y COMUNICACIÓN

COMPONENTE	CANTIDAD	\$ Unitario	IMPORTE
PIC18F4550	1	\$114.66	\$114.66
Socalo de 40 pines	1	\$42.00	\$42.00
Capacitor de 47 uf electrolitico	1	\$2.00	\$2.00
Cristal de 20 MHZ	1	\$15.00	\$15.00
Capacitores de 22 uf ceramicos	2	\$5.00	\$10.00
capacitor 0.1 uf ceramico	1	\$3.00	\$3.00
Resistencias de 330 ohms	3	\$1.00	\$3.00
Leds rojo, azul y verde	3	\$3.00	\$9.00
Push botton normalmente abierto	1	\$4.00	\$4.00
Resistencia de 10 k ohm	1	\$1.00	\$1.00
Conector USB tipo B	1	\$15.00	\$15.00

TOTAL \$218.66

MATERIAL UTILIZADO EN EL CIRCUITO DE POTENCIA

COMPONENTE	CANTIDAD	\$ UNITARIO	IMPORTE
resistencia de 470 ohms	1	\$1.00	\$1.00
resitencia de 1 k ohm	1	\$1.00	\$1.00
Capacitor de 400 uf	1	\$8.00	\$8.00
Resistencia de 330 ohms	1	\$1.00	\$1.00
Triack a 400 volts	1	\$19.00	\$19.00
Optoacoplador moc(3040 o 3041)	1	\$9.48	\$9.48
Led rojo	1	\$3.00	\$3.00
Placa fenolica 10X10 cm	1	\$15.00	\$15.00
	TOTA	L	\$57.48

MATERIALES VARIOS

COMPONENTE	CANTIDAD	\$ UNITARIO	IMPORTE
Contactor	1	760.00	760.00
Cajas de plastico	3	46.00	138.00
cable No. 16(m)	10	8.00	80.00
cable de comuniciones	10	18.00	180.00
cable USB	1	49.00	49.00
Transformador(120-24 VCA a 3 A)	1	150.00	150.00
Sitema de riego por goteo	1	2,500.00	2,500.00
Sensor de humedad ECHO (EC5)	1	2,200.00	2,200.00
otros	1	500.00	500.00
	TOTAL		6,557.00