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Análisis Bayesiano de Modelos Lineales - Bilineales 

Juan Diego Hernández Jarquín, Doctor. 

Colegio de Postgraduados, 2012.  

El análisis de tablas de doble entrada es una herramienta estadística que se presenta en 

diversos campos de investigación; por ejemplo, en fitomejoramiento uno de los principales 

objetivos es evaluar la adaptabilidad y estabilidad genotípica en la selección de los padres para el 

siguiente ciclo de mejoramiento.  Generalmente, este proceso se ve afectado por la presencia de 

la interacción Genotipo x Ambiente (GE). Bajo el enfoque clásico, para el estudio de la 

interacción se consideran modelos parsimoniosos como el AMMI ó el SREG y se obtienen 

estimaciones puntuales mediante Mínimos  Cuadrados Ordinarios (MCO) por lo que no es trivial 

la construcción de intervalos de confianza y el diseño de pruebas de hipótesis. En este trabajo se 

propone una modelación bayesiana de los modelos lineales-bilineales que ofrece la ventaja de 

incorporar información a priori, con este enfoque se obtienen estimaciones puntuales encogidas 

de los eigenvalores. Por otro lado, una vez que se obtiene la distribución a posteriori es posible el 

cálculo de regiones bivariadas de alta probabilidad a posteriori (HPD) y de regiones de 

credibilidad para los parámetros scores; también es factible el diseño de pruebas de hipótesis 

bayesianas, a través de los factores Bayes, sobre el número de términos bilineales que debe 

contener el modelo. Para las matrices singulares derivadas de la descomposición en valores 

singulares de la matriz de interacción se propone como distribución a priori la distribución von 

Mises Fisher vectorial. La organización de este trabajo se divide en tres Capítulos. En el Capitulo 

1 se propone el modelo AMMI bayesiano haciendo uso de distribuciones a priori no 

informativas; en el Capítulo 2 se plantea una formulación matricial del modelo AMMI bayesiano 

que ofrece la ventaja de incorporar información a priori sobre la interacción por medio de una 

matriz de medias a priori; el Capitulo 3 desarrolla un modelo jerárquico bayesiano cuya principal 

ventaja es el incorporar información de una serie de experimentos.  

Palabras clave: Distribución von Mises-Fisher; Inferencia Bayesiana; Fitomejoramiento; Tablas 

de doble entrada con interacción; Términos Bilineales de interacción. 
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Bayesian Analysis of Linear – Bilinear Models 

Juan Diego Hernández Jarquín, Doctor. 

Colegio de Postgraduados, 2012.  

The two-way table analysis is a useful tool that arises in many fields of research; for example in 

plant breeding the main purpose is to asses genotypic adaptability and stability that will allow 

make an accurate selection of parents for the next breeding cycle. The presence of Genotype x 

Environmental Interaction (GE) complicates this process. Generally, the study of this interaction 

has been conducted using the least square method in parsimonious models, as the AMMI model 

and the SREG model, yielding punctual estimates. For this reason, is not trivial the construction 

of confidence intervals neither the design of hypothesis testing. This research proposed a 

bayesian modelation of the linear-bilinear models which offers advantages as incorporate prior 

information; this approach yields shrinkage estimates of the eigenvalues. By the other hand, the 

posterior distribution allows obtain bivariate highest posterior density (HPD) regions and 

credible intervals for the score parameters, design of bayesian hypothesis testing for determinate 

the number of components to be retained in the model through the use of the Bayes factor. For 

the singular matrices resulting from the singular value decomposition of the residual matrix the 

vectorial von Mises Fisher distribution is proposed as prior distribution. The structure of this 

document is as follows: the Chapter 1 shows the Bayesian model using noninformative priors; 

the Chapter 2 formulate a matrix notation of the Bayes AMMI, here is possible incorporate prior 

information about interaction parameters through a prior matrix of means; in the Chapter 3 a 

hierarchical Bayesian model is proposed, this model offers as principal advantage the 

incorporation of several data sources in the analysis. 

Key words: Bayesian inference; Bilinear interaction terms; Plant breeding; Two-way tables with 

interaction; von Mises Fisher distribution. 
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INTRODUCCIÓN GENERAL 

El análisis estadístico de las tablas de doble entrada con interacción se presenta en 

diferentes campos de investigación como la Medicina, Agricultura, Genética y las Ciencias 

Sociales; uno de los principales objetivos del estudio de estas tablas es obtener conclusiones 

acerca de los componentes de interacción. Por ejemplo, en la selección de variedades las 

instituciones dedicadas al mejoramiento genético y las compañías dedicadas a la producción de 

semillas establecen experimentos en múltiples ambientes (Yan et al., 2000), en este tipo de 

ensayos la ocurrencia de la interacción Genotipo x Ambiente (GE) es inevitable (Ceccarelli et al., 

2006).  

Esta interacción puede entenderse como una inconsistencia del desempeño fenotípico de 

los genotipos a través de los ambientes (Asfaw et al., 2009). Cuando la interacción no se presenta 

el promedio a través de los diferentes ambientes es un indicador adecuado. La interacción puede 

ser de dos tipos: (i) “non-crossover” ocurre cuando el “ranking” de los genotipos permanece 

constante a través de los ambientes y la interacción es significativa debido a cambios en la 

magnitud de la respuesta, mientras que en el tipo (ii) “crossover”  sucede un cambio significativo 

en el “ranking” de la respuesta de un ambiente a otro (KAYA et al., 2006).  

El análisis de varianza (ANOVA) es un modelo aditivo que describe eficazmente los 

efectos principales y sirve para determinar si él termino de interacción es una fuente de variación 

significativa pero no proporciona orientación alguna acerca de los genotipos ó ambientes que dan 

lugar a la interacción (Samonte et al., 2005). Varios modelos estadísticos se han propuesto para 

el análisis de la interacción, sin embargo no todos ellos han resultado ser lo suficientemente 

efectivos (Zobel et al., 1988). 

El modelo de efectos principales aditivos e interacción multiplicativa (AMMI) y el 

modelo de regresión por sitios (SREG) se consideran dos poderosas herramientas para realizar 

análisis efectivos (Ebbon and Gauch, 2002). El modelo AMMI combina los parámetros aditivos 

del ANOVA tradicional con los términos multiplicativos del análisis de componentes principales 

(PCA). El modelo SREG es un modelo multiplicativo que absorbe el efecto principal de uno de 

los componentes lineales y la interacción GGE (Yan and Tinker, 2006). 
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El proceso de estimación en los modelos mencionados se lleva a cabo mediante el método 

iterativo de mínimos cuadros ordinarios (MCO) donde primero se ajusta los términos lineales 

ignorando los bilineales los cuales son subsecuentemente ajustados como los primeros t 

componentes de la descomposición en valores singulares (SVD) de la matriz de residuales. Estos 

modelos pueden llegar a ser parsimoniosos debido a que los parámetros de interacción son 

estimados reteniendo solo los primeros componentes (Kempton, 1984).  El uso de MCO produce 

estimaciones puntuales por lo que no es trivial la construcción de intervalos de confianza y el 

diseño de pruebas de hipótesis. 

En esta investigación, se propone una modelación bayesiana la cual ofrece la ventaja de 

poder incorporar información a priori derivada de estudios anteriores o del conocimiento de un 

experto en la materia. El uso de este enfoque en la modelación de la interacción GE ha sido 

limitado principalmente por  la estructura compleja del espacio de parámetros generado por las 

bases ortonormales de la descomposición en valores singulares. Viele and Srinivasan (2000) 

fueron los primeros en proponer la estimación Bayesiana de los parámetros de GE usando 

Cadenas de Markov Monte Carlo (MCMC) con Metropolis-Hastings, estos autores plantean el 

uso de la distribución Uniforme Esférica como distribución a priori para las matrices singulares 

del término bilineal. La distribución Uniforme Esférica es un caso especial de la distribución von 

Mises Fisher (Mardia et al., 1979), Hoff (2009) mostro como obtener muestras de la distribución 

von Mises Fisher en la Esfera multidimensional. 

La distribución marginal a posteriori es necesaria para realizar inferencia sobre los 

parámetros desconocidos, pero esta envuelve integración en altas dimensiones por lo cual es 

indispensable el uso Cadenas de Markov Monte Carlo (MCMC) a través del Muestreador de 

Gibbs que además ahorrar tiempo computacional  vuelve estable el algoritmo.  

El contenido de este trabajo comprende de 3 Capítulos: En el Capítulo 1 se introduce el modelo 

AMMI bayesiano mediante el uso de distribuciones a priori no informativas y un experimento de 

maíz de 9 genotipos evaluados en 20 ambientes sirvió como ejemplo de aplicación.  Una 

formulación matricial del modelo AMMI bayesiano se presenta en el Capitulo 2; este modelo 

ofrece la ventaja de poder incorporar de manera intuitiva información disponible y mediante el 

uso de los factores Bayes es posible realizar pruebas de hipótesis bayesianas sobre los términos 

bilineales con el fin de determinar el número de componentes que debe retener el modelo, como 
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ejemplo  se utilizo un experimento multi-anual de maíz en dos años consecutivos donde la 

información del primer año se utilizo como información a priori.  El Capitulo 3 desarrolla un 

modelo jerárquico bayesiano el cual ofrece la ventaja de incorporar información de una serie de 

experimentos y como ejemplo de aplicación analizo un experimento de trigo en tres años 

consecutivos, la información del año 1 se utilizo como información a priori.  En los tres capítulos 

se desarrolla la teoría para el modelo AMMI el cual ofrece una familia de modelos (SREG, 

GREG, COMM, etc.) a partir del relajar de algunas restricciones.  
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CAPÍTULO 1: BAYESIAN ESTIMATION OF THE ADDITIVE MAIN EFFECTS AND 

MULTIPLICATIVE INTERACTION (AMMI) MODEL 

Diego Jarquin, José Crossa, Sergio Perez-Elizalde, José Miguel Cotes, Kert Viele, Genzhou Liu, 

and Paul L. Cornelius 

RESUMEN 

Muchas investigaciones han sido llevadas a cabo utilizando la estimación de mínimos cuadrados 

bajo el modelo linear-bilinear de efectos principales aditivos e interacción multiplicativa 

(AMMI). La principal dificultad con los modelos lineales-bilineales estándar es que la inferencia 

estadística de los efectos bilineales de la interacción genotipo x ambiente (GE) no puede ser 

incorporada fácilmente en el biplot de los dos primeros componentes. Esta investigación propone 

una aproximación Bayesiana para la inferencia de los parámetros del modelo AMMI usando el 

muestreador de Gibbs el cual  ahorra el tiempo de cálculo y hace el algoritmo estable. Los datos 

de un experimento de maíz (Zea mays L.) en multiples-ambientes (METs) fue usado para 

ilustración. Distribuciones a priori vagas pero propias fueron utilizadas. Los resultados muestran 

que las cadenas de Markov de Monte Carlo (MCMC) reunieron los criterios de convergencia 

para todos los parámetros. Regiones bivariadas de alta densidad a posterior (HPD) para las 

interacciones del AMMI-bayesiano son mostradas en el Biplot de los primeros dos componentes 

bilineales; estas regiones ofrecen inferencia estadística de los parámetros bilineales y permiten 

las visualización de grupos homogéneos de ambientes y genotipos. 

Abreviaciones: AIC, el criterio de información de Akaike; AMMI, efectos principales aditivos e 

interacción multiplicativa; BLUP, mejor predictor lineal insesgado;  GE, interacción genotipo x 

ambiente; GGE, ambiente más interacción genotipo  x ambiente; HPD, alta densidad a posterior; 

MET, experimentos de multiples-ambientes; MCMC, cadenas de Markov de Monte Carlo; 

SREG, regresión de sitios. 

 

 

Capítulo publicado como artículo científico en Cropscience, 51: 1458-1469 (2011).  
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ABSTRACT 

Much research has been conducted using least squares estimates of the linear-bilinear 

model Additive Main effects and Multiplicative Interaction (AMMI). The main difficulty with 

the standard linear-bilinear models is that statistical inference on the bilinear effects of genotype 

× environment interaction cannot be incorporated easily into the biplot of the first two 

components. This research proposes a Bayesian approach for the inference on the parameters of 

the AMMI model using a Gibbs sampler that saves computing time and makes the algorithm 

stable. Data from one maize (Zea mays L.) multi-environment trial (MET) was used for 

illustration. Vague but proper prior distributions were introduced. Results show that the various 

Markov chain Monte Carlo convergence criteria were met for all parameters. Bivariate Highest 

Posterior Density (HPD) regions for the Bayesian-AMMI interactions are shown in the biplot of 

the first two bilinear components; these regions offer a statistical inference on the bilinear 

parameters and allow visualizing homogeneous groups of environments and genotypes.   

 

Abbreviations: AIC, Akaike´s information criterion; AMMI, additive main effects and 

multiplicative interaction; BLUP, best linear unbiased prediction; GE, genotype x environment 

interaction; GGE, genotype plus genotype x environment interaction; HPD, highest posterior 

density; MET, multi-environment trial; MCMC, Markov chain Monte Carlo; SREG, sites 

regression. 
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INTRODUCTION 

In plant breeding, the main purposes of multi-environment trials (METs) are to: (i) study 

genotype × environment interaction (GE); (ii) assess genotypic adaptability and stability; (iii) 

establish relationships among testing environments, among genotypes, and among genotypes and 

environments (or sites) simultaneously; and (iv) make predictions of the genotypes‟ breeding 

value that will allow making an accurate selection of parents for the next breeding cycle. The 

presence of GE complicates this process and is usually expressed either as inconsistent responses 

of some genotypes relative to others, due to genotypic rank change, or as changes in the absolute 

differences between genotypes without rank change (Crossa et al., 2004). 

Linear-bilinear (also called multiplicative) models for the study of two-way interactions 

date back to Mandel (1961, 1969). Linear-bilinear fixed effects models, such as the Sites 

Regression (SREG) Model (Cornelius et al., 1996; Crossa and Cornelius, 1997) and the Additive 

Main effect and Multiplicative Interaction (AMMI) (Gauch, 1990; Gauch and Zobel, 1996), are 

used for studying genotypic patterns of responses across environments. These models are 

parsimonious, since the interaction parameters are estimated from the singular value 

decomposition of the GE matrix (AMMI) or from the genotype plus genotype × environment 

interaction (GGE) matrix (SREG), and the patterns of response of genotypes and environments 

can be visualized graphically using biplots (Kempton, 1984). 

For plant breeders, linear-bilinear models such as the fixed effects SREG and/or AMMI 

offer more opportunities for modeling GGE or GE than the simple regression of genotypes on 

the site mean that was previously suggested by Finlay and Wilkinson (1963) and Eberhart and 

Russell (1966). Several recent reviews have pointed out the merits and demerits of the fixed 

effect linear-bilinear models AMMI and SREG with respect to their suitability for GE analysis 

(Gauch, 2006; Yan and Tinker, 2006; Yan et al., 2007; Gauch et al., 2008). Yang et al. (2009) 

pointed out one limitation of fixed effect AMMI and SREG models, that is, these models have 

no inferential statistics attached to the interaction parameters used to build the biplot. Denis and 

Gower (1994, 1996) and Denis and Pazman (1999) proposed asymptotic confidence regions for 

genotypic and environmental scores that help breeders make more reliable decisions on genotype 

selection and recommendation; however, these confidence regions are not easily implemented 
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for models with more than two bilinear terms, and they require restrictive assumptions such as 

asymptotic normality. Yang et al. (2009) advocated the use of a non-parametric resampling 

technique (bootstrapping,) for constructing confidence regions for genotypic and environmental 

scores that can be applied to fixed effect and mixed linear-bilinear models.  

From a conceptual perspective, the main distinction between fixed and random models is 

the non-shrunken versus the shrunken estimators of the effects where, in general, shrinkage is 

associated to random effects (not to fixed effects). However, Cornelius and Crossa (1999) 

introduced the shrinkage estimates of the linear and bilinear parameters of the fixed linear-

bilinear models (e.g. AMMI, SREG, etc.) and showed that these shrinkage estimates are as good 

as, or better predictors, than the Best Linear Unbiased Prediction (BLUP) of the cell means of a 

two-way complete random model. Furthermore, the shrinkage predictors of the parameters of the 

fixed linear-bilinear models proposed by Cornelius and Crossa (1999) can be conceptualized as 

Bayesian estimates with non-informative priors. 

The first proponents of the mixed linear-bilinear AMMI model for the analysis of MET 

were Piepho (1997, 1998), Smith et al. (2001), and Piepho and Mohring (2006). The mixed 

version of SREG and AMMI naturally leads to a factor analytic form for the genetic variance-

covariance for environments. Since the above mentioned models are linear mixed models, they 

have the usual advantages in comparison with ordinary fixed effects linear-bilinear AMMI and 

SREG models. That is, error variance modeling can be accommodated; in particular, 

heterogeneity of block and error variance between environments and within-environment spatial 

correlation, and incomplete data are handled with ease. Furthermore, when genotypes are 

considered as random effects, coefficients of parentage can be incorporated into the factor 

analytic form for modeling GE or GGE of the mixed AMMI and SREG, respectively, hence 

obtaining more precise estimates of the breeding values of genotypes (Crossa et al., 2006; Oakey 

et al., 2006; Burgueño et al., 2007). Burgueño et al. (2008) showed how to use the factor analytic 

form of the mixed SREG model for clustering sites and genotypes with statistically negligible 

crossover interaction.  

Apart from the above statistical and biological merits of the mixed linear-bilinear AMMI 

and SREG, it is clear that these models can deal with unbalanced GE two-way table within the 

analysis of MET without the need for imputing missing data as a first step and then performing 
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the analysis and estimating the GE parameters. However, it is unclear how asymptotic parametric 

confidence regions constructed under the fixed-effects model can be extended under a mixed-

effects model.   

Bayes‟ paradigm has the main feature for drawing inferences about hypotheses because it 

provides the flexibility of using not only observed data obtained from the current experiment but 

also prior information and data from previous studies; however, its use in modeling GE in the 

context of METs and for selecting genotypes has been very limited. A Bayesian approach to the 

analysis of incomplete genotype  environment  year data when using METs was presented by 

Theobald et al. (2002). Foucteau and Denis (2000) used a sequential Bayesian approach to make 

variety recommendations in the context of integration and use of information for different METs. 

Edwards and Jannink (2006) applied a Bayesian methodology for the analysis of GE with 

heterogeneous variance among environments and genotypes. Cotes et al. (2006) described a 

Bayesian approach for determining stable genotypes based on Shukla‟s (1972) stability variance. 

Bayesian analysis of linear-bilinear models such as AMMI and SREG has been limited 

by the complex structure of the parameter space. While Bayesian computational methods such as 

the Markov chain Monte Carlo (MCMC) (Gilks et al., 1995; Gelman et al., 2003; Robert and 

Casella, 2004) led to an explosion of Bayesian methods in the 1990s, linear-bilinear models (i.e., 

AMMI) produce unique problems due to the orthonormal bases used in singular value 

decomposition. Viele and Srinivasan (2000) were the first to propose Bayesian estimation of 

parameters for the AMMI model using MCMC techniques through Gibbs sampling with 

embedded Metropolis-Hastings random walks. These authors showed that the Bayesian approach 

for estimating AMMI model parameters provides an easy method for dealing with unbalanced 

data and heterogeneity of variances, and produces, for non-informative prior distributions, 

shrinkage estimates of the linear (main effects) and bilinear (GE interaction) parameters similar 

to those proposed by Cornelius et al. (1996) and Cornelius and Crossa (1999) in the context of a 

two-way complete random effect model. Similar algorithms were used by Kateri et al. (2005) in 

the context of contingency table analysis. 

Some practical and theoretical issues unresolved by Viele and Srnivasan (2000), such as 

whether the MCMC will always converge on the target posterior distribution, or whether AMMI 

bilinear terms can be estimated from the MCMC sample without violating model constraints, 
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were investigated in the unpublished 2001 Ph.D. thesis of G. Liu, who derived a set of 

conditional distributions for AMMI model parameters, such that a Gibbs sampler (without using 

embedded Metropolis-Hastings steps) for sampling from the joint posterior distribution could be 

used. This saves computing time and makes the algorithm more stable. A point discussed by 

simulation by Liu (unpublished data, 2001) is that while the singular values () estimated from 

the standard least squares methods are biased upward, some shrinkage methods for estimating  

such as those described by Cornelius et al. (1996) and Cornelius and Crossa (1999) are superior 

to least squared estimates but tended to produce downward biased estimates so that non-zero ‟s 

would be underestimated. Simulation results from Liu (unpublished data, 2001) showed that 

Bayesian-AMMI estimates of  under certain priors of  result in less or no upward bias; 

therefore the author concluded that Bayesian parameter estimation is better than the least square 

method and as good as or even better than shrinkage estimates of the parameters of the fixed 

linear-bilinear models proposed by Cornelius and Crossa (1999).  

The objectives of this research were to show the use of the Bayesian paradigm to make 

inference on the linear and bilinear parameters of the AMMI model in terms of (i) how to 

develop conditional posteriors to the bilinear GE parameters of the AMMI models, and (ii) how 

to provide answers to questions posed to the fixed effect linear-bilinear AMMI such as how to 

incorporate inferential statistics into the biplot. One maize MET was employed to illustrate the 

use of Bayesian-AMMI consisted of 9 genotypes planted in 20 sites. Linear and bilinear 

parameters of the Bayesian-AMMI were estimated as usual for the Bayesian MCMC based 

methodology. For this data set, vague but proper prior distributions were used. 

 

MATERIALS AND METHODS 

Experimental data set 

The data set used in this study (also used by Liu [unpublished data, 2001] and by Burgueño et 

al. [2008]) was employed to illustrate the use of the Bayesian-AMMI; it comprises 9 genotypes 

evaluated in 20 sites using a randomized block design with four replicates. The response variable 

analyzed was grain yield (in kilograms per hectare), and vague but proper prior distributions on 
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the fixed effects and singular values parameters were used to compute the joint posterior 

distribution. 

Although the example used in this study is relatively small in size as compared with other 

METs with a larger number of genotypes or sites, it was used to illustrate the application of the 

Bayesian paradigm to the AMMI model. The application of the proposed Bayesian-AMMI 

procedure to larger MET data sets does not pose additional statistical or computing difficulties.  

Statistical models 

The AMMI model with Fixed Effects for Genotypes, Environments, and Genotype x 

Environment 

In the context of a fixed effect model, the AMMI model for the average response 
ij.

y  of 

g genotypes (i=1,2,…,g) evaluated in e environments (j=1,2,…,e) may be expressed as:  

ty μ λ e
k 1ij i j k ik jk ij

u v      
   [1] 

where μ  is a general mean, i  is the effect of the ith genotype, and j  is the effect of the jth
 

environment. The quantity λ
k ik jk

u v  is the kth interaction component that corresponds to the ijth 

element of the singular value decomposition of the GE matrix of interactions (i.e., deviations of 

cell means from the additive main effects). In particular, 
k

λ  is the singular value of the kth 

multiplicative component. These 
kλ are ordered, i.e., 

t
λ...

2
λ

1
λ  . The parameter 

ik
u is the 

ith
 
element of the kth

 
 singular vector for rows (i.e., genotypes) and 

jk
v  is the jth

 
element of the 

kth singular vector for columns (i.e., environments). The 
ik

u  and 
jk

v  satisfy the 

orthonormalization constraints 0
ik ik' jk jk'

i j

u u v v    for kk and 2 2 1
ik jk

i j

u v   . The 

term 
ij

e  is the average error associated with the response of the ith genotype in the jth 

environment and t   min(e – 1, g – 1).  
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Cornelius and Seyedsadr (1997) generalized [1], as well as other linear-bilinear models for 

a two-way table, into a General Linear-Bilinear Model (GLBM) of the form 

w ty β x λ e
k 1 k 1ij k ik jk ijk kij

u v    
, where 

k
β  are parameters (regression coefficients) for 

the linear terms, 
kij

x  are known regressor variables, and 
k

λ , 
ik

u , 
jk

v , and 
ij

e  are the same as 

in [1]. The number of linear (additive) terms is denoted as w, and the number of bilinear 

(multiplicative) terms is represented by t. In matrix notation, the previous equation can be 

expressed as w β
k 1 k k

   
y X UDV' E , where ]

ij
y[y , ][xX

kijk
 , [ ]

ik
uU , 

diag(λ , λ ,...,λ )t1 2
D , [ ]

jk
vV , and ]

ij
e[E ; tU'U = V'V I . 

For r replicates, the vector y of n = rge phenotypic responses in the AMMI model can be 

expressed in matrix notation as: 

tμ λ diagn k 11 2 1 2k k k
     

y 1 X α X β (X u )X v e   [2] 

where 
n1  is a vector of one‟s of order n × 1; μ  is the overall mean or reference value; 

1X  is the 

design matrix for genotypes of order n × g; α  is a g × 1 vector of fixed genotype main effects; 

2X  and β  are the design matrices for environments of order n × e and the e × 1 vector of fixed 

environment main effects, respectively; kλ  is the singular value for the kth principal component; 

ku  and 
kv  are the kth singular vectors for genotypes and environments, respectively, and thus 

form orthonormal matrices in the singular value decomposition; and e is an n-vector of random 

residual effects. The vector e has a multivariate normal distribution with zero mean and variance-

covariance matrix 2
eσ  In. Then, the vector of observations y has also a multivarite normal 

distribution. 

The Bayesian-AMMI 

Bayesian prior and posterior density of the parameters of the AMMI model 

The Bayesian estimation of the parameters of the model of [2] assumes that the 

conditional distribution of y, given 2μ, , and σeα β λ u v, , , ,  is a multivariate normal distribution 
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 2 2t| μ, σ ~ λ diag( ) , σe n n ek 11 2 1 2k k k
N    

y α β λ u v 1 μ X α X β X u X v I, , , , ,       [3] 

where nI  is the identity matrix of order n. Two criteria are used for assigning priors. First, how 

much information (if any) is known about the parameters, and second, that the posterior can be 

easily derived because it has the same distribution form as the prior (conjugacy). When nothing 

is known about the parameter, a non-informative or vague prior is used.  

The following prior distributions, which are the same as those used by Viele and 

Srinivasan (2000) and Liu (unpublished data, 2001), were chosen for parameters in [3]. 

Subscripted symbols μ  and 2  denote mean and variance of the prior distribution of whatever 

parameter is shown as subscript.  

 2
μ,μμN~2

μ,μμ|μ   

 2 2| ,σ ~ , σgNα α α ατ μ μ I  

 2 2| , ~ ,N
e

 β β β βδ μ μ I  










 2

k
λ

σ,
k

λ
μN~2

k
λ

σ,
k

λ
μ|

k
λ  with the restrictions kλ >0 and 1λ k ≥ kλ    

Spherical Uniform on the corrected subspace~
k

u  

Spherical Uniform on the correct subspace~
k

v  

 2
es,eν2χScaledInv~2

es,eν|2
eσ   

where N() denotes the normal distribution, N
+ 

is the positive normal distribution, and 

2χScaledInv   is the inverse scaled chi-squared distribution. All the above priors satisfy the 

model constraints and are conditionally conjugate priors. The spherical uniform distribution is a 

special case of a von Mises-Fisher distribution (Mardia et al., 1979), which is a conjugate family. 

Whether the priors for the parameters are informative or non-informative depends upon their 

parameters; for normal priors, infinite variance makes the prior nearly non-informative. 
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Details of the prior spherical uniform distribution of GE parameters are in Viele and 

Srinivasan (2000); they refer to the constraints on the vectors 
k

u  and 
k

v that must have zero 

sum (as mentioned above) and unit length. The constraint that 
k

u  (and 
k

v ) must sum to 0 is 

equivalent to 
k

u  (and 
k

v ) being orthogonal to the 1 vector. Then vector 
k

u  and the 1 vector 

form a hyperplane, and the constraint of unit length corresponds to the vectors in the unit sphere. 

The intersection of these subspaces is in a multi-dimensional sphere. The support of 
k

u (and 

k
v ) is not trivial, and Viele and Srinivasan (2000) described how to sample from the spherical 

uniform distributions using the correct supports. 

Above, α
μ  and 2σg αI  are the prior vector of means and the prior covariance matrix of the 

genotypic main effects; 
β

μ  and 2σe βI  are the prior vector of means and the prior covariance 

matrix for the environment main effects; 
k

λ
μ  and 2

k
λ

σ  are the prior means and the variances for 

the singular value 
k

λ ; q  and 2
μ  

are the number of effects and the variance of μ , respectively; 

and, finally, eν  and 2
es  are the degree of belief and the scale factor for 2

e
σ . The values of μμ ,

2
μσ , μ

α
, 2σα

, μ
β

, 2σ
β

, 
k

λ
μ , 2

k
λ

σ , q, eν , and 2
es  are chosen with the aim of representing the 

prior belief about the model parameters. Furthermore, the sum to zero constraint for the elements 

of the μ
α

 and μ
β

 vectors was considered in order to avoid confounding µ with the vectors of 

main effects and thereby avoid possible identifiability problems when non-informative priors are 

used.  

Multiplying the prior distributions by the likelihood function, we obtain the following 

joint posterior distribution:  
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2( , , , , , ,σ )e

'1 1 '
exp μ μ μ μ expμ μ2 22σ 2σμ

't'1 1
exp exp μ λ μ λ

λ k λ k2 2k 12σ 2σ
λ

'1 tμ λ diag( )n k 11 2 1 2k k k22exp

μ λn k 11 2 k

p |

σe



   
         
     

  
         
   

   

     


   


α α

α

β β

β

α β λ u v y

μ α μ α

μ β μ β

y 1 X α X β X u X v

y 1 X α X β 

 

t diag( )
1 2k k

n νe 1 12 22σ exp ν se e e22σe

 
 
 
 

  

   
   
    

X u X v

      
 [4] 

Restrictions are 
k

λ >0, 
1k

λ

≥

kλ , 0k k
  u 1 v 1 , and * * 0k k k k

  u u v v  (for *kk  ). In the 

sequel, we will refer to the methodology described here as Bayesian-AMMI. 

 

Considerations for assigning values to the Bayesian prior distribution 

When no prior information for parameters μ , i , j , and k  is available, in order to set 

priors noninformative  (or nearly so), we use 0 as prior mean of all genotypic and environmental 

effects and large values for the prior variances. Therefore, vague but proper prior distributions on 

the hyperparameters were used to compute the posterior distribution. Prior hyperparameters for 

the (nearly) non-informative priors were chosen as  =0, α
μ =1g  0, 

β
μ =1e  0, and 

k
λ

μ = 0 

for the prior means, and equal to 1  10
8
 for each of the prior variances 2

 , 2
α

,
 2 β

, and 2

k


 . 

For dispersion parameter 2
e , prior information is given by two hyperparameters: e , the 

degree of belief (or prior degrees of freedom), and 2
es , a scale parameter. Researchers can 

translate their prior knowledge or belief about the variances into numerical values of 2
es and e  
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which reflect the researcher‟s high confidence (small variance and high values of e ) or lack of 

confidence (large variance and small values of e ) that parameters are equal to their respective 

prior mean. When the values of the hyperparameters 2
es  and e  

are from previous experimental 

data, they correspond to the estimated variance and their corresponding degrees of freedom, 

respectively. Both hyperparameters, e  
and 2

es , should be greater than zero in order to avoid 

obtaining an improper posterior distribution, as pointed out by Hobert and Casella (1996). The 

prior distribution of the error variance 2
eσ  was set at      

  with      degree of freedom. 

 

Evaluating the posterior distribution using the Gibbs sampler algorithm 

The Gibbs sampler algorithm was used to simulate from the marginal posterior 

distributions of the parameters of [4]. We merged  , 
i , and 

j  parameters into one vector 

named θ, and created a diagonal matrix M containing the prior variance of each parameter, plus 

the error variance (see Appendix A). After some algebraic manipulation, we found that the 

conditional posterior distribution for θ  has a multivariate normal distribution (see Appendix A): 

 
1

' 2ˆ̂
| ~ , eothers N σ

  
 

θ θ WW M   [5] 

where  21 XXW 1 , and others indicates the observation data y, the other parameters in the 

AMMI model, except for those considered in the vector θ ;    
1

1 0

ˆ̂ 

  ' '
θ WW M Wh Mθ  and 

t

1 k 1 k 2 kk 1
λ diag( )


 h y X u X v . 

A similar procedure was used to develop the conditional posterior of k . We found that, 

due to restrictions in the parameter k , this distribution is a degenerate multivariate normal 

distribution (see Appendix A): 






































2

e2

2

e
33kk σ,ˆ̂N~others|

k

XX    k >0 and 1k >
k        [6] 
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where  






































 






k

kk

2

2

e
2

'

32

2

e
3

'

3k
ˆ̂ hXXX  and 

2 * 1 * 2 **
diag( )k k kk k




  h y Wθ X u X v   

To improve the computational algorithm, Eq. [6] should be rewritten without a matrix 

notation (G. Liu, unpublished  data, 2001) as follows: 

2 2 2 2rσ y σ μ σ σe eλ ij ik ij. λ λi, jk k kλ | others ~ N ,
k 2 2 2 2σ σ nσ σe eλ λ

k k

u v  
 
  
 
 

k >0 and 
1k >

k      [7] 

where r is the number of replicates in the experiment. 

The conditional posterior distributions for ku  and kv  were given by Liu (unpublished data, 

2001) as: 

2
( | ) exp k

k kk k

e

r
p others





 
  

 
u u u  

2
( | ) exp k

k k k

e

r
p others





 
  

 
γ v v  

where 
k ku Yv , 

k kv Yu , and Y  is the g × e matrix of empirical cell means, that is, ]y[ .ijY

, i = 1, 2,…,g; and j = 1,2,…,e. 

Liu (unpublished data, 2001) demonstrated that the restrictions 0k k
  u 1 v 1 , 

* * 0k k k k
  u u v v  *kk   helped define, through the use of the von Mises- Fisher distribution 

(Mardia et al., 1979), two alternative random variables, which we denote as 
ku  and

kv , such 

that: 

2
( | ) exp k k

k k k

e

rc
p others





 
  

 
u u u    [8] 
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where 
1

k k k kc u H u , k k k k kc   u H H u , and 
kH  is a g x (g-t) matrix, such that its columns are 

orthonormal and orthogonal to vector g1  and the vectors 
*ku  for k* ≠ k.  

For the kv  parameter, the conditional distribution is: 

2
( | ) exp k k

k k k

e

rd
p others





 
  

 
v v v    [9] 

where 
1

k k k kd  v R v  and 
kR  is an c x (c-t) matrix such that its columns are orthonormal and 

orthogonal to vector c1  and the other vectors 
*kγ , for k*k  , 

k kv Y'u , and k k k k kd   v R R v

. 

The conditional posterior distribution for 2

e
σ  is a scaled inverse 2  distribution 

 2 2 2ˆ ˆ| ~ , ,σ others Inv Scaled s
e e e

     [10] 

where n
ee

ˆ   and 
n

e

e
s

e
e

ŝ

2

2






ee'
. 

Finally, the necessary steps to run the Gibbs sampler algorithm for the AMMI model are: 

1. Set initial values for parameters 2

u
σ , 2

e
σ , , ,λ

k k k
u v ; 

2. Generate θ  from distribution [5] and update; 

3. For each k = 1,2,…,t, sequentially execute the following steps a, b and c: 

a. Generate 
k

λ  from distribution [7] and update; 

b. Generate 
k

u  from distribution [8] and update; 

c. Generate 
k

v  from distribution [9] and update; 

4. Generate 2

e
σ  from distribution [10] and update. 
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For the Gibbs sampler, two Markov Chains, each one of size 35000, were generated with 

a burn-in period of 5000 iterations. Graphical monitoring and convergence tests (Raftery and 

Lewis, 1995; Heidelberger and Welch, 1983; Gelman and Rubin, 1992) were used to determine 

when the MCMC chain reached the target distribution. After this, a thinning of size 2 for each 

MCMC sample was used to produce the final MCMC sample from the joint posterior 

distribution. Thus, a sample of size 30000 was used to estimate each marginal posterior 

distribution.  

Bayes point estimates and Bayesian Credible Intervals 

The Bayesian estimates under quadratic loss function of 2
eσ , 

k
λ , and θ  are the marginal 

posterior means, which are estimated with the MCMC sample means. 

To obtain the Bayesian High Posterior Density (HPD) region at 95% probability level for 2
eσ , 

, ,k kλ
k

u v , and θ  parameters, we used the property that these intervals are the narrowest of all 

possible intervals at 95% (Chen and Shao, 1999). Therefore, the algorithm to obtain a 100(1- ) 

% HPD (0< <1) region is as follows: 

1. Sort the sample chains of the marginal posterior distribution for each parameter ( 2

e
σ , 

, , kλ
k k

u v , and θ ) in ascending order, i.e., from lowest to highest. 

2. Calculate the length of s a subsample such that it contains 95% of the total samples of the 

marginal posterior distribution, that is, if there are 10,000 samples, then s = 9500. 

3. Obtain the first possible interval at 95% holding the first sth sample values, and calculate the 

difference between limits.  

4. Shift the reading frame on the chain in one sample and obtain the second possible interval by 

keeping the second and (s + 1) th sample values. 

5. Continue this procedure until obtaining the HPD as the interval with the lowest difference 

between lower and upper values. 

6. Repeat steps 2-5. 
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Note that this algorithm requires that the posterior distribution be unimodal (otherwise the HPD 

region could potentially be multiple disconnected intervals), which is not a problem in this 

context. 

Convergence diagnostics for the MCMC sample 

The test of Raftery and Lewis (1995) was used as a diagnostic tool for convergence where the 

dependence factor (I), the length of "burn in", the required sample size, and the minimum sample 

size based on zero autocorrelation are calculated. Estimates of the dependence factor greater than 

5 (I>5) indicate strong autocorrelation, which may be due to a poor choice of starting value, high 

posterior correlations, or stickiness of the MCMC algorithm. Another diagnostic test used for 

convergence was that of Heidelberger and Welch (1983). The convergence diagnostic tests the 

null hypothesis that the sampled values come from a stationary distribution. The test is 

successively applied, firstly to the whole chain, then, after discarding the first 10%, 20%, etc. of 

the chain, until either the null hypothesis is accepted, or 50% of the chain has been discarded. 

The latter outcome constitutes failure of the stationary test and indicates that a longer MCMC 

run is needed. The half-width test calculates a 95% confidence interval for the mean, using the 

portion of the chain which passed the stationary test. Half the width of this interval is compared 

with the estimate of the mean. When the half-width test is not passed, the length of the sample is 

not long enough to estimate the mean with sufficient accuracy. 

The last convergence test used was that of Gelman and Rubin (1992), which calculates the 

potential scale reduction factor, together with the upper and lower confidence limits. 

Approximate convergence is diagnosed when the upper limit is close to 1. For multivariate 

chains, a multivariate value is calculated that bounds above the potential scale reduction factor 

for any linear combination of the (possibly transformed) variables. 

 

Inferential statistics of the Bayesian-AMMI biplots using the HPD regions 

For each of the GE interaction factors 1/2 1/2

1 i1 2 i2(λ ,λ )u u  and 
1/2 1/2

1 j1 2 j2(λ ,λ )v v  (k=1, 2), the 95% and 

99% bivariate HPD regions were computed and included in the biplot graph. The HPD contours 

of the posterior distribution of the interaction factors delineated the regions with the highest 
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posterior density. Although this is not a formal statistical procedure, the HPD regions of the GE 

factors that include the zero on the first bilinear component axis are considered not to be 

statistically significantly different from zero for that component. Overlapping HPD regions from 

the different levels of 
k

u  (or different levels of kv ) indicate that their GE hyperparameters are 

not statistically significantly different between each other and therefore can be considered a part 

of one homogeneous group of genotypes (or environments). 

 

Software 

An R code was developed and used to perform the Bayesian-AMMI analyses. These codes can 

be obtained on request from any of the first three authors.  

 

RESULTS 

The three convergence diagnostics described above were run for all parameters of the Bayesian-

AMMI to check that the model had good convergence properties. For all the parameters, the 

convergence factor was I<5, the stationary and the half-width tests were passed, and the upper 

confidence limit of the potential scale reduction factor was always 1 or very close to it. In 

addition, identifiability of all the linear parameters, the overall mean (µ), the genotypic effects (

α ), and the environmental effects ( β ) for both data sets were observed throughout their 

correlations. All pair-wise correlations between the linear parameters of the Bayesian-AMMI 

model were always around 0, with some correlation values ranging from -0.2 to 0.2, indicating 

that complete identifiability on the estimation of the hyperparameters was achieved.  

The computation of the significant tests for the bilinear terms to be retained in the traditional 

frequentist AMMI model, and their shrinkage estimates of the parameters of the linear and 

bilinear terms, can be found in Cornelius et al. (1996) and Cornelius and Crossa (1999). Liu 

(unpublished data, 2001) uses several Bayesian model selection criteria (Akaike´s information 

criterion [AIC], Bayesian information criterion [BIC], Bayes factor, and Kullback-Leibler´s 

information) for determining the appropriate number of bilinear terms to be retained in the final 
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Bayesian-AMMI model. Cornelius et al. (1996) showed that for the maize data set used in this 

study, two bilinear terms are significant by the FGH2 test. Liu (unpublished data, 2001) suggested 

that the number of terms to be retained in the model based on the AIC should be from 2 to 3, 

although AIC seemed to be liberal and choose a model with more bilinear terms. We fitted only 

two bilinear terms in this study for this data set.  
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Once a large MCMC sample is obtained from the joint posterior distribution of the 

parameters for the Bayesian-AMMI model with two bilinear terms, the sample mean is used to 

estimate the parameters. The trace and histograms of 1 and 2 showed acceptable shapes for the 

estimated densities (Fig. 1), with a marginal posterior distribution for 1 that is positive bell 

shaped and a marginal posterior distribution for 2 that moves more towards zero. For later ‟s 

(not calculated), the distribution should be moving towards zero, as it is expected that the true 

values for these ‟s should be closer to zero. The Bayesian-AMMI estimates of 1 and 2 were 

5483 and 1627, respectively (Table 1), with a much larger SD for 2 (786.8) than for 1 (458.4); 

the AMMI unshrunken least squared estimates of 1 and 2 were 5923 and 3070, respectively 

(data not shown), and the AMMI shrunken least squared estimates of 1 and 2 obtained by the 

shrinkage estimate of the parameters of the fixed linear-bilinear method of Cornelius and Crossa 

(1999) were 5248 and 1532, respectively (data not shown).  

 

Figure 1. Traces and histograms of values of the first and second singular 

values ( λ1 and λ2) obtained from the Markov chain Monte Carlo (MCMC) 

for the maize data. 
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The Bayesian-AMMI estimates of the ‟s are smaller than the unshrunken least squared 

estimates and larger than the shrinkage estimates of the ‟s (though closer to the latter than the 

former). As expected, the Bayes estimates of the ‟s rectified the upward bias of the ordinary 

least squares estimates and the downward bias of the shrinkage estimates. 

 Results of Table 1 also show the mean of the marginal posterior effects of µ, σ
2

e, α , and
 

β  together with their lower and upper HPD limits. The lengths of the HPD regions of genotypes 

(or environments) that overlap indicate similar responses of genotypes (or environments); the 

posterior SD of the elements of the main effect α  ranged from 91.47 to 92.32, and the posterior 

SD o of the elements of the main effect β ranged from 140.8 to 143 (Table 1). The posterior 

means of the first and second components for the scores of sites and genotypes with their lower 

and upper HPD limits are in Table B1 of Appendix B, and the biplot using the mean of the 

scores from AMMI is depicted in Fig. 2. Some description of the response of genotypes and 

environments can be made in this biplot; for example, environment S8 and genotype 8 are 

located far from the center on the left hand side of Fig. 2, whereas genotype 4 and environment 

S11 are the farthest points from the center of the figure on the right hand side. However, the 

scores of the interaction components that are plotted in Fig. 2 are only the mode of the posterior 

distribution, and no statistical inference regarding similarities and dissimilarities with other 

genotypes and sites can be made unless HPD confidence regions around these scores using the 

MCMC results from the Gibbs sampler are constructed. As expected, since a vague prior was 

used, the Bayesian AMMI biplot is similar to that obtained from the fixed effect AMMI (data not 

shown). Although Burgueño et al. (2008) used the SREG, their Fig. 1 shows similar general 

response patterns of genotypes and sites as those depicted here in Fig. 2, especially those related 

to genotype 8 and site S8. 
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Figure 2. Biplot of Bayesian- additive main effects and multiplicative 

interaction (AMMI) mean posterior estimates for genotype × environment 

interaction components obtained from the maize multi-environment trial 

(MET) with nine genotypes (1-9) and 20 environments (S1-S20). 
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Table 1. Mean of the marginal posterior effects (mean) of the Bayesian-

additive main effects and multiplicative interaction (AMMI) analysis of the 

maize data for grain yield (in kilograms per hectare) of nine genotypes 

(i=1,2,…9) and 20 sites (j=1,2,…,20) for the overall mean (μ), the dispersion 

parameter σ
2

e, the genotypic effects ( i ), the environmental effects ( j ), the 

singular values for the first and second components (λ1 and λ2), the 

corresponding standard deviation (SD), and the lower and upper highest 

posterior density (HPD) regions at 95%. 

   Mean           SD               Lower HPD             Upper HPD 

µ 4858 32.71 4792.907 4921.019 

σ2
e 763600 43580 680568.1 849750.4 

1  -241.7 91.78 -421.8 -61.8491 

2  -255.0 91.97 -433.048 -72.349 

3  -34.66 91.75 -213.578 147.9183 

4  359.2 91.68 180.6027 541.1591 

5  389.7 92.32 206.3665 567.9183 

6  472.5 91.47 296.9934 655.4933 

7  -186.0 92.19 -363.985 -3.5244 

8  -574.9 91.69 -758.735 -401.037 

9  70.95 91.90 -107.789 247.4022 

1  -1245 141.8 -1518.78 -963.865 

2  -647.3 141.5 -925.309 -373.425 

3  246.6 141.6 -28.9429 525.8115 

4  371.6 141.6 93.7568 647.7566 

5  96.01 141.6 -186.891 365.2221 

6  1448 141.6 1170.011 1722.119 

7  -1629 142.4 -1906.09 -1351.23 

8  -830.6 142.5 -1111.01 -552.443 

9  111.7 141.8 -164.931 391.3228 

10  -1921 141.8 -2191.5 -1636.95 

11  449.2 143.0 176.6458 738.1901 

12  2659 141.9 2387.132 2942.396 

13  1474 142.6 1188.188 1748.386 

14  1194 141.8 914.8787 1470.252 

15  189.3 141.6 -95.914 457.7014 

16  549.3 142.4 265.906 821.7052 

17  17.62 141.7 -265.469 290.3307 

18  -305.5 142.0 -588.161 -34.3383 

19  -2207 141.4 -2481.32 -1928.51 

20  -19.72 140.8 -289.285 261.169 

λ1     5483 458.4 4573.825 6366.038 

λ2 1627 786.8   2.0887 2822.725 
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Uncertainty and confidence regions of the first two bilinear terms of the Bayesian-AMMI 

In general it can be seen from Table B1 (Appendix B) that values of 
1

u
i  

and 
1

v
j

 are 

larger than their corresponding values of 
2

u
i  

and 
2

v
j

, and that the SDs were much smaller and 

the length of the HPD regions were much narrower for the first bilinear components of 

genotypes and sites (
1

u
i  

and 
1

v
j

) than for their second bilinear components, 
2

u
i  

and 
2

v
j

. The 

majority of 
2

u
i  

and 
2

v
j

 were two to four times smaller than 
1

u
i

and 
1

v
j

, and all the HPD 

regions covered the zero value. The Bayesian-AMMI second bilinear components for genotypes 

and sites were estimated with more uncertainty than the first bilinear components.  These results 

indicated that the first component discriminated more the genotypes and environments than the 

second component and this is done with more precision in the first component than in the second 

component. This is also reflected in the HPD confidence regions around these scores as shown in 

Figs. 3 and 4.  In general, this is in agreement with the theory of principal component analysis 

where the first component discriminates more the observations than the second and other 

components; the first component (that accounts for the maximum variability) supposes to have 

less uncertainty than the second and further components.    

Figs. 3 and 4 depicted the HPD confidence regions at the 95% (internal gray contour) and 

99% (internal gray contour) probability levels for some genotypes and sites, respectively. The 

only genotypes and sites included in these figures are those which have a contour at the 95% 

probability level that did not include zero for the first component, that is, those genotypes and 

sites with 0
11

u v
ji

  . 

Concerning genotypes, it is clear that genotypes 8 and 1 on the left hand side of Fig. 3 

formed a genotype group with negative values for the first bilinear term ( 0.3724
1,1

u   and 

0.4661
8,1

u   , Table B1) that were significantly different from zero. On the right hand side of 

Fig. 3, genotypes 4, 5, 6, and 9 formed another distinct group of genotypes with positive values 

of 
,1

u
i

( 0.5016
4,1

u  , 0.2756
5,1

u  , 0.2649
6,1

u  , 0.3135
9,1

u  , Table B1) that were 

significantly different from zero and also significantly different from those values of genotypes 1 
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and 8 on the first bilinear term (
1,1

u and 
8,1

u ). The remaining genotypes formed another group 

not different from zero for the first bilinear component. The large uncertainty (high SD and wide 

HPD; Table B1) of the elements of 
, 2

u
i  

is reflected in the long shadow areas along the axis of 

the second bilinear term.  

Similar results for the elements of 
,1

v
j

 and
 ,2
v

j
 were found in Fig. 4 for sites. Site S8 

on the left hand side of Fig. 4 formed one clear group (
8,1

v = -0.6353, Table B1), and sites S11, 

S13, and S18 formed another set (
11,1

v
 
= 0.3673, 

13,1
v

 
= 0.2358, 

18,1
v

 
= 0.2042, Table B1), 

both groups of sites had long ellipses along the second bilinear term, reflecting their large SD 

and wide length of the HPD as they reflect the uncertainty of these estimates. The rest of the sites 

showed that their first bilinear component did not differ from zero at the 99% probability level.  

 

Figure 3. Biplot of Bayesian-additive main effects and multiplicative interaction (AMMI) of the mean 

posterior estimates for genotype × environment interaction components for genotypes 1, 4, 5, 6, 8, and 9 

at the 95% (gray internal contour) and 99% (gray external contour) highest posterior density (HPD) 

regions obtained from the maize multi-environment  (MET). Only those genotypes (1, 4, 5, 6, 8, and 9) 

that do not include the value of zero for the first bilinear component at the 95% probability level are 

depicted.  
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Figure 4. Biplot of Bayesian-additive main effects and multiplicative interaction (AMMI) of the mean 

posterior estimates for genotype × environment interaction components for environments S8, S11, S13, 

and S18 at the 95% (gray internal contour) and 99% (gray external contour) highest posterior density 

(HPD) regions obtained from the maize multi-environment (MET). Only those environments (S8, S11, 

S13, and S18) that do not include the value of zero for the first bilinear component at the 95% probability 

level are depicted.  
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DISCUSSION 

There are examples in the literature showing that one could think of the linear-bilinear 

mixed AMMI model as being Bayesian in the sense that certain sets of effects have priors, and 

the choices for these are based on quantitative genetics, biology, and experience. For example, in 

the Smith et al. (2001) approach, the prior density for the genotypic effects in different trials has 

a factor analytic variance structure, and the prior density for the error effects has a separate 

spatial covariance structure within each environment. This approach has become widely 

accepted and used (Crossa et al., 2006; Burgueño et al., 2007, 2008; Matthews et al., 2007). In 

terms of within-trial prediction, Cornelius and Crossa (1999) showed that, as predictors, 

estimates of the parameter of the fixed linear-bilinear models are as good as, or better, than the 

BLUP. The shrinkage predictors of the parameters of the fixed linear-bilinear models proposed 

by Cornelius and Crossa (1999) can be conceptualized as Bayesian estimates with non-

informative priors. However, the prediction assessment scheme of Cornelius and Crossa (1999) 

is based solely on predicting the performance of an individual genotype replicated within 

environments, and not on predicting the performance of a genotype that is completely missing in 

one environment.  

Although the objective of this study was not to compare the predictive ability of 

Bayesian-AMMI versus the mixed AMMI, some preliminary results using different types of 

mixed AMMI (data not shown) showed that one single model is not the best across all data sets. 

The difficulty  when attempting to compare the prediction assessment of  Bayesian-AMMI with 

prior information versus mixed AMMI is the appropriate mixed AMMI to be used that will 

resemble, as much as possible, the Bayesian-AMMI. 

The objective of this research was to propose a Bayesian approach to linear-bilinear 

AMMI that can be useful for researchers in general. Some advantages of the conditional 

posterior estimates of the Bayesian-AMMI model over the fixed effect linear-bilinear AMMI can 

be mentioned: (i) since all effects in Bayesian models are random, the Bayesian-AMMI does 

avoid the consistent problem of determining which effects should be fixed and which random; 

however, the choice of a completely noninformative prior is somewhat analogous to fitting an 

effect as fixed effect in the traditional frequentist paradigm, whereas an informative prior 
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produces information borrowing and it can be considered analogous to the case of random effect 

in mixed models in which there is shrinkage estimation of the parameters of the model; (ii) it 

provides a natural method for deriving confidence regions around the genotypic and 

environmental GE parameters given by their scores that allow identifying groups of similar 

genotypes and environments; as pointed out by Yang et al. (2009); this is an important drawback 

of the fixed and mixed AMMI that offers no statistical inference for identifying separable 

groups; (iii) it deals with the unbalanced data that are always present in MET in a natural 

manner; this is not a problem for the mixed AMMI but a difficult task for the fixed AMMI, 

unless some data imputation technique is used; although the data sets used in this study did not 

have missing data, the Bayesian imputation has the advantage of being part of the entire analysis, 

whereas the earlier approaches need to impute the missing values first and then perform the 

AMMI analysis, and (iv) the Bayesian-AMMI can be efficiently used to incorporate information 

from existing historical MET (prior) on environmental and genotypic means and dispersion 

parameters such as environmental, genotypic, or error variances; this information cannot be 

efficiently incorporated into the fixed or mixed AMMI. 

Linear-bilinear models such as AMMI offer a family of models, rather than a single 

model, because a researcher may use AMMI with several components, up to the full model. This 

manuscript focuses on the Bayesian-AMMI model with two components (however, Bayesian-

AMMI models with three or more components can be computed for any data set). The 

comparison between biplots from Bayesian-AMMI based on two yr data versus biplots obtained 

from fixed effect AMMI based on the second year data will depend on the correlation between 

years.  

We recognize that the example used in this paper is quite small. Plant breeding METs are 

usually larger than the example used here. For example, Matthews et al. (2007) fit the random 

effects AMMI model to MET data with 106 environments and 41 varieties, and Thompson et al. 

(2003) fit the model for 62 environments and 216 varieties. Nevertheless, the example used here 

illustrates the use of the Bayesian-AMMI for studying the response patterns of genotypes using 

proper but diffuse priors. This new approach offers new opportunities for efficiently 

incorporating historical data on environments and genotypes that should be useful for achieving 

breeders‟ objectives as well as offering density regions around the estimated GE parameters. 



31 
 

Although the computer time for processing large METs can be substantially greater than that 

needed to fit linear-bilinear mixed AMMI, the continuous increase in computer power will 

minimize this disadvantage of the Bayesian-AMMI. 

 Although this study is a step in the right direction for applying Bayesian inference to 

linear-bilinear models, several topics remain to be studied and clarified. One issue is employing 

a formal Bayesian inference using an informative or partially informative prior distribution for 

all parameters of the model. Another issue that needs to be examined is the possibility of using a 

multivariate matrix approach to the singular value decomposition of the GE interaction 

parameters, rather than a vector approach as the one used here, while conserving the necessary 

orthonormality constraints on the bilinear hyperparameters; this would simplify the computation 

of the Gibbs sampler.  

The present Bayes inference methodology can be extended to other linear-bilinear models 

such as the Sites Regression (SREG), the Genotype Regression (GREG), and the Complete 

Multiplicative Model (COMM); however, further research is required on this topic. 

Incorporation of the coefficient of parentage into the prior density for the genotypic effects in the 

Bayesian-AMMI should not pose any difficulty and should be a subject of further research.  
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APPENDIX A 

Reparameterization of the joint posterior distribution  

Vectors of the joint posterior distribution [4] are simulated and sampled using the Gibbs 

sampler algorithm. We consider the following reparameterization: 
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Therefore, the joint posterior distribution [4] can be written as: 
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Conditional distribution for  , i , and j  parameters 

The quadratic form    1 1
 h Wθ h Wθ  +    0 0

 θ θ M θ θ
 
=    ˆ ˆ'


 θ θ W W θ θ  + 

   1 1
ˆ ˆ

 h Wθ h Wθ  +    0 0
 θ θ M θ θ , where   1

ˆ 
 θ WW Wh  and  


W W  is the 

generalized inverse of W W . The term    1 1
ˆ ˆ

 h Wθ h Wθ  is not dependent on θ , which 

can be absorbed by the proportional constant. Then, keeping the other terms constant, 
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   ˆ ˆ
 θ θ WW θ θ +    0 0

 θ θ M θ θ
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Conditional posterior distribution for k  

For the conditional posterior distribution of k , we considered the vector 

2 * 1 * 2 **
( )k k kk k
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  h y Wθ X u X v . Then the posterior can be expressed as: 
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with the restrictions k >0 and 
1k >

k . Now, defining 3 1 2diag( )k kX X u X v , the posterior 

becomes 
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Holding the quadratic form and using a similar algebraic procedure as used for the θ  

parameter, we can express the posterior conditional distribution for k  as: 
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APPENDIX B 

Table B1. Values of the mean of the marginal posterior effects for the genotypic scores of the first and  

second components, ,1iu , and ,2iu , respectively, and of the environmental scores of the first and second 

components ,1iv , and ,1iv , respectively, and the corresponding SD, and lower and upper highest posterior 

density (HPD) regions at 95% of the Bayesian-additive main effects and multiplicative interaction 

(AMMI) analysis of the maize trial of grain yield (in kilograms per hectare) with nine genotypes (i = 

1,2,…9) and 20 sites  (j = 1,2,…,20).  

 

γj1 and  αi1 Mean SD 

HPD 

lower 

HPD 

upper 

 

γj2 and  αi2 Mean SD 

HPD 

lower 

HPD 

upper 

1,1v  -0.2110 0.0751 -0.359 -0.0649 
1,2v  0.0840 0.2205 -0.3702 0.4797 

2,1v  0.0169 0.0757 -0.129 0.1685 
2,2v  -0.0562 0.2060 -0.4417 0.3544 

3,1v  -0.2427 0.0752 -0.3911 -0.0955 
3,2v  0.0539 0.2187 -0.3744 0.4739 

4,1v  0.1389 0.0734 -0.0066 0.2807 
4,2v  0.0271 0.1869 -0.3382 0.3944 

5,1v  0.0811 0.0754 -0.0605 0.2365 
5,2v  0.0300 0.1952 -0.3524 0.4063 

6,1v  -0.0068 0.0766 -0.1572 0.1416 
6,2v  -0.0621 0.2177 -0.4581 0.3876 

7,1v  -0.0763 0.0753 -0.2203 0.0718 
7,2v  0.0331 0.1974 -0.3635 0.4119 

8,1v  -0.6353 0.0613 -0.7520 -0.5125 
8,2v  -0.1302 0.2395 -0.5169 0.3582 

9,1v  0.0359 0.0752 -0.1071 0.1869 
9,2v  -0.0173 0.1919 -0.3932 0.3645 

10,1v  -0.2052 0.0729 -0.3499 -0.0648 
10,2v  0.0184 0.1827 -0.3433 0.3768 

11,1v  0.3673 0.0690 0.2342 0.5038 
11,2v  -0.0189 0.1773 -0.3680 0.3237 

12,1v  0.1510 0.0754 0.0061 0.3009 
12,2v  -0.0967 0.2279 -0.4928 0.3717 

13,1v
 

 

0.2358 0.0761 0.0860 0.3849 
13,2v

 

 

-0.0762 0.2350 -0.4971 0.3989 

14,1v  -0.0058 0.0743 -0.1514 0.1406 
14,2v  -0.0074 0.1795 -0.3583 0.3467 

15,1v  0.1950 0.0755 0.0480 0.3428 
15,2v  0.0884 0.2229 -0.3642 0.4810 

16,1v  0.0746 0.0739 -0.0681 0.2205 
16,2v  -0.0014 0.1822 -0.3671 0.3533 

17,1v  -0.0008 0.0783 -0.1526 0.1525 
17,2v  0.1313 0.2619 -0.3998 0.5649 

18,1v  0.2042 0.0769 0.0552 0.3562 
18,2v  -0.1026 0.2524 -0.5340 0.4198 

19,1v  -0.0826 0.0761 -0.2261 0.0709 
19,2v  0.0246 0.2145 -0.3929 0.4444 

20,1v  -0.0343 0.0760 -0.1831 0.1130 
20,2v  0.0784 0.2167 -0.3544 0.4799 

1,1u  -0.3724 0.0742 -0.5197 -0.2286 
1,2u  -0.0841 0.3087 -0.6265 0.5484 

2,1u  -0.2416 0.0756 -0.3910 -0.0972 
2,2u  -0.1145 0.2964 -0.6216 0.4926 

3,1u  -0.1603 0.0753 -0.3089 -0.0153 
3,2u  -0.0568 0.262 -0.5666 0.4727 

4,1u  0.5016 0.0647 0.3761 0.6277 
4,2u  0.0059 0.2222 -0.4318 0.4545 

5,1u  0.2756 0.0775 0.1229 0.4253 
5,2u  0.1241 0.3260 -0.5488 0.6650 

6,1u  0.2649 0.0727 0.1194 0.4043 
6,2u  0.0820 0.2619 -0.4638 0.5546 

7,1u  -0.1152 0.0827 -0.2744 0.0503 
7,2u  -0.1333 0.3656 -0.7430 0.6020 

8,1u  -0.4661 0.0776 -0.6135 -0.3118 
8,2u  0.2483 0.4262 -0.6113 0.7947 

9,1u  0.3135 0.0741 0.1712 0.4608 
9,2u  -0.0716 0.2805 -0.5972 0.4905 
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CAPÍTULO 2: A GENERAL BAYESIAN ESTIMATION METHOD OF LINEAR-

BILINEAR MODELS APPLIED TO PLANT BREEDING TRIALS WITH 

GENOTYPE × ENVIRONMENT INTERACTION 

Diego JARQUIN, Sergio PEREZ-ELIZALDE, and Jose CROSSA 

RESUMEN 

El análisis estadístico de tablas de doble entrada con interacción surge en diferentes campos de 

investigación. Este estudio propone la distribución von Mises-Fisher como a priori en el conjunto 

de matrices ortogonales en un modelo lineal-bilineal para el estudio e interpretación de la 

interacción de una tabla de doble entrada. Datos simulados y datos empíricos de un ensayo de 

fitomejoramiento fueron usados para ilustración; los datos empíricos consisten de un 

experimento de múltiples ambientes establecido en dos años consecutivos. Para los datos 

simulados, se utilizaron distribuciones a priori vagas pero propias, y para los datos reales de 

fitomejoramiento, las observaciones del primer año fueron usadas como información a priori 

para los parámetros del modelo en el análisis del segundo año. Regiones bivariadas de alta 

densidad a posterior (HPD) para los scores a posteriori son mostrados en los biplots y la 

significancia de los términos bilineales se determino mediante el factor de Bayes. Los resultados 

del experimento de fitomejoramiento muestran la utilidad de esta aproximación general 

bayesiana en ensayos de mejoramiento para la detección de grupos de genotipos y de ambientes 

que causan una interacción (genotipo x ambiente) significativa.  La metodología de la inferencia 

Bayesiana presentada es general y puede ser extendida a otros modelos lineales-bilineales fijando 

algunos parámetros igual a cero y relajando algunas restricciones del modelo.         

Palabras clave: Inferencia Bayesiana; Términos bilineales de la interacción; Tabla de doble 

entrada con interacción; von Mises-Fisher. 

 

Capítulo publicado como artículo científico en JABES doi: 10.1007/s13253-011-0063-9 (2011). 
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ABSTRAC 

Statistical analyses of two-way tables with interaction arise in many different fields of 

research. This study proposes the von Mises-Fisher distribution as a prior on the set of 

orthogonal matrices in a linear-bilinear model for studying and interpreting interaction in a two-

way table. Simulated and empirical plant breeding data were used for illustration; the empirical 

data consist of a multi-environment trial established in two consecutive years. For the simulated 

data, vague but proper prior distributions were used, and for the real plant breeding data, 

observations from the first year were used to elicit a prior for parameters of the model for data of 

the second year trial. Bivariate Highest Posterior Density (HPD) regions for the posterior scores 

are shown in the biplots and the significance of the bilinear terms was tested using the Bayes 

factor. Results of the plant breeding trials show the usefulness of this general Bayesian approach 

for breeding trials and for detecting groups of genotypes and environments that cause significant 

genotype × environment interaction. The present Bayes inference methodology is general and 

may be extended to other linear-bilinear models by fixing certain parameters equal to zero and 

relaxing some model constraints. 

 

Key words: Bayesian inference; Bilinear interaction terms, Two-way table with interaction; von-

Mises-Fisher.   

 

 

 

 

 

 

 



42 
 

1. INTRODUCTION 

Statistical analyses of two-way tables with interactions are performed in different areas of 

research, for example, in agriculture, plant breeding and genetics, medicine, and the social 

sciences. Models combining linear and bilinear terms have proved to be useful for analyzing 

two-factor studies with interaction, especially when the row and column factors do not have 

specific structures that might suggest contrasts between rows and columns or response functions 

(Cornelius and Seyedsadr, 1997). This is particularly important in plant breeding, where 

genotypes (rows) are evaluated in several environments (columns), and genotype × environment 

interactions (GE) usually complicate selection decisions for the next cycle of improvement.  

The usual two-way analysis of variance model is  

( )ij i j ij ijy         
    (1.1)

 

where  , i ,
j , and ( )ij  (for i=1,2,…,r; and j=1,2,…,c) are the grand mean, the effect of the 

ith row, the effect of the jth column, and the effect of the interaction of the ith row on the jth 

column, respectively. The residuals 
ijl are identically and independently distributed with 

2(0, / )e ijN n
 
(for simplicity in what follows, we assumed an equal number of observations n in 

each cell). Parsimonious modeling of the interaction can be considered by the singular value 

decomposition of ( )ij  and by retaining only the first few components. This gives rise to the 

usual linear (additive) bilinear (non-additive) two-way model originally introduced by Gollob 

(1968) and Mandel (1969, 1971) and extensively used in plant breeding trials for assessing 

adaptation and stability (Kempton 1984; Gauch 1988; Crossa Yang and Cornelius 2004; 

Cornelius, Crossa and Seyedsadr 1996). This is known as the Additive Main effect and 

Multiplicative Interaction Model (AMMI)     
 

   
1

t

ij i j k ik jk ij

k

y u v    


                    (1.2) 

where k  
is the singular value for the k principal component axis subject to 1 0t    ; iku

 
and 

jkv
 
are elements of the left and right singular vectors, respectively, with the side condition that
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2 2 1ik jki j
u v  

 
and, for k ≠ k  , 0ik ik jk jki j

        and ( ) 1t min r c   . In matrix 

notation, (2) can be expressed as  

                          r c c r         Y 1 1 α 1 β 1 UDV Ε+                                 (1.3) 

where [ ]ijyY = , i[ ]αα  , [ ]jβ  , diag( =1,2,..., )kλ ,k tD = , 1= ( ,..., )tU u u , = [ ]k ikuu ,
 

1= ( ,..., )tV v v , = [ ]k jkvv , and [ ]ijεΕ = . Note that from model (1.3) [or (1.2)] and allowing α    

andβ 0 , other linear-bilinear models can be obtained. For example, dropping i  in (1.2) and 

writing 
j j   

 
gives the column regression model that has proved to be very useful in plant 

breeding for assessing the stability of genotypes (rows) when tested under different 

environmental conditions (columns). Similarly, dropping 
j  in (1.2) and writing i i   

 

gives the row regression model, and dropping  , i  and 
j  

gives the complete multiplicative 

model.  

Commonly, the parameters in (1.3) are estimated by an iterative least squares (LS) 

method that first fits the linear terms while ignoring the bilinear terms, which are subsequently 

fitted as the first t components of the singular value decomposition of the residual matrix

ˆˆˆ
r c c r      Z Y 1 1 α 1 β 1= - , where  ̂,  ̂ and  ̂ are the LS estimates obtained in the first step 

(Gabriel 1978). Interestingly, Seyedsadr and Cornelius (1992) showed the LS estimates of the 

model 
1

t

ij k ik jk ij

k

y u v  


   , which was originally a problem unsolved by Gabriel (1978) (and 

named it the Shifted Multiplicative Model, SHMM). The main difficulties of the standard 

frequentist fixed or mixed linear-bilinear model (1.3) and other related models are: insufficient 

flexibility to handle heterogeneity of variances and unequal cell size; incorporation of previous 

information is not possible; only approximate tests for determining the number of components to 

be retained in the model are available; and inferential statistics to the interaction parameters k , 

iku , and jkv  not easily developed.  

Viele and Srinivasan (2000) were the first to propose Bayesian estimation of parameters 

for model (1.3) using MCMC techniques through Gibbs sampling with embedded Metropolis-
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Hastings random walks. The authors proposed spherical uniform prior distributions for the 

bilinear effects and used the posterior means as shrinkage estimates. Some practical and 

theoretical issues unresolved by Viele and Srinivasan (2000), such as whether the MCMC will 

always converge on the target posterior distribution, or whether the bilinear terms of model (1.3) 

can be estimated from the MCMC sample without violating model constraints, were investigated 

in the unpublished Ph.D. thesis of Liu ( 2001). Liu used the same prior distributions as Viele and 

Srinivasan (2000) to derive the posterior conditional distributions for model (1.3) parameters, 

such that a Gibbs sampler (without using embedded Metropolis-Hastings steps) for sampling 

from the joint posterior distribution could be used. Recently, Crossa et al. (2011) applied this 

approach to practical data resulting from plant breeding multi-environment trials and showed 

that inferential statistics can be incorporated naturally by adopting the Bayesian approach for 

estimating the GE interaction parameters including confidence regions in the biplot of the first 

two components of the bilinear terms. 

The spherical uniform distribution is a special case of the von Mises-Fisher distribution 

(Mardia, Kent, and Bibbi 1979) and was used as a prior by Viele and Srinivasan (2000) for 

estimating the interaction parameters of (1.3). The authors referred to the constraints on the 

vectors = [ ]k ikuu  and = [ ]k jkvv , which must have unit length and zero sum; in other words, 

= [ ]k ikuu  and = [ ]k jkvv  must be orthonormal and orthogonal to the 1 vector. However, the 

support of the joint posterior distribution of = [ ]k ikuu  and = [ ]k jkvv  is not trivial, and Viele and 

Srinivasan (2000) described a solution for sampling from it using the correct supports. 

Conceptually, this approach to sampling the conditional posterior distributions of ku
 
and kv , 

which are spherical distributions, while maintaining the constraints on the parameters, was 

performed within the vector framework, that is, sequentially for column vectors of   and  .  

However, there is a need to consider probability models for data from higher 

dimensionality that allow generalization of the vector approach to a matrix approach; 

specifically, a useful method would be to use a von Mises-Fisher distribution as a prior on the set 

of orthonormal matrices whose terms are the bilinear coefficients. Hoff (2009) showed how to 

sample from the von Mises-Fisher distribution on the multi-dimensional sphere considering the 

posterior distributions of orthonormal matrices that arise in the analysis of multivariate data. 
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In this paper we show how to adopt and use the multivariate von Mises-Fisher 

distribution as a prior on the set of orthonormal matrices that produce the singular value 

decomposition of interaction matrices as those suitable for model (1.3). In Section 2 we define 

the joint prior for unknowns in model (1.3) using the multivariate von Mises-Fisher distribution 

as a conditional prior for the bilinear effects, the conditional posterior distributions, the Gibbs 

sampling scheme to simulate MCMC samples from the joint posterior distribution, and the Bayes 

factor for testing the number of bilinear terms to be retained in the model. Section 3 shows the 

results and discussion of the application in the context of one simulated data set (five rows and 

three columns with interaction) and one plant breeding multi-environment multi-year trial 

comprising 12 genotypes and 25 environments evaluated in two consecutive years, where data 

from the first year are formally incorporated into the Bayesian inference process through the 

prior distribution when analyzing the new data from the second year. Bivariate confidence 

regions (HPD) were estimated for the first two components of the GE bilinear interaction 

parameters, and only those with HPD not covering the origin (0, 0) are shown in graphical form 

(biplot). Extension to other type of linear-bilinear models is discussed. Section 4 gives the 

conclusions. 

2. BAYESIAN INFERENCE FOR THE AMMI MODEL 

2.1 LIKELIHOOD FUNCTION  

The likelihood function for parameters of model (1.3) is  

 2L( ) exp tr( ) ( 1)tr( )
2

nrc

n nα β U V D Y EE SS


  
 

            
                                

(2.1)
 

where       ,  2

ijsS , 
2( )2

ij 11
s

ijlij
n Y

nl






Y

 
and r c c r          E Y 1 1 α 1 β 1 UDV

.
 

 

2.2 PRIOR DISTRIBUTION  

For assessing the prior distributions of the unknowns, we used conditional conjugate prior 

distributions such that the posterior distribution is proper and can be used to incorporate valuable 
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prior information from experimenters‟ expertise or from information generated by previous 

trials. Note that, since the matrices U and V are orthonormal and D is diagonal,  

2

1

tr( ) 0

tr(( ) ) 0

tr(( ) ) 0

tr(( )( ) ) tr( )

tr{( 2 )( ) } tr{( ) ( ) ( ) ( )}

r c

c

r

t

k

k




  

  

  

    

             



1 1 VDU

α 1 VDU

β 1 VDU

UDV UDV D D

Y UDV UDV D U YV D U YV U YV U YV

            (2.2)  
 

thus it can be shown from (1.3) that, given ( )  θ α β  and  , the conditional likelihood 

function for the matrices (U, D, V) is 

2

2

( , ) ( , ) exp{ tr(( 2 )( ) )}

etr{ ( 2 )( ) }

n

n

L L 



               

     

U V D θ Y U V D Y Y UDV UDV

Y UDV UDV

  

(2.3) 

where „etr‟ is the exponential of the trace. From (5) and (6), the conditional likelihoods for U , 

V  and D  are 

( , , ) etr{ }L n    U V D Y YVDU         (2.4) 

( , , ) etr{ }L n     V U D Y Y UDV         (2.5) 

2

2

1 22

1

( , , , ) etr{ ( ) ( )}

exp{ ( ) }, ... ,

n

t

n
k k t

k

L

l







   


      

     

D U V Y D U YV D U YV

     (2.6) 

respectively, where (       )      (U YV ).  

From expression (2.4) it follows that a conditional conjugate prior for U is  

0 0 0 0( ) etr{ }n    U Y V D U .       (2.7) 

where     could be interpreted as the matrix of prior cell averages such that   

0 0 0 0 0 0 0r c c rY 1 1 α 1 β 1 U D V          ; 
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that is, 0D  is a diagonal matrix of prior singular values, and 
0U

 
and 0V  are orthonormal 

matrices such that
 0 0 0

U D V  is the SVD decomposition of 0 0 0 0 0r c c r        Z Y 1 1 α 1 β 1 , 

where   ,    and    are prior values for the linear effects.  

Similarly, from (2.5), a prior for V  is  

0 0 0 0( ) etr{ }n     V Y U D V .                  (2.8) 

Both (2.7) and (2.8) are von Mises-Fisher distributions (see Appendix A). From (2.6) for each 

one of the elements 1 2 ... k      on the diagonal of D , the conditional conjugate prior 

distributions are left truncated normal with marginal densities of the form  

    
-1

0 0 1

0 1 0 1( ) 1 ( ) N | ( ) , 1,..., , 0k k k k k tn l l n k t       

       
           

(2.9) 

For the linear terms ( )  θ α β  of model (1.1), a conditional conjugate prior is a (     )-

multivariate normal distribution with mean 0 0 00 ( )  θ α β  and singular block diagonal 

covariance matrix 

(   )
  [

(    )
    

   
   r r

  

    
   c c

 

], 

where wK
 
is a matrix such that 1w w w

 K K I  and 1
w w w ww

  K K I J , where wJ  is an     

matrix with all its elements equal to one. Because of the restrictions 0r
 α 1  and 0c

 β 1 , the 

distribution characterized by the covariance matrix above is a singular multivariate normal 

distribution that does not have a density. For a prior density we need to choose a one to one 

transformation like * *( ) ( , )r c
  α β K α K β .  

Let * * *( )  θ α β ; then the prior density of *
θ  is 

 ( *
θ   )      

 
 

     * 
 

 
( *
θ  *

0θ )
   
  ( *

θ  *

0θ )+             (2.10) 



48 
 

   (   )
  [

(    )
    

   
       

    
      

] 

which is the density of a (         ) -multivariate normal distribution with mean 

* * *
00 0 0 0 0( ) ( , , )r c      θ α β K α K β

 
and covariance matrix   . 

The joint likelihood (2.1) suggests that a conjugate prior for   is a gamma distribution with 

parameters    , and    
   ; that is, 

     ( )   
 

 
      * 

   
 

 
 +              (2.11) 

or equivalently,    
     

 ; thus,   and   
  may be considered as prior values for sample size and 

variance, respectively. 

Finally, the joint prior for ( *
θ         ) is 

    ( *
θ         )   ( *

θ   ) (   ) (   ) (   ) ( )           (2.12) 

The proposed prior has practical advantages and is flexible enough to incorporate prior 

uncertainty about unknown parameters. On the other hand, the main disadvantage of the prior 

used by Liu (2001) and Crossa et al. (2011) for implementing their Bayesian approach was the 

elicitation of the distribution of each element on the matrices given by the SVD decomposition 

of the interaction. In our proposal, the incorporation of prior information is straightforward and 

intuitive, as it only needs to express our beliefs in the prior cell averages    and prior linear 

effects   . Then 
0U , 0V

 
and     are obtained from the SVD decomposition of   , under the 

restrictions 0 r
 U 1 0  and 0 .c

 V 1 0
 
The prior distribution of the linear effects is completely 

specified by giving a belief 
*

0θ  about 
*
θ . This prior belief may be expressed as a function of   ; 

for example,   
 (  )  (

0

0 0

r c

r c

1 Y 1  0

0

r c

c

K Y 1  0

0

c r

r

 K Y 1 ). Also, it is important to note that a vague prior for 

  implies diffuse priors for all the other parameters. Then, an objective or default Bayesian 

analysis could be performed by setting small values to the hyper-parameter a in the prior for   

given by (2.11). Therefore, we may summarize our prior information by giving, a priori, a 
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prediction of the two-way array of means    and a measure of our prior uncertainty   
  given a 

prior sample size  .  

 For the analysis of the simulated data set below, the priors used were vague but proper, 

whereas for the plant breeding data set, the prior hyper-parameters used were obtained from the 

first-year evaluation of the 12 genotypes in 25 environments, and the data set analyzed was from 

the second year of evaluation. This example illustrates how to use this approach within a 

practical breeding program and how to draw useful biological inferences on the interaction 

parameters.  

  

2.3 POSTERIOR DISTRIBUTION AND GIBBS SAMPLER 

The joint posterior distribution is obtained by combining the likelihood function (2.1) and 

the prior distribution (2.12), 

 ( *
θ         | )   ( *

θ         | )  ( *
θ         ) 

where  ( *
θ         | ) is a re-parameterization of  (θ         | ). The marginal posterior 

distribution, which involves high dimensional integration on complex spaces, is needed for 

marginal inference about the unknowns. In order to use a Markov Chain Monte Carlo (MCMC) 

method through the Gibbs sampler, the full conditional posterior distributions, which are known 

except for the proportionality constants, are needed. These distributions are computed by 

considering the joint posterior as a function only of a variable when fixing the others. Thus, the 

conditional posterior for    is 

 (            )   ( *
θ         | )  ( *

θ         ) 

Knowing that the conditional likelihood function of (     ) does not depend on   , and that 

given  , the prior for    is independent of (     ), then  

 (            )   (      )   (      ) ( *
θ | ) 

                                                                           ( *
θ         | ) ( *

θ | )   (         ) 
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                           exp{ tr( )}
2

n
 ZZ  ( *

θ | )  

where * *,r c
r c c r

 
       

α K α β K β
Z Y 1 1 α 1 β 1 . It can be shown that the conditional posterior 

of    is multivariate normal with density  (      )        ( 
    

    
 ), covariance matrix 

  
  (  

     
  )   and mean   

  (  
     

  )   (  
    

    
   ̂ 

 )  with  ̂ 
  

(
t
r c

rc

1 Y1  
t
r c

c

K Y1  
t t
c r

r

K Y 1 ) and 

   (  )
  [

(  )    

         

         

]. 

We may use the conditional likelihoods given by (2.4)-(2.6) to calculate the conditional 

posteriors for U , V  and D ; i.e., 

  0 0 0 0( , , ) ( , , ) ( ) etr ,L n nU V D Y U V D Y U Y V D YVD U                         (2.13) 

  0 0 0 0( , , ) ( , , ) ( ) etr ,L n n               V U D Y V U D Y V Y U D Y UD V            (2.14) 

2
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1

1 0 0 0 0
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tt

n
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k
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L l
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  (2.15)  

Finally, the conditional posterior for the precision   is a gamma with density 

 

where   

 2

0s + tr( ) ( 1)tr( )

n

n

a a nrc

b b n n

 

   EE SS
 

* *( , ) L( , ) ( )

Ga | , ,
2 2

n na b

    



        

 
  

 

θ U V D Y θ U V D Y
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2.3.1 Gibbs sampler 

The Gibbs Sampler is implemented by sequentially drawing simulated samples from the 

full conditional posterior distributions; thus we may proceed with the following algorithm: 

Let s be the desired length of the Markov chain to be simulated. Let (0)
U , (0)

V  and (0)
D  be the 

initial values of the simulated Markov chain. 

For i=0,…,s simulate 

 (   )  *( ) ( ) ( ) ( )( , )i i i i     θ U V D Y  

  (   )   (  | (   )  ) 

 (   )  ( 1)( )i  U   

 (   )  ( 1)( )i  D   

 (   )  ( 1)( )i  V   

After a burn-in period, we assume that the generated samples arise from the stationary 

distribution, i.e., the joint posterior distribution  ( *
θ         | ) . For reversibility of the 

Markov chain, we may permute the order of simulation, but in what follows we use the order 

indicated above. Some standard convergence diagnostic tools may be used to determine an 

effective sample size; in the examples below, criteria for convergence of simulated Markov 

chains from Raftery and Lewis (1995) and Gelman and Rubin (1992) were used.  

 

2.4 TESTING THE SIGNIFICANCE OF THE BILINEAR TERMS USING THE BAYES 

FACTOR  

Concerning the inference on the parameters of liner-bilinear models, a central question is  

how many linear components the model should retain. Several frequentist model selection 

approaches exist for linear-bilinear models of a two-way table without replicated data in each 

cell. Johnson and Graybill (1972) developed a hypothesis test for a model with one bilinear term 
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and Marasinghe (1985) and Schott (1986) proposed a sequential test for the bilinear terms 

beyond the first one. For two-way tables with replications in each cell, Gollob (1968) proposed 

using an approximate F statistics for the hypothesis H1: 0t 
 
versus H2: 0t  . However, this 

test is too liberal for practical use and Cornelius, Seyedsadr, and Crossa (1992), and Cornelius, 

Crossa, and Seyedsadr (1994) introduced a series of sequential F approximations that effectively 

control Type I error rates.  

Several approaches can be found in the literature for Bayesian model selection, being the 

most widely used the based on the Bayes factors.  Suppose a data sample (Y) coming from two 

competing models M0 and M1 according to probabilities p(Y|M0) and p(Y|M1), whose prior 

probabilities are such that p(M0) and p(M1)=1- p(M0), and their respective posterior probabilities 

are  p(M0 |Y) and p(M1| Y). The Bayes factor 01B , defined as the ratio of the posterior to prior 

odds,  is the weight of evidence in favor of model M1 provided by the data (Kass and Raftery, 

1995); that is, 

0 0 0
01

1 1 1

( ) ( ) ( | )
.

( ) ( ) ( | )

p M | p M p M
B = /

p M | p M p M

Y Y

Y Y
  

The conventional decision rule suggested by Jeffrerys (1961) is that M0 is selected if 10B >10 

otherwise, the model selected is M1. Note that this reduces to the posterior odds in favor of M0 

when M0 and M1 have equal prior probabilities, p(M0)=p(M1)=0.5 (representing the usual 

noninformative prior on two competitive models). Considering that            , it is 

sufficient to sequentially compare model M0 with 0k  and 1 0k  
 
against the alternative 

model M1 with 1 0k    [for k=1,2,…,t] in order to choose the model with highest posterior 

probability. By the above definition of Bayes factor, the interest lies in obtaining the marginal 

density of the data ( | )ip MY  for which Chib (1995) provided a method for computing this when 

the full conditionals of blocks of parameters are available in closed form. For a model where Y is 

the observed data and θ denotes the unknown parameter, Chib (1995) noted that by the Bayes‟s 

rule " Î Qθ  ( | ) = ( | , ) ( )/ ( | , )i i i ip M f M p | M p MY Y θ θ θ Y . Then, an estimate of log ( | )i p MY  

is  
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log ( | ) = log ( | , ) + log ( ) - log ( | , )i i i i p M  f M  p | M  p MY Y θ θ θ Y  

where ( | , )ip Mθ Y  is an estimate of the posterior distribution under the model iM  and θ is a 

value of θ  with high posterior density to assure accuracy. It should be clear that normalization 

constants need to be known or at least estimated for each model. Therefore, an approximation of 

01B  is given by 

0
01

1

( | )

( | )

p M
B

p M

Y

Y
  

For a detailed explanation of the algorithm and alternative approaches for computing Bayes 

factors, see Han and Carlin (2001). Since this algorithm works with the models one at a time, 

model indicators are dropped to simplify the notation. Note that in our problem 

* * * *( , , , , | ) = ( | , , , ,  ) ( | , , , ) ( |  , , ) ( | , ) ( | ) θ U V D Y D UV θ Y U V θ Y V θ Y θ Y Yp t p t p t p t p t p t  

Thus, an estimate of the joint posterior at the high density point ° ° °( , , , , )tθ U V D% %  is  

° ° ° ° ° ° ° ° °

° ° ° ° ° °

( , , , , | ) = ( | , , , ,  ) ( | ,  , , ) ( |  , , ) ( | , ) ( | )

                            = ( | , , ,  ) ( | , , ) ( | , ) ( | , ) ( | )

θ U V D Y D U V θ Y U V θ Y V θ Y θ Y Y

D U V Y U V Y V Y θ Y Y

p t p t p t p t p t p t

p t p t p t p t p t

$ $ $ $% % %% % % % % % % %

$ $ $% % % % % %
 

were 

° ° ° °

° °

( )

g=1

( ) ( )

g=1

( ) ( ) ( ) *( )

g=1

( | , , ) = ( | , , , ) /

( | , ) = ( | , , , ) /

( | ) = ( | , , , , ) /

G
g

G
g g

G
g g g g

G

G

G

U V Y U D V Y

V Y V D U Y

Y U D V θ Y

p t p t

p t p t

p t p t

å

å

å

$ % %

$ % %

$ % %

 

are Monte Carlo estimates of the conditional densities based on a Gibbs sample of size G. We do 

not need an estimate of *( | , )p tθ Y , since the full conditional does not depend on ( , , )U V D .  In 

this study the most difficult task is to estimate the normalization constant of the full conditionals 

of U and V, which are von Mises-Fisher distributions, because no closed form of the 
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normalization constant given by the hypergeometric function of a matrix argument (Herz, 1955; 

James, 1964); here we used the approximation given by Khatri and Mardia (1977) for either 

small or large eigenvalues of the matrix argument. A more accurate approximation was 

suggested by Koev and Edelman (2006). 

With the above approximation of the joint posterior, using the priors given in Section 2.2, 

and adjusting them by the model size, an estimate of the marginal log-density of Y conditional 

on Mi  is 

* * *

log ( | ) = log L( , , , , | , )+log ( , , , , | )-log ( , , , , | , ).i i i i p M M M MY θ U V D Y θ U V D θ U V D Y      

Note that by (2.1)-(2.3) and (2.12), the approximation may be written as 

* *

log ( | ) = log L( , | )+ log L( , , | , , )+ log ( | )+ log ( | , )

                         + log ( | , )+ log ( | , )+ log ( | )-log ( | , , , , )

                         -log ( | , , , )

i i i

i i i i

i

 p M M M

M M M M

M

Y θ Y U V D Y θ U

V D D U V Y

U V Y

     

       

 
*

-log ( | , , )-log ( | , )-log ( | , ).i iM MV Y θ Y Y     

  

In the equation above the terms involving 
*

θ  does not depend on Mi; therefore, when estimating 

the Bayes factor is not necessary to evaluate that terms since it will be canceled out. 

 

3. RESULTS AND DISCUSSION 

3.1 SIMULATED DATA 

To illustrate the implementation of our proposed model, we analyzed a simulated data set 

comprising five rows and three columns, each with an     sample size from a normal 

distribution with mean      ∑         
 
    (               ) and variance      . 

Thus the overall sample size is 60. The true values of the fixed linear effects are   

(               )  for the factor row and   (      )  for the factor column, while the 

bilinear terms are given by the SVD decomposition with components:  
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The interaction plot of the simulated data shows that the row effects are not equal for all 

levels of the factor column, with clear evidence of interaction between row and column effects 

(data not shown). The true biplot of the first (Component 1) and second (Component 2) principal 

components, i.e., the columns of    (   
   

      
), shows interaction effects between rows and 

columns (data not shown). 

We used     (         ),    (     ),    ,   
       as prior information, and 

samples of the posterior distribution were drawn with the Gibbs sampler described above. Two 

parallel chains of size          were simulated using a burn-in period of size 10000. Finally, 

a thinning period of 1 was used. Therefore, a final MCMC sample of size 5,000 was used to 

estimate the posterior distribution.  
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Table 1 gives a summary of the marginal posterior distribution for all the parameters in the model. The true 

values are always within their interval estimations. Moreover, relative to the estimated standard deviations, point 

estimations are close enough to the true values. Thus the proposed Bayesian approach to model interaction in a two-

way table gives reliable inferential answers about unknowns in the model. The second singular value is about 4 

times smaller than the first singular value, and also had smaller SD than the first one. The eigenvectors for 

                   and      are the only bilinear terms that do not include the null point (0, 0) for the bivariate 0.90 

HPD region and thus cause most of the significant interaction. Other posterior 0.90 HPD intervals for eigenvector 

elements such as      and      do not contain zero, but the 0.90 HPD region for their corresponding scores 

(     √       √  ) and (     √       √  ) covers the null point (0, 0).  
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Figure 1. Simulated data with five rows (1-5) and three columns (S1-S3): (a) plot of the row 

scores    
    and the bivariate 95% (gray external contour) and 90% (gray internal contour) 

HPD regions; (b) plot of the column scores        and the bivariate .95 (gray external contour) 

and .90 (gray internal contour) HPD regions. Only row 1 and columns S1, S2, and S3 that do not 

include the null point (0, 0) at the .90 HPD probability level are depicted; (c) dendrogram of the 

five rows using the first two left singular vectors; (d) dendrogram of the three columns using the 

first two right singular vectors. 
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The HPD regions of the row (column) scores that are statistically different from the null 

point (0, 0) can be seen in the biplot depicted in Figures 1(a) and (b). For example, Figure. 1(a) 

shows the plot of the row scores    
   , and the outer and inner shaded areas of the graph are 

the bivariate 0.95 and 0.90 HPD posterior regions, respectively, for the scores in row 1. For 

clarity, the 0.90 HPD and 0.95 HPD regions for the other row scores were not drawn because 

they contain the null point (0, 0), which is evidence that their contribution to the interaction was 

not statistically significant. Analogously, from Figure 1(b) it can be seen that the posterior 

densities for the scores of S1, S2 and S3 do not include the null point (0, 0) at either of the two 

probability levels; thus we can conclude that, given the data, there is enough evidence that the 

multiplicative column effect is significant at all its levels. Furthermore, since there is no 

overlapping of the interaction scores for columns at any of the 0.90 HPD and 0.95 HPD regions, 

we can conclude that among these regions there are different interaction effects that are 

statistically significant.  

As an additional descriptive tool, we performed a hierarchical cluster algorithm with a 

complete linkage strategy based on the Euclidean distances between the rows (and columns) of 

the matrix U (V); their dendrograms are presented in Figures 1(c) and (d), respectively. Row 1 is 

the farthest score from (0, 0) and significant for the interaction; it does not cluster with any of the 

other non-significant genotypes [Figure. 1(c)]. The three columns do not form any clear clusters 

[Figure. 1(d)]. 
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Figure 2. Plant breeding data of 12 genotypes in 25 environments. Histograms of the MCMC 

samples from the marginal posterior distributions of u12,2, u8,3, u5,4, u1,6, v5,1, v9,1, v23,1, v25,1, 

v23,2, v7,3, v11,3, v16,3, v24,4, v22,5 and σ. 

 

In the next section, we illustrate the results of our prior selection and MCMC sampling 

strategy to analyze the genotype × environment interaction in the context of a multi-environment 

and multi-year plant breeding trial with genotypes evaluated under different environmental 

conditions during two consecutive years. 
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3.2 PLANT BREEDING DATA  

 The multi-environment multi-year plant breeding trial analyzed in this section comprises 

12 maize hybrids evaluated for grain yield in 25 environments for two consecutive years. The 12 

hybrids were arranged in a randomized complete block design with two replicates in each 

environment and year. The effect of the design (i.e. complete or incomplete block) is easily 

incorporated into the model. 

 The first-year data were used to elicit the prior to analyze data from the second year. The 

posterior means of the 38 linear parameters (overall mean, 12 genotypic effects and 25 

environmental effects) are given in Table B.1 (Appendix B). The histograms of the posterior 

means of several bilinear interaction parameters depicted in Figure 2 show bell-shaped marginal 

posterior distributions on (-1,1). The histograms of the MCMC samples of the marginal 

posteriors of 1- 11 are also shown and, as expected, the posterior densities of the late lambdas 

move towards zero [Figure 3(a)]. The posterior densities of the cumulative proportion of 

variance explained by the eigenvalues show that five components explained about 90% of the 

interaction variance [Figure 3(b)].  

The Bayes factor computed for determining the number of ‟s  indicated that the model 

with three GE bilinear components is appropriate. Assuming that the prior odds is 1,  the Bayes 

factor in favor of model with two components (         ) when comparing against the 

alternative model with at least three components (    ) is 0.0022, whereas the value of the 

Bayes factor indicated that the model with three components (         ) is 104.15 times 

more probable than the model with at least four components (    ). These results of three 

significant bilinear components (    ) is in agreement with those usually  found in the 

analyses of plant breeding trials where the complexity of the GE requires more than one bilinear 

component to be retained in the model.  
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Figure 3. Plant breeding data of 12 genotypes in 25 environments: (a) Posterior densities and 

0.95 HPD regions of the singular values,          (C1-C11); (b) Posterior densities and 0.95 

HPD regions of the cumulative proportion of variance    
∑   

  
   

∑   
    (   )  

   

          (   )  

 . The x-axes show the posterior means of the components (C1-C11) (a) and the cumulative 

components (b). 

 

In general, the values of 
1

u
i  

and 
1

v
j

 were, in absolute terms, larger than the values of 

2
u
i  

and 
2

v
j

, whereas the standard deviations (SD) of 
1

u
i  

and 
1

v
j

 were smaller than those of 

2
u
i

and 
2

v
j

. Consequently, the lengths of the HPD regions were narrower for the first bilinear 

components of genotypes and environments (
1

u
i  

and 
1

v
j

) than for the second bilinear 

components, 
2

u
i

and 
2

v
j

(data not shown). In summary, there is more posterior uncertainty in 

the second bilinear components for genotypes and sites than in the first bilinear components. 

 

3.2.1 Credible Regions of the First Two Bilinear Terms of the Linear-Bilinear Model  

Given in Table 2 are the posterior means of the 11 singular values, together with the 

values of the eigenvectors of genotypes and environments whose 0.95 HPD for their 
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corresponding scores do not contain the null value. As the singular values decrease in size, their 

SDs also decrease. The scores of genotype 12 (     ) and the scores of environments S5, S9, 

S23, and S25 (                                ) significantly contributed to genotype × 

environment variability, as shown by the bivariate 0.90 HPD regions, whereas the other 

genotypes and environments did not significantly contribute to that variability. 

Posterior modes of the first and second components for the scores of environments and 

genotypes, with their associated HPD regions, indicate the scores that significantly contributed to 

the interaction between genotypes and environments (Figure 4). In this biplot, the bivariate 0.90 

HPD and 0.95 HPD regions are shown only for genotype 12 [Figure 4(a)] and environments S5, 

S9, S23, and S25 [Figure 4(b)]. These are the genotypes and environments that contributed 

significantly to the interaction, as their HPD regions did not include the null point (0, 0). 
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Some description of the joint response of genotypes and environments can be given; for 

example, environments S5 and S25 and genotype 12 are located far from the center on the upper 

right-hand side of Figures 4(a) and 4(b), whereas genotype 2 is the farthest point from the center 

of the figure on the lower left-hand side, and is negatively related to genotype 12 and to 

environments S5 and S25. This result indicated that genotype 12 has significant positive 

interaction with S5, and S25, whereas genotype 2 has negative interaction with those 

environments. Concerning relationships among environments, S9 and S23 are located in opposite 

directions of the biplot [Figure 4(b)] and can be considered as two very different environments in 
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terms of genotype × environment interaction. Furthermore, environments S5, S23, and S25 do 

not overlap with environment S9; therefore they are also significantly different from 

environment S9 in terms of genotype × environment interaction variability. Since environments 

S5 and S25 do overlap with each other, they form a homogeneous group of environments but 

different from S9. Environments S5 and S25 did show some degree of similarity with S9. 

 

Figure 4. Plant breeding data of 12 genotypes in 25 environments for the first two components: 

(a) plot of bivariate the row scores    
    and the bivariate 0.95 (gray external contour) and 

0.90 (gray internal contour) HPD regions; (b) plot of the bivariate column scores        and 

the bivariate 0.95 (gray external contour) and 0.90 (gray internal contour) HPD regions. Only 

genotype 12, and environments S5, S8, S9, S23, and S25 that do not include the null point (0, 

0) at the 0.90 HPD probability level are depicted; (c) dendrogram of the 12 genotypes using the 

first two singular vectors; (d) dendrogram of the 25 environments using the first two right 

singular vectors. 
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Since the degree of overlap between significant environments based on the 0.90 HPD and 

0.95 HPD regions differed and may not be clearly represented in the biplot, we performed a 

hierarchical cluster algorithm with a complete linkage strategy based on the posterior means of 

the Euclidean distance between the rows of the interaction matrices for genotypes and 

environments was performed; the dendrograms are presented in Figures 4(c) and (d), 

respectively. This complements what is depicted in Figures 4(a) and (b) very well. For example, 

genotype 12 forms a singleton opposite to the groups formed by the other genotypes [Figure 

4(c)].  

Concerning the environments, S5, S23, S25, and S9 are in opposite groups [Figure 4 (d)]. 

Furthermore, as already pointed out in the biplots of environments, environments S5, S23, and 

S25 formed a group in which each group member significantly contributes to genotype × 

environment variability; this group shows that S5 and S25 clustered earlier and S23 joined them 

later. Environments S5, S25 and S23 are different from environment S9. The overlapping of S5 

and S25 is much more pronounced than the overlapping of S23; thus they joined early in the 

cluster. This approach for identifying subsets of homogeneous genotypes and environments that 

cause significant genotype × environment interaction is analogous (but not the same) to that 

presented by Burgueño et al. (2008) using a frequentist inference on a linear-bilinear model that 

belongs to the family of linear-bilinear models employed in this study. 

Genotypes had longer HPD regions along the first and second bilinear terms than 

environments, indicating their large SD and great length of the HPD, which reflected the 

uncertainty of these estimates at both probability levels.  

 

3.2.2 Implications for Breeding Trials of Bayesian Inference of Linear-Bilinear 

Models  

The conditional posterior estimates of Bayesian linear-bilinear models for plant 

breeding data have the following advantages: (i) they provide a natural method for 

deriving confidence regions around the genotypic and environmental interaction 

parameters given by their scores, as represented in the biplot (and/or dendrogram); (ii) 

they facilitate the identification of genotypes and environments that cause significant 
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interaction and allow detecting groups of genotypes and environments with similar 

responses, (iii) they deal with unbalanced data (always present in plant breeding trials) in 

a natural manner; (iv) they can be used to efficiently incorporate information from 

historical plant breeding trials (prior) on environmental and genotypic means, or on 

dispersion parameters such as environmental, genotypic, or error variances; (v) they can 

be used naturally with unequal cell size; and (vi) they provide an efficient test for the 

significance of the number of GE bilinear component to be retained in the model.  

Linear-bilinear models such as AMMI offer a family of models, rather than a 

single model; the general Bayesian computational methodology developed in this study 

can be applied to other linear-bilinear models by fixing certain parameters equal to 0 and 

relaxing some model constraints. For example, for α=0, r c r      Y 1 1 β 1 UDV E+  

is the column (site) regression model (SREG); for β =0, r c c      Y 1 1 α 1 UDV E+  

is the row (genotype) regression model (GREG); and for α=β =0, r c   Y 1 1 UDV E+  

is the complete multiplicative model (COMM). As the frequentist mixed-effect linear-

bilinear model leads to a factor analytic structure of rows, columns and/or their 

interaction, the Bayesian paradigm of linear-bilinear models can be also represented in a 

factor analytic form. 

This new approach offers new opportunities for efficiently incorporating historical 

data on environments and genotypes that should be useful for breeder‟s objectives, as 

well as forming density regions around the estimated interaction parameters. 

Furthermore, with the methodology presented in this article, meta-analysis (hierarchical 

analysis) involving year or other factors can be analyzed naturally. Although the 

computer time needed to process large plant breeding trials can be substantially greater 

than that needed to fit frequentist fixed or mixed linear-bilinear models, the continuous 

increase in computer power will minimize this disadvantage of the Bayesian estimation 

of linear-bilinear models over time. The Bayesian inference methodology described here 

is available in R in the following web page of CIMMYT. 

 http://www.cimmyt.org/english/wps/biometrics/index.htm. 

 

http://www.cimmyt.org/english/wps/biometrics/index.htm
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4. CONCLUSIONS 

In this research, we applied Bayesian inference for linear-bilinear models by using the 

multivariate von Mises-Fisher distribution as a prior for interaction parameters. In contrast to 

previous approaches, this estimation is not performed on the orthonormal eigenvectors but rather 

on the orthonormal matrices 1= ( ,..., )tU u u  and 1= ( ,..., )tV v v , and is done based on an MCMC 

sample from their posterior distribution; this satisfies model constraints and offers statistical 

inferential tools such as confidence regions for interaction parameters. Two data sets were used, 

one containing simulated data and one real plant breeding data. Results of the plant breeding 

trials show the usefulness of this general Bayesian approach for breeding trials and for detecting 

groups of genotypes and environments that cause interaction. For similar-structures data, this 

method is promising in that confidence regions for the GE interaction terms may be derived, 

unbalanced data are handled well, and the number of components to be retained in the model can 

be assessed by the Bayes factor. The Bayesian inference methodology described here can be 

extended to other linear-bilinear models by fixing certain parameters equal to zero and relaxing 

some model constraints. 
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APPENDIX A: THE VON MISES-FISHER DISTRIBUTION 

The set of     orthonormal matrices is called the Stiefel manifold, which is denoted as 

    . A probability distribution on      , whose density has exponential form with linear and 

quadratic terms, is the matrix Bingham-von Mises-Fisher Distribution. The density function is 

given by 

 (       )  etr(         ) 

where A and B may be assumed symmetric and diagonal matrices, respectively. A random 

variable   with von Mises-Fisher distribution (Khatri and Mardia, 1977)  is denoted as   

   (         ). The normalization constant of the von Mises-Fisher density is given by 

the hypergeometric function of a matrix argument 0F1(
 

 
 ,
 

 
  
 ) where    is the diagonal matrix 

of singular values of C (Herz, 1955; James, 1964) .   
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APPENDIX B: RESULTS FROM PLANT BREEDING DATA 
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CAPÍTULO 3: META-ANALYSIS OF PLANT BREEDING TRIALS USING BAYESIAN 

HIERARCHICAL MODELS  

Diego Jarquín, Sergio Perez-Elizalde, José Crossa, and Ky Mathews 

RESUMEN 

En el fitomejoramiento, se establecen experimentos en múltiples ambientes y múltiples 

años para evaluar y predecir el desempeño de los genotipo bajo diferentes condiciones 

ambientales; y para cuantificar, estudiar e interpretar la interacción genotipo x ambiente (GE) de 

forma que los mejores genotipos sean seleccionados, recombinados y plantados en los años 

subsecuentes y en otros ambientes. Este tipo de datos se registran en tablas de doble entrada y los 

parámetros de interés para la inferencia estadística son los efectos bilineales de GE o una 

combinación de GE mas algún efecto lineal (genotipos o ambientes). Desde una perspectiva 

bayesiana la inferencia sobre los parámetros bilineales de la interacción se basa en la distribución 

posterior de las matrices ortonormales U y V que resultan de la descomposición en valores 

singulares  (SVD)       de la matriz de parámetros interacción GE. En este documento se 

propone un modelo jerárquico bayesiano para experimentos de fitomejoramiento provenientes de 

varios ambientes y años. Para U y V se considera la distribución matricial von-Mises Fisher 

(mVMF); para tales parámetros una a priori matemáticamente conveniente es una distribución 

conjugada condicional mVMF. Para los efectos lineales se utiliza la  estructura normal jerárquica  

y los parámetros de precisión se considera siguen una distribución gamma. Debido a la alta 

dimensión del espacio paramétrico la computación de la distribución posterior conjunta de los 

parámetros del modelo se realiza a través de MCMC. Un conjunto de datos de trigo de un 

experimento de múltiples ambientes para tres años consecutivos fue usado como ilustración, el 

conjunto de datos del primer año fue usado como información a priori. Los resultados muestran 

que el modelo propuesto permite la identificación de grupos de genotipos y ambientes que 

causan la interacción GE. 

Palabras clave: Interacción de doble entrada, modelo de efectos principales aditivos e interacción 

multiplicativa (AMMI).  

Capítulo en revisión para su publicación. 
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ABSTRACT 

In plant breeding, multienvironment trials in multiple years are established to evaluate 

and predict genotype performance under different environmental conditions, and to quantify, 

study, and interpret genotype  environment interaction (GE) such that the best genotypes are 

selected, recombined, and planted in subsequent years and other environments. This kind of data 

is accommodated in a two-way table and the parameters of inferential interest are the bilinear GE 

effects or a combination of GE plus some of the linear effects (genotypes or environments). 

From the Bayesian perspective, the inference over the bilinear interaction parameters is based on 

the posterior distribution of the orthonormal matrices U and V that result from the singular value 

decomposition (SVD)      of the GE interaction matrix of parameters. In this paper we propose 

a Bayesian hierarchical model for plant breeding trials data arising from several environments 

and years. For U and V the matrix von-Mises Fisher (mVMF) distribution is considered; for its 

parameters a mathematically convenient priors are conditional conjugate mVMF distributions. 

For the linear effects the usual normal hierarchical structure is utilized and priors for precisions 

are assumed to follow gamma distributions.  Due to the high dimensional parametric space the 

computation of the joint posterior distribution of the model parameters is made through MCMC. 

A wheat multi environment data set for three consecutive trials was used as illustration; the data 

set from the first year was used as prior information. This example depicts the main features of 

our proposed model for the analysis of GE interaction effects, namely the isolation of interaction 

effect from the inter trial variation. Also, the results show that the proposed model allows the 

identification of groups of genotypes and environments that cause GE interaction. 

Key words: Two way interaction, Additive Main Effect and Multiplicative Interaction 

(AMMI) model 
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INTRODUCTION 

Models combining linear (additive) and bilinear (multiplicative or non-additive) terms 

are useful for the analysis of two-way tables with interaction (Cornelius and Seyedsadr, 1997). 

This is particularly important in agriculture and plant breeding where genotypes are planted in 

environments (locations and years) and the genotype × environment interaction (GE) needs to be 

studied for selection decisions to be carried out in order to assemble the genotypes for the next 

cycle of a breeding program.  

The usual two-way analysis of variance model for r rows and c columns is  

( )ij i j ij ijy         
            (1)

 

where  , i ,
j , and ( )ij  (for i=1,2,…,r; and j=1,2,…,c,) are the grand mean, the effect of the 

ith row (genotypes), the effect of the jth column (environments) , and the effect of the interaction 

of the ith row on the jth column, respectively. The
ijl are identically and independently 

distributed with 2(0, / )e ijN n (for simplicity in what follows we supposed equal number of 

observations n in each cell). The linear terms (  , i , and
j ) of the linear-bilinear models are 

first fitted by ordinary least square and the bilinear term ( )ij  is fitted through the singular 

value decomposition (SVD) after fitting linear effects (Gabriel, 1978). This yields the usual 

linear-bilinear two-way model (Gollob,1968; Mandel, 1969, 1971) that is used in plant breeding 

trials for assessing adaptation and stability (Kempton, 1984; Gauch, 1988; Cornelius et al., 1996; 

Crossa et al., 2004) and it is named the Additive Main effect and Multiplicative Interaction 

(AMMI) model (Gauch, 1988)      

   
1

t

ij i j k ik jk ij

k

y u v    


                   (2) 

where, k is the singular value of SVD of  subject to 1 0t    ; iku and 
jkv are the left  and 

right  singular vectors, respectively with the constraints that 2 2 1ik jki j
u v   and, for k ≠ k  , 

0ik ik jk jki j
        and ( ) 1t min r c   .  

In matrix notation (2) can be expressed as  

                          r c c r     ' ' ' '
Y 1 1 α 1 β 1 UDV Ε+                                   (3) 
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where [ ]ijyY = , i[ ]αα  , [ ]jβ  , diag( =1,2,... )kλ ,k tD = , 1= ( ,..., )tU u u , = [ ]k ikuu

1= ( ,..., )tV v v , = [ ]k jkvv , and [ ]Ε ijε= . Linear-bilinear models such as that in (3) offers a family 

of models, for example, for α =0, r c r      Y 1 1 β 1 UDV E+  is the column regression 

model; for β =0, r c c      Y 1 1 α 1 UDV E+  is the row regression model; and for α =β =0, 

r c   Y 1 1 UDV E+  is the complete bilinear (multiplicative) model (COMM). In plant 

breeding terminology the genotypes denote the rows and the environments (site) the columns; 

therefore the column regression model is named the Site Regression (SREG) (Crossa and 

Cornelius, 1997), and the row regression model is referred to the Genotype Regression (GREG). 

When allowing α=0 (and/or β =0) this linear effect is absorbed in the bilinear decomposition 

'
UDV such that the main effects of row (or column) is estimated in combination with the GE 

effect.  

With the least square method the parameters in (3) are estimated by fitting first the linear terms 

ignoring the bilinear terms that are subsequently fitted as the first t components of the singular 

value decomposition of the residual matrix ˆˆˆ
r c c r      Z Y 1 1 α 1 β 1= -  where  ̂,  ̂ and  ̂ are 

the LS estimates obtained in the first step, (Gabriel, 1978).  

Viele and Srinivasan (2000) proposed Bayesian estimation of parameters for model (3) 

using a spherical uniform prior distributions for the bilinear effects and the posterior means as 

shrinkage estimates. The unpublished PhD thesis of G. Liu (Liu, 2001), used the same prior 

distributions as Viele and Srnivasan (2000), and derived the posterior full conditional 

distributions of unknowns in model (3) such that a Gibbs sampling of the joint posterior 

distribution could be used. The approach of Viele and Srinivasan (2000) for sampling the 

conditional posterior distributions was performed within the vector framework; that is, for the 

joint posterior distribution of the columns of ku
 
and kv  which are the columns of   and  ., 

respectively. Recently, Crossa et al. (2011) used this approach to analyze real data of plant 

breeding multi-environment trials; the authors showed that inferential statistics can be naturally 

incorporated by adopting the Bayesian approach, as well as estimation of the GE interaction 

parameters, joint credible regions for phenotypic and genotypic scores are easily obtained by 

using a MCMC sample from the joint posterior.  
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A generalization of the vector approach to a matrix approach for the Bayesian inference 

of model (3) was proposed by Perez-Elizalde et al. (2011) who used von Mises-Fisher 

distributions as priors for the orthonormal matrices   and  . To sample from the von Mises-

Fisher distribution onto the multi-dimensional sphere, the authors used the algorithm proposed 

by Hoff (2007) to generate samples from the posterior distributions of orthonormal matrices that 

arise in the analysis of multivariate data. 

 Meta-analysis is a useful tool for summarizing and integrating the findings of 

several research studies. As a method for combining information from several parallel data 

sources, meta-analysis is closely connected to Bayesian hierarchical modeling (Gelman 2004). 

The Bayesian approach gives further advantages over other approaches because it is possible to 

formally take into account data sets from previous experiments or from the researchers‟ 

expertise. Plant breeders often perform analysis of two-way tables with the aim of finding groups 

of genotypes and environments with GE interaction effect on a phenotypic trait. Usually breeders 

have historical records of the experimental data that can be incorporated in a meta-analysis 

involving several trials in different environments and years.  

In this chapter we extend the method of Perez-Elizalde et al. (2011) of the Bayesian 

analysis of model (3) (Bayesian AMMI) with the objective of developing this analysis in a 

hierarchical modeling framework. We explain the hierarchical Bayesian inference of model (3) 

to real plant breeding multi environment trial comprising 12 genotypes and 25 environments 

evaluated in two consecutive years; this data was also used by Perez-Elizalde et al., 2011 that 

fitted the Bayesian AMMI model.  As conditional conjugate priors for the orthonormal matrices 

produced by the singular value decomposition of the interaction matrices, the von Mises-Fisher 

distribution is used. Bivariate highest probability density regions (HPD) were estimated for the 

posterior distributions of the first two phenotypic and genotypic scores which are scaled bilinear 

interaction parameters. 
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THE HIERARCHICAL BAYESIAN AMMI MODEL 

The model proposed by Perez-Elizalde et al (2011) is an extension of the model proposed 

by Viele and Srinivasan (2000) and Crossa et al (2011). In Perez-Elizalde‟s Bayesian inference 

of model (3) a multivariate normal prior is assumed for the linear effects ( , , )θ α β , and the 

priors for the orthonormal matrices ( , )U V  are  matrix  von Mises-Fisher  (mVMF) distributions 

while the elements of the diagonal matrix   follow a truncated normal distribution. Hoff (2009) 

developed a method for sampling from the von Mises-Fisher distribution on the multi-

dimensional sphere. In this paper we use the model above to construct a hierarchical model.  

The hierarchical model we proposed has two levels, the first level corresponds to 

experimental data in each evaluation time (year) across the corresponding environments (i.e., 

each year corresponds to a population) while the second level is indexed by the parameters of the 

populations from where the observations came, i.e., this model considers each experiment as a 

realization of a super population model. 

 

THE FIRST LEVEL MODEL 

Suppose we have   periods (year)of evaluation , then for the m
th 

data set,        ,  

and following (3)  the model is 

                           m m r c m c m r m m m m      ' ' ' '
Y 1 1 α 1 β 1 U D V E                        (4) 

In this model the parameters remains as in the model (3) and are identified for each evaluation 

time (year) by the m suffix. Additionally, suppose that the parameters 
1{ , , , , , }h

m m m m m m m α β U D V  

which index the distributions of            ,        , form an exchangeable sequence 

whose underlying distribution is given below. 
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SECOND LEVEL MODEL 

For the linear terms  ( )m m m m  θ α β  in model (4), we assume a (1 + r + c) multivariate 

normal distribution with mean ( )  θ α β  and singular covariance matrix 

       [

(   )    

 ( )   r r
  

  ( )   c c
 

] 

where sK
 
is a matrix such that 1w w w

 K K I  and 1
w w w ww

  K K I J
 
and wJ  is an     matrix 

with all elements equal to one. Due to the restrictions 0r
 α 1  and 0c

 β 1  it is required a one 

to one transformation such as * *( ) ( , )m m r m c m
  α β K α K β . 

Let * * *( )m m m m  θ α β , then its prior density function is  

                            
     

1
* * * * * 1 *2

1
| exp

2
m m m m m m m m


 

       
 

θ θ θ θ θ                     (5) 

which corresponds to a multivariate normal distribution with mean *
θ  and block diagonal 

covariance matrix given by  

  
      [

(     )
    

 (  )
       

  (  )
      

]                                                           

where * * *( )θ α β    correspond to the prior vector of means of the main effects. 

  

As shown in Pérez-Elizalde et al (2011), given mθ  and m , the conditional likelihood function 

for the matrices ( , , )U D Vm m m  
is 

2

2

( , ) ( , ) exp{ tr(( 2 )( ) )}

etr{ ( 2 )( ) } (6)

m m

m m

n

m m m m m m m m m m m m m m m m m m

n

m m m m m m m

L L




            

   

' ' '

' ' '

U V D θ Y U V D Y Y U D V U D V

Y U D V U D V

            

 

where “etr” denote the exponential of the trace. Then, mathematically convenient conditional 

distributions for Um and Vm are of the form 

                      0 0 0( , , , ) etr( )m m m m m mn    U V D M M VDU
     (7) 
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and 

                                  0 0 0( , , , ) etr( )m m m m m mn     V U D M M UDV
    (8) 

which are mVMF distributions.   

For easy handling we consider for each one of the diagonal elements of mD , 

1 2 ...
m m mt

     , a conditional conjugate left truncated normal distributions with density given 

by  

         
1

1

0( , ) N | ( ) ,
0 ( 1)1 ( )

m mk m k k k ml l n
m k km

n l     


  
             (9) 

( 1)1,..., , 0
mtk t    . 

where 1 2, ,..., tl l l correspond to the diagonal elements of D. 

For the precision parameter m  the joint likelihood in (11) suggest a conjugate prior following a 

gamma distribution with parameters   ⁄ , and    
  ⁄ ; that is 

                                                       ( m )   

 

 
  

exp , 
   

 

 m -                                      (10) 

The general structure of the hierarchical model may be represented graphically as follows 

 

where for each period of evaluation we have    *                 +;  and the super-

population parameters are denoted by   *       +. 
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 LIKELIHOOD FUNCTION 

The likelihood function for parameters of model (3) is given by                    

   2

1
1

exp{ [ tr( ) ( 1)tr( )]}
2

n r cm m m
h

h
m

m m m m m m m m m m m mm
m

n n


 




       
' '

L θ U V D Y E E S S              (11) 

where 

       
 ,  

 2

m mijsS  ,  

2

2 1
( )

1

n

ijm ijlml
ijm

m

Y
s

n







 Y
 

m m m r c m c m r m m m      ' ' ' '
E Y 1 1 α 1 β 1 U D V . 

We used the functional form from (5-10) to define conditional conjugate priors for 

the first level model parameters. As will be shown (12-15), with this criterion we obtain 

priors distributions which are easily elicit able with information available to most plant 

breeders.     

 

THE PRIOR DISTRIBUTION 

In order to work with a hierarchical model we assign prior distributions to the super-

population parameters ( , , , , , ) α β D U V , for the linear terms 
* * *( )  θ α β  a conjugate prior 

density is 

                      
     

1
* * * * * * 1 * *2

0 0

1
| exp

2
p p p


 

       
 

θ θ θ θ θ                 (12) 

  
    [

   
      
      

] 

where *

0 0 0 0( )r c    θ K α K β . 

The priors for U and V are conjugate mVMF distributions with densities given by 

                      0 0 0 0 0 0 0 0( , , , ) etr( )    U V D M M V D U
               (13) 
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and 

                              0 0 0 0 0 0 0 0( , , , ) etr( )     V U D M M U D V
            (14) 

In the above priors we can introduce available prior information thorough their hyperparameters. 

For example, U0, D0 and V0 could be seen as the singular value decomposition of  

0 0 0 0 0r c c r     ' ' '
Z M 1 1 α 1 β 1  

such that 
01 02 0 0 0 0( , ,..., ) ( )tl l l diag '

U Y V , where 0M is the matrix of prior predicted cell means; 

0 , 0α  and 0β  are prior beliefs about the linear row and column effects.
 

For the elements of the diagonal matrix D of singular values we have as a conjugate 

priors left truncated normal distributions with density 

    
1

0 1

0 0 1

0
( ) N | ( ) , 1,..., , 0

0 11 ( )k k k tl k t
k kl      





    
 

    (15) 

In the equation above the hyperparameter 0

kl  is the prior mean and may be elicitated thorough 

the singular value decomposition already described.
 

 

THE POSTERIOR DISTRIBUTION 

The joint posterior distribution is obtained following the Bayes‟ rule as the product of the 

period of evaluation likelihoods in (11), the joint second level distribution given by (5, 7-10) and 

the joint prior obtained as the product of densities (12-15). That is, the joint posterior is given by 

      

* * * *

1

( , , ) ( , , | , , , ) ( , , , )
h

m m m m m m m m m m m

m

L    


     θ U V D Y θ U V D θ U D V θ U D V            (16) 

Evidently, the joint posterior (16) is high dimensional so a MCMC technique is necessary in 

order to obtain estimations of marginal posterior distributions and their summaries. In this case, 

due to conditional conjugate structure of the involved distributions, the Gibbs sampling is an 

appropriate strategy to sample from the posterior. As it is well known, the first step of the Gibbs 
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sampler algorithm is to determine the full conditionals. From (16), it is straightforward to derive 

the posterior conditionals which are in Appendix A.  

Sampling sequentially from these conditionals, after a large number of iterations, we 

obtain a sample from the joint posterior distribution which it may use to calculate posterior 

summaries i.e., means, standard deviations, and HPD intervals. 

 

THE GIBBS SAMPLER 

The Gibbs Sampling is implemented in two stages; the first stage consists of drawing 

samples from the joint-super population parameters through their full conditional posterior 

distributions, in the second stage the samples are obtained from the full conditional posterior 

distributions of the parameters in each trial data set.  

The Gibbs sampling scheme proceed in the following order. For the m
th

 period (m=1,…, h) and 

for a sample of size s, simulate from: 

*( 1)i
θ        .

*
θ | * 1 * 1 1

1

( )m p

h

m

  



   . * 1

1

m

h

m





  ̂ 
  * 1

p

 *

0θ /  * 1 * 1 1

1

( )m p

h

m

  



  / 

D
(   )

 ( , )m m D D   

U
(   )

 0( , , , )m m m U V M D  

V
(   )

 0( , , , )m m m V U M D  

After a sample from the conditional posteriors of the first stage parameters has been generated, a 

sample from the conditional of the second stage parameters must be simulated in the order 

indicated below 

m
(   )

 ( , , )
m mm ma b    E  

*( 1)i

m


θ        (

*

mθ | * 1 * 1 1( )a m

     ( * 1
a

  ̂ 
  * 1

m


*
θ )  * 1 * 1 1( )a m

    )  

mD
(   )

 ( , , , , )m m m m m D U V Y D   

mU
(   )

 0( , , , , , , )m m m m m m U V D Y M V D  

mV
(   )

 0( , , , , , , )m m m m m m V U D Y M U D  
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RESULTS AND DISCUSSION 

PLANT BREEDING DATA 

The multi-environment multi-year plant breeding trial data analyzed in this section 

comprises 20 wheat varieties evaluated in 12 environments for three consecutive years. The first-

year data were used to elicit the prior for the super population model. The posterior means of the 

33 linear parameters (overall mean, 20 genotypic effects and 12 environmental effects) and the 

0.95 HPD intervals corresponding to super population model and each period of evaluation 

(years) model are given in Table B1, Table B2 and Table B3  (Appendix B), respectively.  

   Given in Table 1, Table 2 and Table 3 for the super population parameters and for the 

individual year parameters are the means, standard deviation quartiles and 0.95 HPD intervals 

for λ1- λ2, some elements of the singular vectors of genotypes ( iku ) and the singular vector of 

environments (
jkv ) whose 0.95 HPD do not contain the null value. 

In general, for both cases (the super population model and the individual year model) the 

absolute values of ui1 and vj1 are larger than those values of ui2 and vj2, whereas the standard 

deviation values (SD) for ui1 and vj1 are smaller than the corresponding values for ui2 and vj2. 

Thus, there is more uncertainty in the second bilinear component for genotypes and 

environments than in the first component; these results are in agreement with those obtained by 

Perez-Elizalde et al (2011). 

 

CONFIDENCE REGIONS OF THE FIRST TWO BILINEAR TERMS 

 Hierarchical analysis 

The HPD regions of the genotype and environmental scores that have high probability of 

being different from the null point (0, 0) can be seen in Table 1 and in the biplot depicted in 

Figure 1a and Figure 3a. Figure 1a shows the plot of the genotype scores    
   , where the outer 

and inner shaded areas of the graph are the bivariate 0.95 and 0.90 HPD posterior regions 

respectively, for the scores of genotypes 1, 2, and 5. The scores                       and       

are those that do not include the null point (0, 0) for the bivariate 0.95 HPD region and thus 



86 
 

cause most of the significant interaction. Other posterior 0.95 HPD intervals for eigenvector      

and              and      elements might not contain zero, but the 0.95 bivariate HPD region for 

their corresponding scores (     √       √  )  or (     √       √  ) might cover the null point 

(0, 0).  

The 0.95 HPD regions for the other genotype scores were not drawn (and not shown in 

Table 1) because they contained the null point (0,0), which  evidence that their contribution to 

the interaction was not statistically significant. Since there is a clear overlapping of the GE 

interaction scores for genotypes 1 and 2 at the 0.90 HPD and 0.95 HPD regions, we may 

conclude that among these two genotypes there are not statistical different in the GE interaction 

effects. On the other hand, since there is no overlapping of the GE interaction scores for 

genotypes 5 versus genotypes 1 and 2 at any of the 0.90 HPD and 0.95 HPD, we may conclude 

that among these two groups of genotypes there are a different interaction effects that are 

statistically significant. 

Analogously, from Table 1 and Figure 3a it can be seen that the posterior density for 

scores of S6 and S11 do not include the null point (0, 0) at the 0.95 HPD thus there is enough 

posterior evidence that the multiplicative GE environment effect is significant at 0.95 probability 

level. By considering Figure 1a and Figure 3a simultaneously, the response of genotypes, 

environments, and the joint response of genotypes and environments can be extracted. Genotype 

5 formed a group by itself and genotypes 1 and 2 formed another distinct group which shows 

differential responses on environment S6. Since genotype 5 points in similar direction to S6 we 

conclude that they had a positive GE, whereas genotypes 1 and 2 points in opposite in direction 

to S6 indicating no GE or negative GE. 

A hierarchical cluster algorithm with a complete linkage strategy based on the posterior 

means of Euclidean posterior distances between rows of U and V was performed as an additional 

descriptive tool.  Their dendrograms are presented in Figure 2a and Figure 4a for genotypes and 

environments, respectively. Genotype 1, 2, and 5 are the farthest score from (0, 0) and significant 

for the GE interaction; genotype 5 is clustered in the first the main group of genotypes (Figure 

2a) while genotypes 3 and 12 are within the other main group. Concerning the clustering of the 



87 
 

environments, S11 does not clustered with any of the other non-significant environments (Figure 

4a).  

In summary, the hierarchical analysis found significant GE interaction patterns between 

genotypes and environments and it provides useful information for the joint response of 

genotypes and environments. This meta-analysis using the Bayesian hierarchical approach for 

identifying subsets of homogenous genotypes and environments that cause significant GE is 

useful to the breeders due to all the existing information (prior information and information from 

each period of evaluation) is included in the analysis of the super population parameters. By 

considering the individual analysis of each period of evaluation is possible to find significant 

effects that were not revealed by the meta-analysis, for this reason is important to consider the 

individual analysis too 

 

Individual year analyses - response of genotypes and environment  

From a plant breeding perspective asses the overall adaptation of genotypes to 

environmental conditions through several periods have the same importance than the evaluation 

of the specific adaptation in each period. As in the meta-analysis, when year 1 and year 2 are 

analyzed separately, it is possible to find genotypes and environments that contribute to the GE 

interaction too. For example, genotypes 1 and 2 and environments S2, S3, S5, S8 and S11 

showed significant interaction when years 1 and 2 are analyzed separately (Table 2 and Table 3, 

Figure 1b-c and Figure 3b-c); genotypes 1 and 2 and the environment S11 were also significant 

in the results obtained from the meta-analysis. On the other hand, the biplots from the different 

periods provides information of specific responses that do not show up to be significant in the 

meta-analysis, i.e., S2, S3, S5, and S8 in year 1 and S3 and S8 in year 2. 

In year 1, genotype {1} formed a single group with significant GE (Table 2 and Figure 

1b). Similarly, in year 1 the 0.90 and 0.95 HPD regions of the environments S2, S5 and S8 

overlap and form one group of environments with significant GE, while the environment S3 

forms a single group. A similar pattern was found in year 2 were the genotypes 1 and 2 are 

clustered in one main group {1, 2}, and the environments that were significantly different from 

zero are clustered in two groups: {S8, S11} and {S3} (Table 3 and Figure 3c).  
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CONCLUSIONS 

The results from the bayesian hierarchical analysis presented in this research is 

appropriate for dealing with differences between year effects because all the existing information 

(prior information and information from each period of evaluation) was included in the analysis; 

while the analysis proposed by Perez-Elizalde et al (2011) only consider the prior information for 

the analysis by separately of the others periods. The individual analysis in the proposed model 

use as prior information the super population parameters, this helps to stabilize the posterior 

distributions 

Due to the meta-analysis naturally incorporates the existing information from all periods 

(years) the corresponding posterior distributions has a pooled dispersion parameter that decreases 

as the number of periods increases; this gives more confidence in the final conclusions as 

compared with those results obtained in the individual analysis.  

In this research, the bayesian inference was proposed for the analysis of the linear-

bilinear models by considering the multivariate von Mises-Fisher distribution as prior 

distribution for the interaction parameters, as was proposed by Pérez-Elizalde et al (2011) who 

developed the bayesian analysis for the orthonormal matrices U and V through MCMC method. 

 

 Much has been discussed about the variation in the response over the years and some 

inconsistencies in the results are frequently found from one year to another. As was show, the 

inclusion of several data sources helps to overcoming this difference in the response due to 

natural variation, usually this difference is considered as year effect. The robustness arises on 

two principal reasons, first by considering the prior information, and second by the borrowing of 

information between periods through the super population parameters.  

 

This Bayesian hierarchical model is useful for breeders in the process of assessing and 

detecting genotypes and environments that cause interaction and it seems less sensible to change 

from one year to another. This method is easily extended to others linear-bilinear models just by 

relaxing some model constraints. 
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Table 1. Posterior summary (Mean), standard deviation (SD), quartile (q0.25, q0.50 and q0.75), 0.95 

HPD intervals computed with 20,000 approximately independent samples simulated from the 

joint posterior distribution for the singular values (λ1 and λ2) and the right and left singular vector 

elements of genotypes and environments, respectively, whose 0.95 HPD intervals do not contain 

the null value (0, 0). Data for grain yield measured in tons per hectare for the meta-analysis 

(years 1 and 2 combined).  

            0.95 HPD interval 

Parameter Mean SD q0.25 q0.5 q0.75 Lower Upper 

u1,1 0.46 0.12 0.38 0.47 0.54 0.22 0.69 

u2,1 0.33 0.13 0.25 0.34 0.42 0.07 0.58 

u5,1 -0.35 0.13 -0.44 -0.35 -0.26 -0.60 -0.10 

v6,1 -0.33 0.14 -0.43 -0.34 -0.24 -0.60 -0.04 

v8,1 0.31 0.14 0.21 0.31 0.41 0.03 0.58 

v11,1 0.55 0.12 0.48 0.56 0.64 0.30 0.79 

λ1 2.73 0.54 2.37 2.73 3.09 1.68 3.79 

λ2 1.23 0.51 0.86 1.22 1.58 0.23 2.20 
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Table 2. Posterior summary (Mean), standard deviation (SD), quartile (q0.25, q0.50 and q0.75), 0.95 

HPD intervals computed with 20,000 approximately independent samples simulated from the 

joint posterior distribution for the inverse of the residual variance ( ), the singular values (λ1 and 

λ11) and the right and left singular vector elements of genotypes and environments, respectively, 

whose 0.95 HPD intervals do not contain the null value (0, 0). Data for grain yield measured in 

tons per hectare for year 1.  

            0.95 HPD Interval 

Parameter      Mean          SD      q0.25    q0.50     q0.75                Lower     Upper 

τ 2.52 0.18 2.39 2.51 2.64 2.16 2.87 

u1,1 0.54 0.12 0.47 0.55 0.62 0.30 0.75 

u5,1 -0.27 0.14 -0.36 -0.27 -0.18 -0.54 0.00 

v2,1 0.32 0.14 0.23 0.33 0.42 0.05 0.59 

v3,1 -0.39 0.15 -0.49 -0.40 -0.30 -0.66 -0.09 

v5,1 0.36 0.15 0.28 0.38 0.47 0.07 0.64 

v8,1 0.38 0.13 0.30 0.39 0.47 0.13 0.63 

λ1 2.66 0.51 2.34 2.68 3.01 1.67 3.66 

λ2 1.01 0.54 0.58 0.98 1.39 0.00 1.95 
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Table 3. Posterior summary (Mean), standard deviation (SD), quartile (q0.25, q0.50 and q0.75), 0.95 

HPD intervals computed with 20,000 approximately independent samples simulated from the 

joint posterior distribution for the inverse of the residual variance ( ), the singular values (λ1 and 

λ11) and the right and left singular vector elements of genotypes and environments, respectively, 

whose 0.95 HPD intervals do not contain the null value (0, 0). Data for grain yield measured in 

tons per hectare for year 2.  

            0.95 HPD interval 

Parameter Mean SD q0.25 q0.5 q0.75 Lower Upper 

τ 2.29 0.16 2.17 2.28 2.39 1.97 2.61 

u1,1 0.36 0.13 0.28 0.37 0.45 0.11 0.61 

u2,1 0.32 0.15 0.23 0.33 0.42 0.02 0.60 

v3,1 -0.33 0.14 -0.43 -0.34 -0.24 -0.59 -0.04 

v6,1 -0.30 0.14 -0.39 -0.30 -0.21 -0.56 -0.02 

v8,1 0.38 0.14 0.29 0.39 0.47 0.11 0.64 

v11,1 0.44 0.13 0.36 0.45 0.53 0.18 0.69 

λ1 2.57 0.50 2.25 2.58 2.92 1.58 3.56 

λ2 0.95 0.54 0.53 0.91 1.32 0.00 1.91 
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    a 

 

 

b       c 

 

Figure 1. Plant breeding data of 20 genotypes in 12 environments; plot of the row (genotypes) 

scores U´D
1/2

 and the bivariate 95% (gray external contour) and 90% (gray internal contour) 

HPD regions (only the genotypes which do not include the null point (0, 0) at the 95% HPD 

probability are depicted) for: (a) meta-analysis, genotypes (1, 2 and 5) ; (b) analysis of year 1, 

genotype (1); (c) analysis of year 2, genotypes (1 and 2).  
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    a 

 

b     c 

 

Figure 2.  Plant breeding data of 20 genotypes in 12 environments; dendograms of 20 genotypes 

using the first two eigenvectors for: (a) meta-analysis; (b) analysis of year 1; (c) analysis of year 

2. 
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    a 

 

b       c 

 

Figure 3. Plant breeding data of 20 genotypes in 12 environments; plot of the column 

(genotypes) scores V´D
1/2

 and the bivariate 95% (gray external contour) and 90% (gray internal 

contour) HPD regions (only the environments which do not include the null point (0, 0) at the 

95% HPD probability are depicted) for: (a) meta-analysis, environments  (S6 and S11) ; (b) 

analysis of year 1, environments (S2, S3, S5 and S8); (c) analysis of year 2, environments (S3, 

S8 and S11).   
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    a 

 

b      c 

 

Figure 4.  Plant breeding data of 20 genotypes in 20 environments; dendograms of the 12 

environments using the first two eigenvectors for:  (a) meta-analysis; (b) analysis of year 1; (c) 

analysis of year 2. 
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APPENDIX A 

Full conditional posterior distributions 
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APPENDIX B 

Table B1. Posterior summary (Mean), standard deviation (SD), quartiles (q0.25, q0.50 and q0.75) and 0.95 

HPD intervals of the 5000 approximately independent samples simulated from the joint posterior 

distribution of the 33 linear effects for plant breeding data of  grain yield measured in tons per hectare for 

the meta-analysis. 

            0.95 HPD interval 

Parameter Mean SD q0.25 q0.5 q0.75 Lower Upper 

µ 5.00 0.04 4.98 5.00 5.03 4.93 5.08 

α1 -0.01 0.16 -0.12 -0.01 0.10 -0.32 0.29 

α2 -0.11 0.16 -0.21 -0.11 0.00 -0.41 0.20 

α3 -0.12 0.16 -0.22 -0.12 -0.01 -0.43 0.19 

α4 0.00 0.16 -0.11 0.00 0.10 -0.30 0.31 

α5 -0.08 0.16 -0.18 -0.07 0.03 -0.38 0.23 

α6 -0.31 0.16 -0.42 -0.31 -0.21 -0.62 -0.01 

α7 0.11 0.16 0.01 0.11 0.22 -0.19 0.41 

α8 0.21 0.16 0.10 0.21 0.31 -0.09 0.52 

α9 -0.05 0.16 -0.15 -0.05 0.06 -0.37 0.24 

α10 0.44 0.15 0.34 0.44 0.55 0.13 0.74 

α11 0.04 0.16 -0.06 0.04 0.15 -0.26 0.35 

α12 0.06 0.16 -0.04 0.06 0.17 -0.24 0.37 

α13 0.27 0.16 0.17 0.27 0.38 -0.03 0.59 

α14 -0.21 0.16 -0.31 -0.21 -0.10 -0.52 0.09 

α15 0.03 0.16 -0.07 0.03 0.14 -0.28 0.33 

α16 -0.23 0.16 -0.34 -0.23 -0.12 -0.54 0.07 

α17 -0.06 0.16 -0.16 -0.06 0.05 -0.37 0.24 
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(Table B1. continued) 

 

α18 -0.04 0.16 -0.15 -0.04 0.06 -0.34 0.27 

α19 -0.09 0.16 -0.20 -0.09 0.01 -0.39 0.22 

α20 0.13 0.16 0.02 0.13 0.23 -0.18 0.42 

β1 2.29 0.12 2.21 2.29 2.37 2.06 2.52 

β2 2.36 0.12 2.28 2.36 2.44 2.13 2.60 

β3 2.27 0.12 2.19 2.28 2.35 2.04 2.51 

β4 -0.87 0.12 -0.95 -0.87 -0.79 -1.11 -0.64 

β5 -0.51 0.12 -0.59 -0.51 -0.43 -0.75 -0.28 

β6 -0.78 0.12 -0.86 -0.78 -0.70 -1.01 -0.55 

β7 -0.80 0.12 -0.88 -0.80 -0.72 -1.04 -0.56 

β8 -0.16 0.12 -0.24 -0.16 -0.08 -0.39 0.08 

β9 -0.17 0.12 -0.25 -0.17 -0.09 -0.40 0.06 

β10 -1.16 0.12 -1.24 -1.16 -1.08 -1.39 -0.92 

β11 -0.99 0.12 -1.07 -0.99 -0.91 -1.22 -0.76 

β12 -1.49 0.12 -1.57 -1.49 -1.41 -1.72 -1.25 
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Table B2. Posterior summary (Mean), standard deviation (SD), quartiles (q0.25, q0.50 and q0.75) and 0.95 

HPD intervals of the 5000 approximately independent samples simulated from the joint posterior 

distribution of the 33 linear effects for plant breeding data of grain yield measured in tons per hectare  for 

the year 1. 

            0.95 HPD interval 

Parameter Mean SD q0.25 q0.5 q0.75 Lower Upper 

µ 4.97 0.03 4.96 4.97 4.99 4.92 5.03 

α1 0.02 0.11 -0.05 0.02 0.10 -0.20 0.25 

α2 -0.07 0.11 -0.15 -0.07 0.01 -0.30 0.15 

α3 -0.03 0.12 -0.11 -0.03 0.05 -0.26 0.19 

α4 -0.02 0.11 -0.10 -0.02 0.05 -0.25 0.20 

α5 -0.05 0.12 -0.12 -0.05 0.03 -0.27 0.18 

α6 -0.36 0.12 -0.44 -0.36 -0.28 -0.59 -0.14 

α7 0.07 0.11 0.00 0.07 0.15 -0.16 0.29 

α8 0.14 0.11 0.06 0.14 0.21 -0.09 0.36 

α9 -0.01 0.11 -0.08 -0.01 0.07 -0.23 0.22 

α10 0.50 0.11 0.42 0.49 0.57 0.27 0.72 

α11 -0.01 0.12 -0.09 -0.01 0.06 -0.24 0.21 

α12 0.10 0.12 0.03 0.10 0.18 -0.12 0.34 

α13 0.31 0.12 0.24 0.31 0.39 0.09 0.54 

α14 -0.19 0.11 -0.27 -0.19 -0.12 -0.41 0.03 

α15 0.00 0.11 -0.08 0.00 0.07 -0.22 0.23 

α16 -0.24 0.12 -0.31 -0.24 -0.16 -0.46 -0.01 

α17 -0.08 0.12 -0.16 -0.08 0.00 -0.31 0.14 
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(Table B2. continued)  

α18 0.03 0.12 -0.04 0.03 0.11 -0.19 0.26 

α19 -0.13 0.12 -0.21 -0.13 -0.05 -0.35 0.10 

α20 0.02 0.11 -0.06 0.02 0.10 -0.21 0.24 

β1 2.47 0.09 2.41 2.47 2.53 2.29 2.64 

β2 2.65 0.09 2.59 2.65 2.70 2.47 2.82 

β3 2.31 0.09 2.25 2.31 2.37 2.14 2.48 

β4 -0.98 0.09 -1.04 -0.98 -0.92 -1.15 -0.81 

β5 -0.45 0.09 -0.51 -0.45 -0.40 -0.63 -0.29 

β6 -0.94 0.09 -1.00 -0.94 -0.88 -1.11 -0.77 

β7 -0.36 0.09 -0.42 -0.36 -0.30 -0.54 -0.19 

β8 -0.09 0.09 -0.15 -0.09 -0.03 -0.26 0.08 

β9 -0.28 0.09 -0.34 -0.28 -0.22 -0.44 -0.10 

β10 -1.36 0.09 -1.42 -1.36 -1.30 -1.53 -1.19 

β11 -1.12 0.09 -1.18 -1.12 -1.06 -1.29 -0.95 

β12 -1.84 0.09 -1.90 -1.84 -1.79 -2.02 -1.67 
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Table B3. Posterior summary (Mean), standard deviation (SD), quartiles (q0.25, q0.50 and q0.75) and 0.95 

HPD intervals of the 5000 approximately independent samples simulated from the joint posterior 

distribution of the 33 linear effects for plant breeding data of grain yield measured in tons per hectare for 

the  year 2. 

            0.95 HPD interval 

Parameter Mean SD q0.25 q0.5 q0.75 Lower Upper 

µ 5.04 0.03 5.02 5.04 5.06 4.98 5.09 

α1 -0.05 0.12 -0.13 -0.05 0.03 -0.28 0.19 

α2 -0.15 0.12 -0.23 -0.15 -0.07 -0.39 0.08 

α3 -0.20 0.12 -0.28 -0.20 -0.12 -0.43 0.03 

α4 0.02 0.12 -0.06 0.02 0.10 -0.21 0.26 

α5 -0.11 0.12 -0.19 -0.11 -0.03 -0.34 0.13 

α6 -0.27 0.12 -0.35 -0.27 -0.19 -0.50 -0.03 

α7 0.16 0.12 0.08 0.16 0.24 -0.07 0.39 

α8 0.29 0.12 0.21 0.29 0.37 0.05 0.51 

α9 -0.09 0.12 -0.17 -0.09 -0.01 -0.33 0.14 

α10 0.38 0.12 0.30 0.38 0.46 0.15 0.62 

α11 0.11 0.12 0.03 0.11 0.19 -0.12 0.34 

α12 0.01 0.12 -0.07 0.01 0.09 -0.22 0.24 

α13 0.23 0.12 0.15 0.23 0.31 0.00 0.47 

α14 -0.22 0.12 -0.30 -0.22 -0.14 -0.46 0.01 

α15 0.07 0.12 -0.01 0.07 0.15 -0.16 0.31 

α16 -0.23 0.12 -0.31 -0.23 -0.15 -0.46 0.01 

α17 -0.02 0.12 -0.10 -0.02 0.06 -0.26 0.21 
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(Table B3. continued) 

 

α18 -0.13 0.12 -0.21 -0.13 -0.05 -0.36 0.10 

α19 -0.05 0.12 -0.13 -0.05 0.04 -0.28 0.19 

α20 0.25 0.12 0.17 0.25 0.33 0.02 0.49 

β1 2.09 0.09 2.03 2.09 2.15 1.91 2.26 

β2 2.06 0.09 2.00 2.06 2.12 1.89 2.24 

β3 2.23 0.09 2.17 2.23 2.29 2.05 2.40 

β4 -0.76 0.09 -0.82 -0.76 -0.70 -0.94 -0.57 

β5 -0.56 0.09 -0.62 -0.56 -0.50 -0.74 -0.38 

β6 -0.60 0.09 -0.66 -0.60 -0.54 -0.77 -0.42 

β7 -1.29 0.09 -1.35 -1.29 -1.23 -1.48 -1.11 

β8 -0.23 0.09 -0.29 -0.23 -0.17 -0.41 -0.06 

β9 -0.05 0.09 -0.12 -0.05 0.01 -0.24 0.12 

β10 -0.94 0.09 -1.00 -0.94 -0.88 -1.12 -0.76 

β11 -0.83 0.09 -0.90 -0.83 -0.77 -1.00 -0.66 

β12 -1.10 0.09 -1.16 -1.10 -1.04 -1.27 -0.91 
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CONCLUSIONES GENERALES 

 Para el estudio de la interacción, dentro del contexto del análisis de tablas de doble 

entrada, en este trabajo se planteó una modelación bayesiana de los modelos lineales – bilineales 

y se propuso como distribución a priori de los parámetros de interacción la distribución von 

Mises Fisher. El enfoque bayesiano permite realizar inferencia (construcción de regiones 

credibilidad y pruebas de hipótesis bayesianas) en los parámetros de la interacción y también 

ofrece la posibilidad de incorporar información disponible. En muchas de las áreas donde se 

lleva a cabo el estudio de este tipo de interacción generalmente existe información que puede 

aprovecharse para la obtención de conclusiones más precisas. Las fuentes de información pueden 

ser provenir del conocimiento del fenómeno por parte de un experto ó de una serie de registros 

de experimentos realizados con anterioridad. Los alcances y la aplicación de los modelos 

bayesianos propuestos en esta investigación dependen en gran medida del grado y la cantidad de 

información disponible. En los diferentes capítulos se desarrollo la teoría para el modelo AMMI 

el cual ofrece una familia de modelos a partir de relajar algunas restricciones. Los tres modelos 

fueron ejemplificados con datos de experimentos diseñados para llevar a cabo fitomejoramiento. 

El modelo del Capítulo 1 puede usarse cuando se dispone de poca o nula información acerca del 

fenómeno de interés. En el Capítulo 2, el modelo propuesto incorpora información de un 

experimento realizado con anterioridad mientras que el modelo del Capítulo 3 ofrece la 

posibilidad de analizar e incorporar información de una serie de experimentos. 
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