

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS

CAMPUS MONTECILLO POSTGRADO DE HIDROCIENCIAS

DESARROLLO DE UN ALGORITMO PARA CLASIFICACIÓN DE OBJETOS EN IMÁGENES RAPIDEYE.

SALVADOR ESPARZA GOVEA

TESIS

PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE:

MAESTRO EN CIENCIAS

Montecillo, Texcoco, Edo. De México.

2014

LA PRESENTE TESIS TITULADA: **DESARROLLO DE UN ALGORITMO PARA CLASIFICACIÓN DE OBJETOS EN IMÁGENES RAPIDEYE**; REALIZADA POR EL ALUMNO **SALVADOR ESPARZA GOVEA**, BAJO LA DIRECCIÓN DEL CONSEJO PARTICULAR INDICADO, HA SIDO APROBADA POR EL MISMO Y ACEPTADA COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE:

MAESTRO EN CIENCIAS

HIDROCIENCIAS

CONSEJO PARTICULAR

CONSEJERO	DR. MARIO R. MARTÍNEZ MENES.	
DIRECTOR DE TESIS	DR. FERMÍN PASCUAL RAMÍREZ.	
ASESOR	DR. JOSÉ LUIS OROPEZA MOTA	
ASESOR	DR. JORGE ARTÚRO SALGADO TRÁNSITO	

A la memoria del Dr. José Luis Oropeza Mota,

cuyas enseñanzas permanecen vivas en sus alumnos.

CONTENIDO

Índice	de F	-iguras	iii
Índice	de (Cuadros	v
Resur	nen.		vi
Abstra	ct		vii
1 IN	TRC	DDUCCIÓN	1
2 O	BJE ⁻	TIVOS E HIPÓTESIS	2
2.1	Oł	ojetivo general	2
2.2	Oł	ojetivos particulares	2
2.3	Hi	pótesis	2
3 M	ARC	O TEÓRICO	3
3.1	Se	ensores remotos y radiación electromagnética	3
3.	1.1	Firmas espectrales.	4
3.2	Fa	actores que afectan la medición de datos	5
3.3	CI	asificación de objetos terrestres.	6
3.4	Tij	pos de clasificadores	7
3.	4.1	Clasificación genérica	9
3.5	Es	specificaciones de las imágenes RapidEye	13
3.	5.1	Producto básico RapidEye (nivel 1b)	15
3.	5.2	Producto ortorectificado RapidEye (nivel 3a)	15
4 M	ето	DOLOGÍA	17
4.1	Im	agenes utilizadas para el desarrollo del algoritmo.	17
4.2	Сс	prrección atmosférica de las imágenes.	18
4.3	lde	entificación de clases dentro de las imágenes	19
4.4	CI	asificación de imágenes con fotointerpretación.	20
4.5	Us	so de librerías espectrales para la identificación de clases	20
4.6	Ca	aracterísticas espectrales de cada clase	22
4.	6.1	Características de la clase Agua.	22
4.	6.2	Características de la clase Suelo	24
4.	6.3	Características de la clase Asfalto	25

		4.6.	4	Características de las clases de vegetación	26
		4.6.	5	Características de la clase Nubes	31
		4.6.	6	Características de la clase Sombra	32
		4.6.	7	Características de la clase Nieve	32
5	I	RES	UL	TADOS Y DISCUSIÓN	34
	5.′	1	Cor	ndiciones que se deben cumplir para la correcta aplicación del algorit	mo
	de	cla	sific	ación	34
	5.2	2	Ger	neración de condiciones para la obtención de clases	35
		5.2.	1	Clasificación de objeto agua	35
		5.2.	2	Clasificación de objeto Suelo	36
		5.2.	3	Clasificación de objeto Asfalto	37
		5.2.	4	Clasificación de objeto Vegetación	38
		5.2.	5	Clasificación de objeto Nube.	40
		5.2.	6	Clasificación de objeto Sombra.	41
		5.2.	7	Clasificación de objeto Nieve	41
	5.3	3	Algo	pritmo de clasificación de objetos para imágenes RapidEye	42
	5.4	4	Apli	cación y precisión del algoritmo de clasificación	44
	5.5	5	Obs	ervaciones generales para la clasificación genérica	50
		5.5.	1	Ventajas	50
		5.5.	2	Desventajas	50
		5.5.	3	Mejoras que se le pueden hacer al algoritmo de clasificación	51
		5.5.	4	Posibles aplicaciones.	51
6	(CON	ICL	USIONES	53
7	RECOMENDACIONES			54	
8	3 REFERENCIAS		55		
9	ANEXOS			58	

ÍNDICE DE FIGURAS

Figura 1. Funcionamiento general de los sensores remotos	4
Figura 2. Firmas espectrales	5
Figura 3. Algoritmo de clasificación genérica, banda 3A	11
Figura 4. Algoritmo de clasificación genérica, banda 3B	11
Figura 5. Condiciones lógicas para la clasificación.	12
Figura 6. Algoritmo de clasificación genérica de objetos desarrollado por al. (2006)	[.] Palacios et 13
Figura 7. Firmas espectrales del objeto Agua Profunda	23
Figura 8. Firmas espectrales del objeto Agua Somera	24
Figura 9. Firmas espectrales del objeto Suelo.	25
Figura 10. Firmas espectrales del objeto Asfalto	26
Figura 11. Firmas espectrales del objeto Vegetación Alta.	27
Figura 12. Firmas espectrales del objeto Vegetación Media	28
Figura 13. Firmas espectrales del objeto Vegetación Baja.	29
Figura 14. Firmas espectrales del objeto Vegetación Oscura	30
Figura 15. Firmas espectrales del objeto Nube	31
Figura 16. Firmas espectrales del objeto Sombra	32
Figura 17. Firmas espectrales del objeto Nieve.	33
Figura 18. Condiciones para la clasificación del objeto Agua	36
Figura 19. Condiciones para la clasificación del objeto Suelo	36
Figura 20. Condiciones para la clasificación del objeto Asfalto	37
Figura 21. Condiciones para la clasificación del objeto Vegetación	39

Figura 22.	Condiciones para la clasificación del objeto Nube.	40
Figura 23.	Condiciones para la clasificación del objeto Sombra.	41
Figura 24.	Condiciones para la clasificación del objeto Nieve	42
Figura 25.	Algoritmo de clasificación de objetos.	43
Figura 26.	Composición de imagen en color real, Koblenz, Alemania.	45
Figura 27.	Resultado de la clasificación genérica. Koblenz, Alemania	45
Figura 28.	Composición de imagen en color real. Morelos, México	46
Figura 29.	Resultado de la clasificación genérica. Morelos, México.	46

ÍNDICE DE CUADROS

Cuadro 1. Clasificadores más comunes9
Cuadro 2. Clases temáticas propuestas por Palacios et al. (2006) 12
Cuadro 3. Principales características de los satélites RapidEye14
Cuadro 4. Detalle de las Bandas espectrales del Sensor RapidEye 14
Cuadro 5. Imágenes utilizadas para la construcción del algoritmo 17
Cuadro 6. Clases consideradas dentro de la clasificación
Cuadro 7. Bibliotecas espectrales utilizadas
Cuadro 8. Matriz de error de la clasificación genérica. Koblenz, Alemania 47
Cuadro 9. Matriz de error de la clasificación genérica. Morelos, México 47
Cuadro 10. Errores en el algoritmo considerados tolerables
Cuadro 11. Precisión individual de cada clase

DESARROLLO DE UN ALGORITMO PARA CLASIFICACIÓN DE OBJETOS EN IMÁGENES RAPIDEYE.

Esparza-Govea S.¹

RESUMEN

El uso de imágenes de satélite para determinar y mapear el uso actual del suelo mediante la clasificación de objetos terrestres se ha vuelto una herramienta muy importante en los estudios de recursos naturales en los últimos años, por lo que es necesario tener certeza de la correspondencia entre los datos obtenidos a partir de una imagen de satélite y los datos observados en campo.

En el presente trabajo, se desarrolló un algoritmo de clasificación genérica de objetos terrestres a partir de 17 imágenes de los diferentes satélites RapidEye con coberturas distribuidas alrededor del mundo y tomadas en diferentes fechas entre abril del 2009 y junio de 2011.

Se generaron convoluciones de las firmas espectrales de varios objetos de interés a partir de diferentes bibliotecas espectrales para hacerlas comparables con las obtenidas en las clases presentes en las imágenes analizadas. Posteriormente, se propusieron condiciones basadas en operaciones booleanas para discriminar entre 11 de los principales objetos presentes en la superficie terrestre y se generó un algoritmo con una precisión del 87.9% respecto a otra clasificación de tipo supervisada con sitios de entrenamiento basados en fotointerpretación.

Finalmente, se concluyó que la metodología aplicada en este trabajo fue adecuada, ya que se obtuvieron resultados satisfactorios dados los objetivos del mismo.

Palabras clave: Sensores remotos, Clasificación genérica, Algoritmo de clasificación, Imágenes RapidEye.

¹ Estudiante de la Maestría en Ciencias en Hidrociencias.

DEVELOPMENT OF AN ALGORITHM FOR OBJECT CLASSIFICATION IN RAPIDEYE IMAGERY.

ABSTRACT

The use of satellite imagery for determining and mapping current land use through terrestrial objects classification has become a very important tool in natural resource's studies in the last years; thus, is necessary to have certainty of the reciprocation between data obtained from a satellite's image and field data.

In this dissertation, it was developed an algorithm of generic terrestrial object classification starting from 17 images of the different RapidEye satellite with distributing coverage all over the world and different acquisition dates between April 2009 and June 2011.

Convolutions of spectral signatures were generated for several objects of interest starting from different spectral libraries in order to make them comparable with those obtained in present classes in the analyzed images. After that, conditions based on Boolean operations were proposed for discriminate between 11 of the main objects in earth's surface and an algorithm with an accuracy of 87.9% compared to a supervised classification that uses training sites based on photointerpretation was created.

Finally, the conclusion is that the applied methodology in this dissertation was accurate, since satisfactory results were obtained.

Keywords: Remote sensing, generic classification, classification algorithm, RapidEye imagery.

1 INTRODUCCIÓN

Uno de los obstáculos más grandes que se presentan al momento de hacer una clasificación de objetos terrestres a partir de una imagen satelital, es la falta de información en campo; adicionalmente, los métodos de clasificación tradicionales implican intervención humana en casi todos los pasos del proceso, lo que representa una desventaja al manejar un gran volumen de imágenes.

La automatización de la clasificación de objetos en imágenes ha sido reportado en este tipo de trabajos por Richardson y Wiegand (1977), Palacios *et al.* (2006) y Pascual *et al.* (2009) han desarrollado algoritmos de clasificación genérica de objetos para imágenes de los sensores MSS, ETM+ y AVHRR respectivamente.

Este tipo de trabajos no requiere de información validada en campo ya que se basan en la identificación de patrones de reflectancia tanto relativos (entre bandas) como absolutos (para cada banda).

En el presente trabajo se desarrolló de un algoritmo de clasificación genérica de objetos terrestres basado en reflectancias de las imágenes RapidEye. Este trabajo puede servir como base para la realización de clasificaciones de usos de suelo en grandes volúmenes de imágenes debido a la generalización de las clases que es capaz de discriminar.

La clasificación genérica de objetos presentes en las imágenes RapidEye tiene muchos obstáculos, ya que la ausencia de bandas que registran radiación infrarroja media e infrarroja térmica limita la fracción del espectro electromagnético captada por el sensor; representando una disminución en la cantidad de datos disponibles.

Las aplicaciones que este tipo de trabajos puede tener son muy diversas debido a la cantidad de estudios que requieren el mapeo del uso de suelo en periodos cortos de tiempo. Esto sugiere que este tipo de trabajos pueden ser de gran utilidad, sobre todo si se implementan en otros tipos de imágenes de satélite.

2 OBJETIVOS E HIPÓTESIS

2.1 Objetivo general.

Desarrollar y probar un algoritmo de clasificación genérica de objetos terrestres para imágenes de los satélites RapidEye.

2.2 Objetivos particulares.

- Conocer las principales diferencias entre las firmas espectrales que permitan diferenciar entre cada clase de objeto dentro de las imágenes de satélite.
- Diseñar un algoritmo de clasificación de objetos para imágenes RapidEye.
- Probar el algoritmo de clasificación para evaluar sus ventajas y desventajas respecto a otros clasificadores.

2.3 Hipótesis

Las bandas espectrales del sensor RapidEye permiten discriminar la mayor parte de los objetos terrestres presentes en una imagen, lo que facilita la creación de algoritmos de clasificación genérica.

Postgrado de Hidrociencias

3 MARCO TEÓRICO

En este apartado se presentan los aspectos generales que es conveniente tener en cuenta para la clasificación de objetos en imágenes de satélite. Primero, se mencionan aspectos relacionados a la radiación electromagnética y su relación con la adquisición de datos en la superficie terrestre, además de la clasificación tradicional de objetos; posteriormente, se reportan algunos trabajos previos relacionados a la clasificación genérica de objetos; y finalmente, se señalan algunas características de las imágenes RapidEye que se tomaron en cuenta para el desarrollo del presente trabajo.

3.1 Sensores remotos y radiación electromagnética.

Los sensores remotos son instrumentos que sirven para captar información desde una fuente importante de datos a distancia, ya que mucha de la información que se necesita en cualquier ciencia relacionada a los recursos naturales no está mapeada todavía. El uso de sensores remotos tiene un amplio campo de aplicaciones en lo que se refiere a la adquisición de los datos sobre un objeto sin estar en contacto físico con este, incluyendo el uso de fotografías, videograbaciones, y otros sistemas de imágenes. La mayoría de la información obtenida a partir de los sensores remotos viene del uso de aviones y satélites (Jhonston, 1998) (Figura 1).

Todo objeto terrestre emite energía electromagnética, y a la fracción reflejada en comparación con toda la energía que un objeto recibe se le conoce como reflectividad, misma que cambia dependiendo de la longitud de onda. (Palacios *et al., 2006*).

Johnston (1998), menciona que todos los sensores remotos detectan algún tipo de energía electromagnética, la cual incluye luz visible, rayos x, rayos ultravioleta, etc. y esta energía es principalmente un reflejo de la luz emitida por el sol como fuente primaria de la radiación electromagnética (Figura 1). La mayoría de los sensores detectan al menos una porción de las longitudes de onda visible, infrarroja y microondas.

Postgrado de Hidrociencias

Figura 1. Funcionamiento general de los sensores remotos

Por lo anterior, es importante conocer el comportamiento de esta energía detectada por los diferentes sensores, y esto se observa mediante la firma espectral de cada objeto.

3.1.1 Firmas espectrales.

Ranganath *et al.* (2007) conceptualizó las firmas espectrales como una serie de características observables, que directa o indirectamente conduzcan a la identificación de un objeto, además de sus condiciones. Bajo esta descripción podría decirse que ésta es la base de la clasificación de los objetos sobre la superficie terrestre mediante la energía que transmiten, por lo que se hace necesario una definición más clara a modo que el concepto pueda utilizarse como medio de clasificación. Para ello, Palacios *et al.* (2006) denomina a esta característica de los objetos terrestres como "La distribución de la reflectividad como función de la longitud de onda" (Figura 2).

Figura 2. Firmas espectrales

3.2 Factores que afectan la medición de datos.

Existen múltiples factores que afectan directamente los datos tomados por los sensores; por ejemplo, las características de cada tipo de vegetación, ya que la actividad fotosintética influye en la energía infrarroja que se emite (Paz, 2005) y que tiene que ver con la estructura interna de las células y de la propia clorofila (Paz, 2007).

El contenido de humedad en las plantas es otro factor determinante, ya que está directamente relacionada con la actividad fotosintética. Esta característica es particularmente problemática, ya que la humedad en la vegetación varía a lo largo del día, y a lo largo del año, dependiendo de la temporalidad de la precipitación y de las condiciones atmosféricas presentes en el sitio.

El agua también tiene un efecto sobre la reflectancia en el suelo, de manera general disminuyendo la cantidad de energía emitida, aunque conserva el mismo patrón (Lobell y Asner, 2002).

Existen diversos factores que intervienen con la cantidad de energía electromagnética emitida por el suelo, una de las más analizadas es la textura, ya

que el tamaño de las partículas incide directamente sobre la cantidad de luz que es absorbida por el suelo, dependiendo de la porosidad (Stoner y Baumgardner, 1981).

Uno de los factores determinantes en la toma de datos es el efecto de la geometría de iluminación-visión del sensor (BRDF²), ya que la cantidad de luz captada es directamente afectada por la relación entre el ángulo con que la luz incide sobre el objeto y el ángulo con que el sensor la capta, por lo que las imágenes satelitales requieren esta corrección para un correcto procesamiento de los datos (Bolaños *et al.*, 2007).

La identificación de objetos en áreas urbanas resulta particularmente complejo, ya que existen una gran cantidad de objetos que van desde concreto, asfalto, vegetación, suelo etc.

Para hacer una correcta distinción de cada objeto se requiere además de imágenes con alta resolución debido al tamaño de los objetos que se desean analizar, conocer el comportamiento espectral de cada objeto en particular.

Una vez considerados los aspectos anteriores, y bajo el supuesto que hace Wharton (1989) de que los objetos de interés pueden ser discriminados de manera sistemática a través de sus firmas espectrales, es posible proceder a la elección de un método de clasificación.

3.3 Clasificación de objetos terrestres.

El desarrollo de mapas como consecuencia de la clasificación de imágenes de satélite es quizás el aspecto más importante del proceso de imágenes dentro de un SIG. Tradicionalmente, la clasificación era llevada a cabo de manera visual por fotointerpretación y delimitación manual de áreas, y, con el desarrollo de las computadoras e imágenes digitales, se le ha dado una mayor importancia la clasificación digital (Eastman, 2009).

² Bidirectional Reflectance Distribution Function.

Uno de los principales objetivos dentro del análisis de imágenes de satélite es la segmentación de una imagen en un número determinado de clases, donde cada pixel dentro de esta pertenece a una clase en particular. Muchos de los clasificadores que existen actualmente están basados en el análisis de las firmas espectrales de cada objeto en particular, algunos están incorporados a paquetes computacionales comerciales.

Existen diferentes métodos y algoritmos de clasificación de objetos terrestres dentro de las imágenes de satélite, y entre los más comunes destacan los que se basan en información individual por pixel, llamada "reconocimiento espectral de patrones" (Ayala y Menenti, 2001).

3.4 Tipos de clasificadores.

Eastman (2009), hace referencia a los tipos de clasificadores, diferenciándolas entre otras maneras en duros y blandos. En los primeros se refiere a que hay una regla de decisión estricta para saber si un pixel específico pertenece a una clase en particular, por otro lado, los clasificadores "blandos" expresan el grado en el que cada pixel pertenece a cada una de las clases. Uno de los motivos para el uso de clasificadores suaves es para determinar la mezcla de clases presente. Este análisis se le llama clasificación a nivel de sub-pixel.

El uso de estos tipos de clasificadores está relacionado con los objetivos que se pretenden alcanzar y los más comunes que se han reportado en la literatura se presentan en el Cuadro 1.

Otra diferenciación entre los clasificadores reside en el número de bandas que cada uno utiliza, dividiéndolos en Multi-espectrales e Hiper-espectrales. La mayoría de los sensores utilizados son conocidos como multi-espectrales, definidos por un número reducido de bandas, tales como los sensores Thematic Mapper (TM), que consta de 7 bandas. Los sensores hiper-espectrales no son muy diferentes, ya que al igual que los multi-espectrales, procesan diferentes longitudes de onda en cada banda, pero cuentan con un número elevado de estas, por ejemplo, el sensor AVIRIS tiene 224 bandas en un rango de longitud de ondas similar al sensor TM.

Se podría pensar que entre más bandas tiene un sensor, puede llevar a cabo una mejor clasificación, sin embargo, no es necesariamente cierto, ya que muchas veces la cantidad de información que provee un sensor de este tipo no es costeable procesarla, debido a que representa un incremento en el nivel de sofisticación del algoritmo utilizado.

Cortijo *et al.* (1997) realizó una comparación de diferentes clasificadores de objetos, simulando conjuntos de datos, y encontró que (en la época en que se hizo el estudio) el mejor clasificador era el denominado RDA³ al hacer un balance entre la precisión del método y el esfuerzo que cuesta su implementación.

Las dos metodologías más comúnmente utilizadas dentro de la clasificación de objetos por reconocimiento espectral de patrones son: la clasificación supervisada, y la clasificación no supervisada.

Con una clasificación supervisada, se provee una descripción estadística del modo en que se espera que el uso del suelo debería aparecer la imagen, y a partir de esto se procede a realizar la clasificación con la evaluación de la verosimilitud de cada pixel en la imagen para agruparse en alguna de las clases (Eastman, 2009).

En una clasificación no supervisada se utilizan diferentes enfoques, como descubrir patrones de reflectancia que comúnmente están presentes en la imagen, en el supuesto de que éstos representan clases de cubierta vegetal más importantes. Luego, el analista determina la identidad de cada una de ellas por una combinación de experiencia y realidad del terreno.

Chuvieco (1990), explica que el proceso de agrupación en esta clasificación consiste en formar "colecciones de pixeles", de tal manera que cada uno de los pixeles en una imagen sea asignado a algún grupo.

Estos métodos se han utilizado tradicionalmente para la clasificación de objetos sobre la superficie terrestre. Sin embargo, para el propósito de este trabajo que se

³ Regularized Discriminant Analysis

centra en la clasificación genérica, es necesario conocer algunos de sus antecedentes.

Cuadro 1. Clasificadores más comunes.

Tipo de Clasificador	Ejemplos
Duros	Classification tree
	Radial Basis Funtion Neural Network
	Fuzzy ArtMap
	Kohonen's Self Organization Map
	Multi-layer perception classifier
	Chain Cluster
	Maximum Set Basic Probability
	K means
	Iterative Self Organizing Data Analysis
	Iterative Self Organizing Cluster Analysis
	Clusters
	Segmentation classifications
	Linear Discriminant Analysis
	Maximum likelihood classification
	Minimum distance
	Parallepiped classification
Blandos	Maximum Support Classification
	Dempster-Shafer
	Mixture Class Basic Probability
	Supervised Hiperespectral Classification
	Orthogonal Subspace Projection
	Unsupervised hiperespectral cluster
	Sub Pixel Classification
	Multi-layer perception classifier
	Fuzzy Image Classification
	Mahalonobis soft classifier
	Bayesian Soft Classification

3.4.1 Clasificación genérica

La mayoría de los algoritmos existentes para distinguir objetos, requiere una gran cantidad de información espectral para su correcto funcionamiento, esto dificulta la generalización de la información tomada por más de un sensor diferente, por lo que como alternativa a los métodos tradicionales. Pascual *et al.* (2009) mencionan que el uso de este tipo de clasificadores están basados en la segmentación y análisis

de imágenes de satélite de manera jerárquica, definiendo mascaras de objetos que pueden ser analizadas a mayor detalle dependiendo de cada interés en particular.

Los métodos tradicionales de clasificación de imágenes como la supervisada y la no supervisada conducen a errores de asignación de clases de los pixeles, razón por la cual se han desarrollado algoritmos basados en el uso de redes neuronales, que proporcionan altos niveles de confiabilidad, pero al igual que las clasificaciones anteriores presentan algunos problemas, ya que su desempeño está restringido al uso de sitios de entrenamiento, y esto representa una limitante para su aplicación masiva.

Uno de los primeros trabajos en este rubro fue desarrollado por Richardson y Wiegand (1977), en donde se utilizaron imágenes del sensor MSS con datos de 1975, donde se observaron patrones particulares de distribución de la radiación para cada objeto observado.

Estos mismos autores, hicieron además una clasificación de la vegetación con base en la densidad de la cubierta vegetal. En total reportaron 10 reglas de decisión para clasificación de objetos, y explicaron la diferencia respecto a los métodos de clasificación tradicionales. Finalmente, argumentaron que el uso de este tipo de algoritmos se puede implementar para el procesamiento más rápido y automatizado de la clasificación de objetos dentro de una imagen de satélite.

Dentro de los trabajos que destacan en este tipo de análisis se encuentra el de Pascual *et al.* (2009), en donde utilizaron una base de firmas espectrales de diferentes objetos y se desarrolló un algoritmo para su clasificación. Esta base de datos se refiere a mediciones realizadas sobre la superficie de la tierra, y utilizó imágenes del sensor AVHRR. En este caso debido a las particularidades de las bandas del sensor AVHRR se desarrolló un algoritmo utilizando la banda 3a y otro utilizando la banda 3b. Los algoritmos, están basados en árboles de decisión que no requieren campos de entrenamiento para la clasificación. Estos algoritmos fueron probados utilizando bases de datos espectrales internacionales con buenos resultados, obteniendo precisión superior a 90% en la clasificación. Sin embargo, adolece de la implementación en imágenes de satélite.

Postorado de Hidrociencias

En las Figuras 3 y 4 se presentan los esquemas de algoritmos desarrollados por Pascual *et al.* (2009) para clasificación genérica de las bandas 3^a y 3^b respectivamente.

Figura 3. Algoritmo de clasificación genérica, banda 3A.

Figura 4. Algoritmo de clasificación genérica, banda 3B

Otro trabajo similar en este tipo de clasificación de objetos, es el desarrollado por Palacios *et al.* (2006), en donde desarrollaron un clasificador genérico de objetos en imágenes del sensor ETM+. Este algoritmo se basó en las firmas espectrales de 12 objetos presentes en imágenes del sensor ETM+ a bordo del satélite Landsat 7 (Cuadro 2).

No.	. NOMBRE	
0	Sin datos	
1	Sombra	
2	Nube	
3	Bruma	
4	Hielo	
5	Agua	
6	Asfalto	
7	Suelo	
8	Veg. Cob. Baja	
9	Veg. Cob. Media	
10	Veg. Cob. Alta	
11	Veg. Oscura	
12	Otro	

Cuadro 2. Clases temáticas propuestas por Palacios et al. (2006).

Se generaron algunas condiciones lógicas para la clasificación, con base en brillantez térmica, índices de vegetación etc., que sirvieran de base para un algoritmo final de decisión (Figura 5).

Figura 5. Condiciones lógicas para la clasificación.

En este caso el algoritmo es un árbol de decisión (Figura 6) que no requiere campos de entrenamiento para llevar a cabo la clasificación y se fundamenta en operaciones

Postgrado de Hidrociencias

Booleanas para identificar objetos por las características de su firma espectral. Ha sido utilizado con éxito en la estimación de superficies sembradas de cultivos e identificación de cuerpos de agua en imágenes a lo largo de todo México (Palacios, 2006).

Figura 6. Algoritmo de clasificación genérica de objetos desarrollado por Palacios et al. (2006).

Estos son solo algunos ejemplos de los métodos de clasificación de objetos sobre la superficie terrestre más comunes, sin embargo, este tópico es muy amplio, y la información existente es demasiada, por lo que se requiere de un análisis más profundo al respecto.

Así como se hizo con los trabajos anteriormente mencionados, para el caso de las imágenes RapidEye es necesario conocer algunos aspectos generales de las mismas.

3.5 Especificaciones de las imágenes RapidEye.

Las imágenes RapidEye son tomadas por una constelación de cinco satélites con sensores idénticos en el mismo plano orbital y calibrados de la misma manera. Esto significa que una imagen de un satélite RapidEye será idéntica en características a cualquiera tomada por cualquiera de los otros cuatro satélites.

La constelación RapidEye obtiene datos de 4 millones de kilómetros cuadrados diariamente en una resolución espacial media de 5 metros por pixel. En el Cuadro 3, se muestran las principales características de los satélites RapidEye.

CARACTERÍSTICA	INFORMACIÓN
Número de satélites	5
Vida útil	7 años
Altitud de órbita	630 kilómetros en órbita heliosincrónica.
Hora de cruce al ecuador	11:00 a.m.
Tipo de sensor	De barrido, multiespectral.
Tamaño de muestreo del suelo a nadir	6.5 metros
Tamaño de pixel ortorectificado	5 metros
Tamaño de cobertura de imagen	25 km
Almacenamiento de datos	Hasta 1500 km por órbita
Resolución temporal	Fuera de nadir, al día. En el nadir, cada 5.5 días.
Capacidad de captura de imágenes	4 millones de km cuadrados por día
Rango dinámico	Hasta 12 bits

Cuadro 3. Principales características de los satélites RapidEye.

Fuente: RapidEye. Satellite Imagery Product Specifications.

Con respecto a la información espectral, en el Cuadro 4, se pueden apreciar las principales características del sensor en cuestión.

Nombre	Banda espectral (nm)
Azul	440-510
Verde	520-590
Roja	630-685
Red Edge	690-730
Infrarrojo cercano	760-850

Cuadro 4. Detalle de las Bandas espectrales del Sensor RapidEye.

Fuente: RapidEye. Satellite Imagery Product Specifications.

Las imágenes RapidEye cuentan con 2 niveles diferentes de procesamiento dependiendo de las necesidades de aplicación:

- Producto básico (nivel 1B): Correcciones radiométricas y de sensor.
- Producto Ortorectificado (nivel 3A): Correcciones radiométricas, de sensor y geométricas.

3.5.1 Producto básico RapidEye (nivel 1b).

Estas imágenes son el producto con menor nivel de procesamiento. Tienen una corrección radiométrica y del sensor, pero las imágenes son distribuidas tal y como se ve desde el satélite, es decir, sin corrección de las posibles distorsiones geométricas (causadas por el relieve del terreno) y sin una proyección cartográfica asignada. La información de las imágenes va acompañada de datos necesarios para el tratamiento de las mismas al hacer una corrección geométrica.

La resolución de las imágenes es de 5 metros en el NADIR.

Las correcciones radiométricas aplicadas a este producto son:

- Corrección de las diferencias relativas de la respuesta radiométrica entre los sensores.
- Asignación de valor a pixeles con valores nulos de detectores que no funcionan.
- Conversión a valores radiométricos absolutos basados en coeficientes de calibración.

Las correcciones geométricas aplicadas a este producto son:

- Distorsiones causadas por la óptica del sensor.
- Registro de todas las bandas en conjunto para asegurar que cada una esté correctamente alineada con las demás.

3.5.2 Producto ortorectificado RapidEye (nivel 3a).

Los productos "Ortho" de RapidEye tienen un alto nivel de procesamiento, son diseñadas para una amplia variedad de aplicaciones que requieren de un alto grado

de precisión en cuanto a la localización y la proyección cartográfica. Se han eliminado distorsiones causadas por el terreno y se pueden utilizar con fines cartográficos.

Estas imágenes son corregidas radiométricamente y geométricamente, además de que les es asignada una proyección geográfica. La corrección geométrica es auxiliada por modelos de elevación digital y puntos de control terrestre, su precisión varía dependiendo de la zona, y del número de puntos de control disponibles. Las imágenes abarcan un área de 25 x 25 km, tienen una resolución de 5 metros por pixel, y tienen como proyección cartográfica el sistema de coordenadas UTM con el Dátum horizontal WGS84 (RapidEye US, LLC, 2012).

Postgrado de Hidrociencias

4 METODOLOGÍA

En este apartado se presenta la metodología mediante la cual se desarrolló el algoritmo de clasificación de objetos terrestres a partir de imágenes RapidEye. Primeramente, se enlistan las imágenes utilizadas para el desarrollo del mismo y se describe el método de pre-procesamiento de las imágenes que puedan ser utilizadas; posteriormente, se definen las clases dentro de las imágenes utilizadas, mismas que sirvieron para el desarrollo del algoritmo; y finalmente, se describe el proceso de construcción del mismo.

4.1 Imágenes utilizadas para el desarrollo del algoritmo.

Para el desarrollo de este trabajo se utilizaron 17 imágenes de coberturas distribuidas por todo el mundo tomadas entre abril del 2009 y junio de 2011. Todas estas imágenes cuentan con un nivel de procesamiento 3a, por lo que ya están ortorectificadas, además de que sus números digitales se encuentran dados en radianzas.

En el Cuadro 5 se enlistan las imágenes utilizadas durante el desarrollo de este trabajo:

No.	LUGAR	FECHA DE TOMA	IDENTIFICADOR
1	Perth, Australia	02/04/2011	2011-04-02T031508_RE5_3A-NAC_6683405_113276
2	Selangor, Malasia	17/02/2011	2011-02-17T043804_RE4_3A-NAC_6683391_113276
3	Morelos, México	03/10/2010	2010-10-03T181703_RE3_3A-NAC_4640716_97342
4	Xinjiang, China	04/09/2010	2010-09-04T060128_RE5_3A-NAC_6683397_113276
5	Formentera, España	18/02/2011	2011-02-18T113832_RE3_3A-NAC_6683682_113276
6	Koblenz, Alemania	02/06/2011	2011-06-02T114041_RE2_3A-NAC_6683683_113276
7	Savo, Finlandia	10/06/2011	2011-06-10T104349_RE3_3A-NAC_6683389_113276
8	Bahía, Brasil	03/07/2010	2010-07-03T142001_RE4_3A-NAC_6683686_113276
9	O'ahu, Hawai, EUA	05/12/2010	2010-12-05T221358_RE2_3A-NAC_6683383_113276
10	San Diego, CA, EUA	18/06/2011	2011-06-18T192717_RE5_3A-NAC_6683394_113276
11	Washington, EUA	12/06/2011	2011-06-12T195820_RE2_3A-NAC_6683387_113276
12	Saskatchewan, Canadá	02/07/2010	2010-07-02T185448_RE3_3A-NAC_6683685_113276
13	Kings County, CA, EUA	06/05/2009	2009-05-06T194022_RE3_3A-NAC_3436545_84300
14	Arévalo, España	22/04/2009	2009-04-22T115920_RE2_3A-NAC_3436538_84300
15	Noroeste de Polonia	16/04/2009	2009-04-16T104920_RE4_3A-NAC_3436546_84300
16	Bosque tropical de Brasil	17/04/2009	2009-04-17T144324_RE4_3A-NAC_3436555_84300
17	Dallas, Texas, EUA	13/06/2009	2009-06-13T180151_RE3_3A-NAC_3436542_84300

Cuadro 5. Imágenes utilizadas para la construcción del algoritmo.

Después de seleccionadas las imágenes a procesar, se inició el proceso de corrección atmosférica, el cual se describe a continuación.

4.2 Corrección atmosférica de las imágenes.

Como primer parte del proceso, se corrigieron las imágenes anteriormente enlistadas para remover los errores por efectos atmosféricos. Para ello, se convirtieron los números digitales de cada una de las bandas de las imágenes a valores de radianza utilizando el factor de escala radiométrica especificado en el manual de RapidEye (RapidEye US, LLC, 2012).

$$RAD(i) = DN(i) \times Factor de escala radiométrica(i)$$
 (1)

donde:

RAD = Radianza.

Factor de escala radiométrica = 0.01.

DN = Número digital.

i = Número de banda.

A partir de las imágenes con valores de radianza, se realizó la corrección atmosférica utilizando la herramienta FLAASH⁴ del software ENVI 5.0; el cual es un módulo que corrige atmosféricamente longitudes de onda visibles, además de infrarrojas e infrarrojas medias de hasta 3 micrómetros (IDL, 2009).

Este módulo incorpora MODTRAN⁵ (Mattew *et al., 2000*), cuyos algoritmos de corrección representan una mejora respecto a los métodos basados únicamente en las propiedades de las imágenes como fue propuesto por (Chavez, 1996), o las modificaciones planteadas por Jaewon *et al.* (2008).

Para la alimentación del modelo, se deben ingresar datos obtenidos del archivo de metadatos adjunto a cada imagen RapidEye tales como la fecha y hora de toma, la posición geográfica del centro de la imagen, el ángulo de visión del sensor respecto

⁵ Moderate Resolution Atmospheric Transmission.

Postgrado de Hidrociencias

⁴ Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes.

al centro de la imagen y el ángulo de incidencia del sol respecto a la superficie. Además, se debe elegir el tipo de atmósfera de acuerdo a las características de la zona donde fue tomada la imagen.

Los resultados obtenidos de la aplicación de este módulo están dados en valores de reflectancia escalados en un orden de 10,000; lo que se considera como una reflectancia de 1. Por lo anterior, para obtener los valores de reflectancia estándares, es necesario re-escalar estos valores dividiendo entre dicho número el valor dado por este módulo para cada una de las bandas, dando como resultado los valores de reflectancia para cada pixel entre 0 y 1.

Después de haber realizado la corrección atmosférica, se procedió a la identificación de objetos presentes en cada una de las imágenes.

4.3 Identificación de clases dentro de las imágenes.

Se hizo una clasificación visual de los objetos presentes dentro de cada una de las imágenes analizadas, y se identificó un total de 11 clases, mismas que se consideraron dentro del diseño del algoritmo.

Cada una de estas clases se eligió de tal manera que todos los objetos presentes dentro de las imágenes puedan ser consideradas dentro de una de ellas, es decir, que ningún objeto dentro de las zonas con datos de reflectancia quede sin clasificar. Además, se consideró que cada uno de estos objetos tuviera un patrón espectral similar al reportado en diversas librerías espectrales que se mencionan posteriormente. Esto último con el fin de tener la menor cantidad información subjetiva posible debido a la asignación arbitraria de clases.

Las clases consideradas tanto para la clasificación visual por fotointerpretación como para el desarrollo del algoritmo se muestran en el Cuadro 6.

Cuadro 6. Clases consideradas dentro de la clasificación.

No.	NOMBRE DE LA CLAS	E DESCRIPCIÓN
1	Agua Profunda	Cuerpos de agua profunda y/o con agua clara.
2	Agua Somera	Cuerpos de agua somera y/o con agua con sedimentos.
3	Suelo	Suelo desnudo, en condiciones de humedad o seco.
4	Asfalto	Áreas urbanas o arena clara.
5	Vegetación Alta	Vegetación de cobertura alta.
6	Vegetación Media	Vegetación de cobertura media.
7	Vegetación Baja	Vegetación de cobertura baja.
8	Vegetación Oscura	Vegetación oscura, como pantanos o bosques de coníferas.
9	Nube	Nube
10	Sombra	Sombras de nubes o causadas por relieve.
11	Hielo	Hielo o nieve, principalmente en zonas altas.

4.4 Clasificación de imágenes con fotointerpretación.

Para obtener una imagen con la cual contrastar los resultados de la clasificación genérica, se realizó una clasificación supervisada de cada una de las imágenes por el método de máxima verosimilitud, el cual se alimentó con sitios de entrenamiento definidos por medio de fotointerpretación tanto de las imágenes RapidEye, así como del software Google Earth y la herramienta Street Views.

Adicionalmente, se compararon las firmas espectrales de cada clase con las reportadas en diferentes bibliotecas espectrales.

4.5 Uso de librerías espectrales para la identificación de clases.

Para evitar en lo posible la asignación de clases de manera arbitraria, se compararon las firmas espectrales de los objetos encontrados en la clasificación de máxima verosimilitud apoyada de fotointerpretación con los patrones reportados en diversas bibliotecas espectrales, dependiendo de la disponibilidad de datos para cada clase (Cuadro 7).

Cuadro 7. Bibliotecas espectrales utilizadas.

No.	BIBLIOTECA ESPECTRAL
1	CSES Beckman Spectrometer
2	Brown University Relab Spectrometer
3	CSES SIRIS (GER) Spectrometer
4	USGS Denver Beckman Spectrometer
5	CSES PIMA Spectrometer
6	John Hopkins University library for minerals
7	John Hopkins University library for rocks
8	John Hopkins University library for snow and ice
9	John Hopkins University library for man-made materials
10	John Hopkins University library for vegetation
11	John Hopkins University library for water
12	JPL Mineral Spectral library with <45 micrometers grainsize
13	JPL Mineral Spectral library with 45-125 micrometers grainsize
14	JPL Mineral Spectral library with 125-500 micrometers grainsize
15	USGS Mineral Spectral Library
16	USGS Vegetation Spectral Library
17	Published Dry Plant Material Spectra
18	Jasper Ridge Spectral Library for Green Vegetation, Dry Vegetation, and Rocks

A partir de los patrones espectrales reportados en las bibliotecas previamente mencionadas, se hicieron convoluciones para hacerlos comparables con las firmas espectrales obtenidas de las imágenes; es decir, con base en la ventana espectral de cada banda de las imágenes RapidEye, se calculó un promedio de la reflectancia medida. Este proceso se realizó con el módulo 'Spectral Library Resampling' de ENVI 5.0.

Finalmente, se comparó la firma espectral de cada una de las clases encontradas en las imágenes con su correspondiente convolución, de tal manera que se pueda asumir que se trata de la misma clase. En los casos en los que la firma espectral de cada clase reportada en las bibliotecas no correspondió a la encontrada en las imágenes, se replanteó la clasificación. De este modo, con ensayos de prueba y error se obtuvieron las coberturas de cada imagen con patrones espectrales similares entre las clases encontradas y las reportadas en las bibliotecas.

Una vez que se aseguró la similitud entre las firmas espectrales de las bibliotecas y las obtenidas en las imágenes, se procedió a la caracterización de cada una de las clases encontradas.

4.6 Características espectrales de cada clase.

Con la finalidad de generar las condiciones por las cuales cualquier objeto presente en una imagen pueda ser clasificado dentro de alguna de las categorías enlistadas en el Cuadro 6, se realizó una descripción de las características más sobresalientes de la firma espectral de cada una de las clases haciendo énfasis en las que distinguen una clase de otra, facilitando así su discriminación y la generación de condiciones de asignación de cada objeto a alguna de las posibles categorías.

En los siguientes puntos se describen las principales características de cada una de las clases y de qué manera se pueden distinguir de otras. Ésta descripción sirvió como base para la generación de las condiciones que dieron origen al algoritmo de clasificación de objetos terrestres.

4.6.1 Características de la clase Agua.

Como se muestra en el Cuadro 6, existen dos clases que hacen referencia a este objeto; uno de ellos correspondiente a Agua Profunda y/o clara, y otra correspondiente Agua Somera y/o con sedimentos como lo hace Han (1997).

Estas dos clases tienen la principal característica de presentar valores de reflectancia tendientes a cero en todas sus bandas, por lo que su distinción respecto a otras clases resulta relativamente sencilla. Esto se debe a que el agua absorbe la mayoría de la radiación electromagnética recibida en el espectro visible-infrarrojo.

La primera de ellas se caracteriza por no tener ningún valor de reflectancia en cualquiera de las bandas por encima de 0.002. Debido a la gran diferencia en reflectancia entre esta clase y todas las demás, no fue necesaria la generación de condiciones que implique una relación entre dos o más bandas; simplemente se debió buscar que cumplan con la característica mencionada anteriormente (Figura 7).

Postgrado de Hidrociencias

En la Figura 7 se muestran las firmas espectrales de esta clase para varias imágenes donde estuvo presente. En este caso no se contó con un punto de comparación de alguna biblioteca espectral.

Figura 7. Firmas espectrales del objeto Agua Profunda.

En contraste con la anterior, la clase Agua Somera y/o con sedimentos, tiene el efecto de fondo del suelo ya sea por la visibilidad del lecho en los cuerpos de agua, o la cantidad de sedimentos suspendidos. Esta característica se distingue por un ligero incremento en la reflectancia de la banda 2 (Verde). Aun así, Los valores de reflectividad de esta clase son bajos para todas las bandas, por lo que sólo se tuvo que hacer distinción de ésta con la primer clase, y una muy similar descrita posteriormente (Sombra).

El comportamiento de la firma espectral de la clase Agua Somera para algunas imágenes donde estuvo presente se muestra en la Figura 8. Al igual que en la clase anterior, no se cuenta con un registro dentro alguna biblioteca espectral para su comparación.

Figura 8. Firmas espectrales del objeto Agua Somera.

4.6.2 Características de la clase Suelo.

En el caso de la clase suelo, sí se cuenta con una referencia de una biblioteca espectral, por lo que se debió tener cuidado durante la clasificación de este objeto en las imágenes para que sus patrones espectral fuesen lo más parecido posible.

Algunas de las diferencias más sobresalientes dentro de las firmas espectrales de esta clase son causadas por la diferencia en el contenido de humedad del suelo y su coloración. Esta característica la comparten otros objetos como la vegetación de cobertura baja en donde se tiene el efecto de suelo de fondo, o el asfalto.

Una característica importante dentro de esta clase es la relación directamente proporcional entre el orden de número de banda de la imagen y su valor de reflectancia. Además, presenta un nivel de reflectancia en la banda roja mayor que cualquier tipo de vegetación, lo que sirvió como condición distintiva entre estas dos clases.

En la Figura 9 se muestran las firmas espectrales para algunas imágenes donde se presentó este objeto, además de la que se reporta en la biblioteca espectral de la Universidad John Hopkins por Salisbury *et al.* (1991).

Figura 9. Firmas espectrales del objeto Suelo.

Es pertinente resaltar la relación de concavidad que representa el valor de reflectancia de la banda Red Edge con relación a la banda roja e infrarroja, ya que esta característica puede ayudar a distinguir esta clase con el Asfalto.

4.6.3 Características de la clase Asfalto.

Este objeto tiene un patrón espectral similar a otros objetos que presentan valores de reflectancia altos, como el caso de las nubes. Sin embargo, es posible distinguirlo ya que presenta valores ligeramente menores.

Como se describe posteriormente y se observa en la Figura 14, es posible que haya confusión entre esta clase y la clase Nubes. Esta confusión se podría evitar si se contara con una observación de reflectancia en alguna longitud de onda mayor (térmica).

En la Figura 10 se muestran las firmas espectrales obtenidas de diferentes imágenes y su comparación con la reportada en la biblioteca espectral de la Universidad John Hopkins.

Figura 10. Firmas espectrales del objeto Asfalto.

Si bien este objeto tiene un patrón espectral similar con el objeto Suelo, es posible diferenciarlos con buena aproximación debido a que en este se observa una diferencia en la reflectividad de la radiación infrarroja, presentando valores ligeramente más altos que la clase anterior descrita.

4.6.4 Características de las clases de vegetación.

Como se mencionó en el Cuadro 5, se hizo distinción de cuatro clases diferentes de vegetación en función de su cobertura del suelo. Cada una de estas clases se caracteriza por contar con un rango determinado de reflectancia en cada banda, además de las relaciones existentes entre la radiación roja e infrarroja cercana.

Como un indicador de la relación mencionada anteriormente, se consideró el índice de vegetación NDVI⁶ que de acuerdo a Jensen (2000), se define de la siguiente forma:

$$NDVI = \frac{(IRc-R)}{(IRC+R)}$$
(2)

En donde

NDVI = Índice de vegetación (adimensional).

⁶ Normalized Difference Vegetation Index
IRc = Reflectancia de la banda Infrarroja cercana (μ m).

R = Reflectancia de la banda roja (μ m).

Las tres clases de vegetación mencionadas que están basadas en la estimación de su cobertura vegetal, fueron distinguidas entre sí por la cantidad de radiación infrarroja emitida, ya que al agrupar las firmas espectrales de diferentes extractos de vegetación, se observaron similitudes con las reportadas por alguna de las bibliotecas espectrales utilizadas.

Características de la clase Vegetación Alta.

En la Figura 11, se observa el grupo de firmas espectrales de lo que se considera vegetación de cobertura alta, mismas que corresponden a las diferentes imágenes analizadas en este trabajo, además de la reportada por la librería espectral John Hopkins.

En ella, se puede observar que en las bandas de la fracción visible del espectro electromagnético, la tendencia en la reflectancia es hacia valores muy bajos, especialmente en la radiación roja (Banda 3).

Figura 11. Firmas espectrales del objeto Vegetación Alta.

Una característica que resalta en todas las clases de vegetación consideradas en este trabajo, es la gran diferencia que existe entre la cantidad de radiación emitida

en la fracción del rojo y el infrarrojo; facilitando así el uso del índice de vegetación NDVI como herramienta para distinguir este estrato de los demás.

Como característica adicional para la vegetación de cobertura alta, la radiación infrarroja en todos los casos es superior a 0.4 y el NDVI superior a 0.9.

Características de la clase Vegetación Media.

Dentro de las características de las firmas espectrales correspondientes a esta clase que se encuentra presente en varias de las imágenes analizadas, destaca una ligera disminución en la cantidad de reflectancia en la banda 5 (Infrarroja). Al mantener una reflectancia similar a la que se considera como Vegetación Alta en la fracción del rojo, la implicación lógica es que el valor del índice de vegetación tenderá a disminuir entre estas dos clases.

Para probar lo anterior, se realizó el cálculo de índice de vegetación para cada una de las clases en cada una de las imágenes; proceso mediante el cual se definió un umbral de NDVI de 0.65 a 0.9 para que el objeto analizado pueda ser considerado dentro de la clase Vegetación Media, además de contar con valores de reflectancia infrarroja entre 0.3 y 0.4.

En la Figura 12 se observa la similitud existente entre las firmas espectrales de esta clase encontradas en las imágenes enlistadas en el cuadro 5 y la reportada en la biblioteca espectral USGS a través de Clark *et al.* (1993).

Al igual que con la clase anterior, si bien no es posible hacer una distinción de esta clase basándose únicamente en la reflectancia en la fracción infrarroja, se puede hacer mediante la relación entre dicha banda y la banda roja por medio de su valor de NDVI. Un ejemplo de lo anterior, es el criterio mediante la cual se diferenció esta clase de la de Vegetación Baja.

Características de la clase Vegetación Baja.

La diferenciación de este tipo de vegetación representa un problema ya que cuenta con reflectancias similares a otras dos clases de vegetación mencionadas en este trabajo. Sin embargo, se hizo uso de otras herramientas para su distinción como la relación directa entre las bandas 3 y 4, además del índice de vegetación.

Una característica que distingue a esta clase de las demás, es el aumento en la reflectancia en la fracción del rojo (Figura 13). Esto se debe a que la baja cobertura vegetal permite que los valores de reflectancia en esta banda se vean afectadas por el efecto del suelo de fondo.

Por lo anterior, se identificó una característica distintiva de esta clase respecto a las demás, y es que por el aumento en los valores de reflectancia roja, el índice de vegetación disminuye a menos de 0.65, además de que la relación entre la banda infrarroja y la roja es menor que en las demás clases.

Figura 13. Firmas espectrales del objeto Vegetación Baja.

Características de la clase Vegetación Oscura.

Este tipo de vegetación se caracteriza por contar con valores de reflectancia por debajo de 0.05 en las bandas del espectro visible, además de contar con una pendiente superior a las demás entre los valores de la banda Red Edge y la banda infrarroja. Sin embargo, los valores de radiación infrarroja son inferiores a las demás de clases.

De esta manera, la diferencia entre los valores de la banda 4 y 5, además de los valores bajos de reflectancia en las primeras tres bandas, hacen posible la distinción de los objetos que cumplan con esta característica.

Los tipos de vegetación que corresponden a esta clase, son aquellos que presentan una baja actividad fotosintética respecto a las demás, como lo es los bosques de ecosistemas templados, pantanos, etc.

Las firmas espectrales de este objeto encontradas dentro de las diferentes imágenes analizadas y su comparación con la reportada por el USGS en el trabajo de Clark *et al.* (1993) se muestran en la Figura 14.

Figura 14. Firmas espectrales del objeto Vegetación Oscura.

4.6.5 Características de la Clase Nubes.

Para la clasificación de este objeto, si se realiza por método de fotointerpretación su identificación es bastante obvia. Sin embargo, si se hace por medio de su firma espectral, resulta más complicado en el caso particular de las imágenes RapidEye, ya que por la naturaleza de su firma espectral, este objeto puede ser fácilmente confundible con otros con brillantez similar.

Este problema se acentúa en el caso de este tipo de imágenes ya que no se cuenta con una banda térmica para su distinción, a algún dato de reflectancia en una longitud de onda mayor que pueda suponer una diferencia en el patrón espectral de este objeto respecto de los demás.

Para el caso de esta clase, no se cuenta con una referencia de alguna de las bibliotecas espectrales utilizadas, y sólo se contó con dos imágenes en las cuales este objeto se encuentra presente.

En la Figura 15, se observa que la principal característica de este objeto son los valores altos de reflectancia en todas las bandas del sensor RapidEye. Dichos valores son mayores de 0.3 en el espectro visible, y por encima de 0.55 en las bandas Red Edge e infrarroja.

Figura 15. Firmas espectrales del objeto Nube.

Postgrado de Hidrociencias

4.6.6 Características de la clase Sombra.

Dado que la toma de las imágenes por los satélites RapidEye se hace de manera diurna y con buena iluminación, los únicos casos en los que se presenta esta clase dentro de las imágenes analizadas es en aquellos casos en donde la imagen tenga nubosidad, o bien un relieve muy abrupto.

Dado que la obstrucción de la luz a la superficie representa una clara disminución de la reflectancia en todas las bandas del espectro, es difícil hacer una clasificación de sombras ya que puede ser fácilmente confundida con un cuerpo de agua debido a sus características espectrales similares.

Aun así, esta clase se caracteriza por tener una ligera diferencia entra la reflectancia de la banda infrarroja y todas las demás, ya que como se observa en la Figura 16, existe un ligero aumento en estos valores en la banda 5.

Figura 16. Firmas espectrales del objeto Sombra.

4.6.7 Características de la Clase Nieve.

Esta clase engloba tanto la nieve como el hielo, y se encuentra principalmente en las partes altas de las montañas. Sin embargo, no se contó con ninguna área dentro de las imágenes analizadas que tuviera presencia de este objeto. Por lo que su clasificación y caracterización dependió únicamente de los valores reportados en la biblioteca espectral de la Universidad John Hopkins.

En la Figura 17, se observan los altos índices de reflectancia para estos objetos en todas las bandas del sensor, por lo que podrían ser fácilmente confundibles con nubes, especialmente con la ausencia de una banda térmica en este tipo de imágenes.

Figura 17. Firmas espectrales del objeto Nieve.

Una característica sobresaliente de este tipo de objetos, es la disminución de la reflectancia a medida que aumenta el orden de las bandas, y es esta característica la que ayudó a diferenciar este tipo de objetos de otros con una brillantez similar.

Una vez identificadas y caracterizadas las firmas espectrales de las clases de interés para el presente trabajo, y conociendo las características de cada una de las firmas espectrales que pueden servir para distinguirlas de las demás, se procedió al diseño del algoritmo de clasificación partiendo de la creación de condiciones basadas en las características mencionadas. En el siguiente apartado se muestran los resultados obtenidos a partir del proceso descrito anteriormente.

5 RESULTADOS Y DISCUSIÓN

En este apartado se muestran los resultados obtenidos al generar y aplicar el algoritmo de clasificación genérica de objetos. Estos resultados se generaron a partir del procesamiento de 17 imágenes RapidEye de coberturas distribuidas por todo el mundo en diferentes fechas (Cuadro 5).

Se generaron condiciones basadas en operaciones booleanas para discriminar entre 11 de los principales objetos presentes en la superficie terrestre (Cuadro 6).

Primeramente, se muestran los casos en los que cada uno de los objetos que clasifica el algoritmo son encontrados; esto a partir de sus patrones espectrales y las relaciones existentes entre cada una de las bandas presentes en las imágenes.

Después, se muestra el algoritmo de clasificación completo; este algoritmo se presenta como un árbol de decisiones booleanas, y en él se muestran las 11 clases que es capaz de diferenciar.

Finalmente, se presenta un ejemplo de su aplicación comparando una composición de una imagen RapidEye en color real y una clasificada por el algoritmo. Asimismo, se compara de forma numérica la precisión de dicha clasificación en contraste con una clasificación supervisada de la misma imagen, en donde se obtuvo una precisión del 87.9%. Adicionalmente, se hace la misma comparación para cada uno de los objetos clasificados.

5.1 Condiciones que se deben cumplir para la correcta aplicación del algoritmo de clasificación.

Dada la diversidad de formas en las que se pueden presentar los valores de cada pixel contenidos en las imágenes de satélite, fue necesario especificar las condiciones en las que el algoritmo es capaz de hacer una clasificación de manera correcta. Lo anterior para evitar su mala aplicación al utilizar una imagen que no cumpla con las especificaciones requeridas.

Las condiciones que deben cumplir las imágenes RapidEye para su correcto procesamiento son las siguientes:

- Las cinco bandas de cada una de las imágenes deben corresponder a valores de reflectancia.
- Los valores de reflectancia deberán estar escalados entre cero y uno.
- Las imágenes deberán tener un procesamiento previo para la remoción de efectos atmosféricos.
- La imagen correspondiente al índice de vegetación NDVI deberá ser generada a partir de bandas que cumplan con las tres condiciones anteriores.

Una vez que las imágenes cumplan con estas especificaciones, es posible la implementación del algoritmo para su procesamiento.

5.2 Generación de condiciones para la obtención de clases.

A continuación se muestra una descripción de cómo se generaron las diferentes condiciones para la obtención de cada una de las clases dentro del algoritmo. Estas condiciones se hicieron a partir de los patrones espectrales mostrados para cada uno de los objetos descritos en la sección de metodología.

5.2.1 Clasificación de objeto agua.

Para este objeto, se hizo distinción entre dos diferentes clases: Agua profunda y/o clara, y Agua somera y/o con sedimentos. Como se mostró en la Figura 7 y 8, estas clases presentan valores de reflectancia particularmente bajos en todas sus bandas, por lo que su clasificación se realizó en pocos pasos.

Para la clasificación del objeto Agua Profunda, se debe cumplir la condición de que las bandas azul, verde y roja, tengan una reflectancia menor al 0.015, además de que la banda 4 (Red Edge) tenga un valor menor a 0.03 y la banda infrarroja sea menor a una tercera parte del valor de la banda 4 (Figura 18).

Para el caso del objeto Agua Somera, se distingue de la primera en que el efecto del suelo causado por sedimentos o por la visibilidad del lecho de los cuerpos de agua, provoca un ligero aumento en los valores de reflectividad infrarroja (Figura 18).

Figura 18. Condiciones para la clasificación del objeto Agua.

5.2.2 Clasificación de objeto Suelo.

Esta clase se identificó en dos diferentes casos. El primero de ellos para cuando todas las bandas de la imagen tienen valores de reflectancia menores a 0.1, y además hay un patrón de incremento proporcional entre reflectancia y el orden del número de bandas como se observa en la Figura 9. Este primer caso supone que, por sus bajos valores en todas las bandas, se trata de suelo en condiciones de alta humedad.

El segundo caso donde se presentó esta clase, fue para los pixeles cuya diferencia entre los valores de reflectancia de las bandas Red Edge e Infrarroja fue mayor a 0.05, pero sin presentar reflectancias menores al 10% en todas las bandas (Figura 19).

Figura 19. Condiciones para la clasificación del objeto Suelo.

Las zonas con cobertura de suelo desnudo son difíciles diferenciar, ya que presentan grandes variaciones entre sí mismas, dependiendo de las condiciones de humedad y color.

5.2.3 Clasificación de objeto Asfalto.

En la superficie terrestre se encuentran múltiples objetos cuyos patrones espectrales son similares entre sí. En el caso de la clasificación de Asfalto se presentó este problema, ya que dependiendo de la coloración, el algoritmo puede interpretarlo como suelo desnudo con color muy claro.

En la distinción de esta clase, la confusión de objetos demasiado brillantes como lo es el asfalto con otros objetos cuyos patrones espectrales son similares, fue un problema. Algunos de estos objetos son arena de playa, minas a cielo abierto, etc.

Las condiciones necesarias para que el algoritmo clasifique un objeto como Asfalto se muestran en la Figura 20:

Figura 20. Condiciones para la clasificación del objeto Asfalto.

Una condición importante que debe cumplir este objeto, es que todas sus bandas tengan reflectancias por encima de 0.3, además de que la reflectancia infrarroja debe estar por encima de 0.6. Una característica particular de este objeto para que

no se confunda con Nieve o Nube, son los picos de reflectancia en las bandas roja e infrarroja como se mostró en la Figura 10.

5.2.4 Clasificación de objeto Vegetación.

En este apartado se explica cómo se realizó la discriminación entre las diferentes coberturas de vegetación. Como se mostró en el Cuadro 6, el algoritmo se diseñó para distinguir entre cuatro tipos diferentes de vegetación dependiendo de su cobertura.

Se utilizaron algunos criterios generales para distinguir los objetos que corresponden y no a la vegetación; una vez que se determinó que el objeto analizado es algún tipo de vegetación, las siguientes reglas de decisión se basaron principalmente en las relaciones entre la reflectancia de la banda infrarroja y el valor del NDVI.

Dentro del diseño, dichos criterios de clasificación se presentaron en tres casos diferentes en los que es posible llegar a discriminar los objetos que no corresponden a alguna clase de vegetación:

- En el caso en el que no se cumple la condición de que la reflectancia de la banda 3 (roja) sea mayor a las de las bandas 2 y 4 (Verde y Red Edge, respectivamente), y que además la reflectancia en el rojo sea menor de 0.5.
- En donde se cumple la condición anterior, pero sin que alguna de las tres primeras bandas (azul, verde o roja) tenga una reflectancia mayor a 0.1 y
- En donde no se cumpla la condición de que la banda infrarroja sea menor a la roja, que la diferencia entre la banda 5 y la banda 4 sea menor a 0.05, y que además ninguna de las 3 primeras bandas sea mayor a 0.1.

En la Figura 21 se muestran los criterios de decisión hechos para clasificar entre alguna de las cuatro clases de vegetación planteadas en el algoritmo. Estos criterios se aplican una vez que ya se descartó que el objeto analizado no corresponde a alguna clase de vegetación.

Figura 21. Condiciones para la clasificación del objeto Vegetación.

Como un umbral arbitrario basado en fotointerpretación y en la información de reflectancia por bandas reportada en la Figura 9 a la 12, se eligió el valor de reflectancia de 0.24 en la banda infrarroja para distinguir entre lo que podría ser vegetación oscura o baja, de lo que podría ser vegetación media y alta.

Si el valor se encuentra por encima de dicho umbral, se asignará a la clase Vegetación Alta si cumple tanto con la condición de que la reflectancia infrarroja esté por encima de 0.32, como con un valor de NDVI mayor a 0.90. En caso contrario, se clasificará como Vegetación Media.

Para este último tipo de vegetación, existe otro caso que se podría presentar; si el valor de reflectancia infrarroja es mayor de 0.24, pero que las siguientes condiciones para distinguirlo como Vegetación Baja o Vegetación Oscura sean negativas, entonces el objeto tomará el valor de dicha clase.

De acuerdo a Schuster *et al.*, (2012), la banda Red Edge ayuda significativamente en la identificación de clorofila en la vegetación; esto quiere decir que al existir un umbral significativamente grande entre dicha banda y la banda infrarroja, se sugiere una baja presencia de clorofila incluso si la vegetación es abundante. Esta característica es distintiva de los bosques de hojas aciculadas, además de los pantanos y la vegetación senescente. Por lo anterior, se planteó la siguiente condición para la clasificación del objeto Vegetación Oscura:

Aquellos objetos cuya reflectancia infrarroja rebasa el umbral antes mencionado, que tengan una amplia diferencia entre las bandas 4 y 5 (Una proporción mayor a 4), y que además tengan un valor de NDVI superior a 0.5, el algoritmo los asignará a la clase Vegetación Oscura.

En caso de que no cumplan esta última condición, y que además tengan un valor de NDVI menor que 0.65, el algoritmo los asignará a la clase Vegetación Baja. Nótese que el conjunto de condiciones para esta clase es el que presenta menores valores tanto de NDVI como de radiación infrarroja, poniéndola como la más cercana de las clases de vegetación a la descripción realizada anteriormente para la clase Suelo.

5.2.5 Clasificación de objeto Nube.

Este objeto se encontró mediante fotointerpretación en solamente dos de las imágenes utilizadas para el desarrollo de este algoritmo, y su principal característica es que todas las bandas presentan una reflectancia mayor 0.3, pero que además la banda 4, presenta valores mayores de 0.56 y la banda 5 por encima de 0.6.

Una observación importante, es que estos valores no deben no deben tener la característica de que a medida que se incrementa el orden de las bandas, el valor de reflectancia disminuye; ya que esto podría suponer que se trata de otro objeto (Nieve o Hielo).

Las condiciones bajo las cuales se presentó este objeto se muestran en la Figura 22:

Un problema mayor en las imágenes RapidEye que se presentó en este caso, es la ausencia de bandas térmicas y de infrarrojo medio que ayudan en la discriminación de este tipo de objetos como lo hizo Lambeck *et al.* (1978), por lo que la distinción entre nubes y otros objetos altamente reflejantes como Nieve o Hielo es difícil.

5.2.6 Clasificación de objeto Sombra.

Este objeto se identificó sólo en dos imágenes que contienen nubes, además de una con sombras debido al relieve. Su principal característica son los bajos valores de reflectancia en todas las bandas. Pero para evitar su confusión con cuerpos de agua, se estableció una condición de tal manera que se asegure que la banda infrarroja sea mayor que las bandas 2 y 3. En la Figura 23 se muestra la condición en la que se presentó este objeto de acuerdo a las características reportadas en la Figura 16, y de cómo se distinguió de otras clases similares como Agua Somera y Agua profunda:

Figura 23. Condiciones para la clasificación del objeto Sombra.

5.2.7 Clasificación de objeto Nieve.

Como se mencionó anteriormente, este objeto no estuvo presente en alguna de las imágenes analizadas. Sin embargo, el algoritmo se diseñó para poderlo clasificar mediante la ayuda de su firma espectral según el catálogo espectral del USGS reportado por Clark *et al.*, (1993)

En la Figura 17 se mostró que este objeto presenta altos niveles de reflectancia en todas sus bandas, por lo que distinguirlo de las nubes en ausencia de una banda térmica resulta complicado.

Por lo anterior, utilizando las firmas espectrales mencionadas, se generó una condición en donde si se observa un patrón descendente en la reflectancia a medida que se incrementa el orden de las bandas, algoritmo clasificará a dicho objeto como Hielo o nieve. La figura 24 ilustra lo anterior:

Figura 24. Condiciones para la clasificación del objeto Nieve.

Una vez generadas todas las condiciones necesarias para la clasificación de los 11 objetos descritos anteriormente, se procedió a la obtención del algoritmo de clasificación.

5.3 Algoritmo de clasificación de objetos para imágenes RapidEye.

Para la generación de este algoritmo, se tomaron en cuenta las diferentes condiciones descritas anteriormente, y se diseñó un árbol de decisiones booleanas de tal modo que todas las áreas contenidas dentro de una imagen sean asignadas a alguna de las clases enlistadas anteriormente.

Una ventaja de este algoritmo, es que al programarlo para su implementación en una computadora, las opciones de decisión se reducen a únicamente dos en cada uno de los pasos, lo que representa una disminución considerable en el tiempo de procesamiento de datos con respecto a los algoritmos que utilizan métodos estadísticos.

En la Figura 25 se muestra el algoritmo de decisiones generado en este trabajo:

Figura 25. Algoritmo de clasificación de objetos.

Salvador Esparza Govea.

Una vez obtenido el algoritmo, se probó en las diferentes imágenes enlistadas anteriormente y se comparó con las clasificaciones realizadas por el método de máxima verosimilitud con ayuda de fotointerpretación.

5.4 Aplicación y precisión del algoritmo de clasificación.

Para probar su confiabilidad, se programó el algoritmo con ayuda de la herramienta 'Desition Tree Classifier' del software ENVI 5.0, y se hicieron las modificaciones necesarias para incrementar su exactitud.

Como ya se mencionó, el criterio de comparación de cada uno de los resultados de las imágenes es una cobertura clasificada por el método de máxima verosimilitud, donde los sitios de entrenamiento fueron definidos por medio de fotointerpretación, además de la herramienta de Google 'Street Views' para apoyo visual.

A continuación se muestran dos ejemplos de la aplicación del algoritmo de clasificación de objetos. Para ello, se eligieron segmentos de dos imágenes que tuvieran presentes la mayoría de los objetos que puede clasificar el algoritmo. En la Figura 26, se muestra una composición en color real de una imagen de los satélites RapidEye correspondiente a una zona sub urbana de Koblenz, Alemania, tomada el día 2 de junio de 2011, además del resultado de la clasificación de dicha imagen utilizando el algoritmo presentado anteriormente (Figura 27).

De la misma manera, en la Figura 28 se muestra una composición en color real de una imagen al sur de Cuernavaca, Morelos, México; y en la Figura 29 el resultado de la clasificación genérica.

En estas imágenes se puede observar mucha similitud en la clasificación con relación a la los objetos observables en las imágenes de color real.

Figura 26. Composición de imagen en color real, Koblenz, Alemania.

Figura 27. Resultado de la clasificación genérica. Koblenz, Alemania.

Figura 28. Composición de imagen en color real. Morelos, México.

Figura 29. Resultado de la clasificación genérica. Morelos, México.

Para comparar numéricamente las imágenes obtenidas de la clasificación genérica con la que se realizaron con fotointerpretación, se generaron matrices de errores, en donde se muestra la clase obtenida por el clasificador (columnas) y la que se considera como real, obtenida con fotointerpretación (hileras).

Aquellos valores que se encuentran en la diagonal principal, corresponden a valores que coinciden exactamente con la misma clase asignada por el algoritmo, aunque se observan algunas diferencias, principalmente en las clases muy parecidas entre sí (Cuadro 8 y 9).

	Agua Profunda	Agua Somera	Suelo	Asfalto	Veg. Alta	Veg. Media	Veg. Baja	Veg. Oscura	Nube	Sombra	Total
Agua Profunda	90450	11	1566	0	0	0	0	0	0	0	92027
Agua Somera	224	85820	60	0	0	0	0	0	0	0	86104
Suelo	0	0	851212	25579	5817	202332	1877	2063	0	0	1088880
Asfalto	0	0	295016	181241	6	3938	64551	441	15	682	545890
Veg. Alta	0	0	7739	0	150734	55016	0	2643	0	1	216133
Veg. Media	0	0	40318	1161	26132	499978	4	0	0	0	567593
Veg. Baja	0	0	32248	2461	0	0	46653	0	0	0	81362
Veg. Oscura	0	0	242	0	0	142	0	7561	0	167	8112
Nube	0	0	0	11	0	2	0	0	368	0	381
Sombra	0	0	498	0	0	0	0	0	0	1630	2128
Total	90674	85831	1228899	210453	182689	761408	113085	12708	383	2480	2688610
										Aciertos	87.1%

Cuadro 8. Matriz de error de la clasificación genérica. Koblenz, Alemania.

	Agua Profunda	Agua Somera	Suelo	Asfalto	Veg. Alta	Veg. Media	Veg. Baja	Veg. Oscura	Total
Agua Profunda	85	0	0	0	0	0	0	0	85
Agua Somera	0	368	13	0	0	0	0	0	381
Suelo	0	23	675191	7051	10941	117111	7598	4179	822094
Asfalto	125	22055	106360	91569	0	1384	5584	0	227077
Veg. Alta	0	0	30	0	19806	53124	0	0	72960
Veg. Media	0	0	16394	0	15537	543642	0	4210	579783
Veg. Baja	0	8	2637	1301	0	0	13707	0	17653
Veg. Oscura	0	0	140	0	8	308	0	667	1123
Total	210	22454	800765	99921	46292	715569	26889	9056	1721156
	-							Aciertos	88.7%

Cuadro 9. Matriz de error de la clasificación genérica. Morelos, México.

Como se explicó en la sección de generación de condiciones para la definición de clases, es de esperarse que el algoritmo asigne valores a objetos que corresponden a una clase muy similar a la real. En el Cuadro 8 y 9 se observa que, de hecho, estos errores corresponden a los esperados.

Los errores mencionados anteriormente se deben principalmente a la ausencia de bandas que midan reflectividad en longitudes de onda mayores, tal como la radiación infrarroja media o infrarroja térmica, que sí se encuentran a bordo de otros sensores como el ETM+ o TM.

Se dio una tolerancia en la precisión del algoritmo para los errores que correspondan con una clase muy similar a la deseada. Lo anterior, debido a que la asignación de clases con base en la cobertura vegetal siempre se hace de manera subjetiva en diferentes estudios. Con las consideraciones anteriores, el algoritmo tiene una precisión media del 87.9%.

En el Cuadro 9 se muestran aquellas clases asignadas por el algoritmo que se consideran como errores tolerables en relación al valor original.

No.		Cobertura real	Valor asignado por el algoritmo considerado error tolerable.
	1	Agua profunda	Agua Somera
	2	Agua somera	Agua Profunda
	3	Suelo	Vegetación baja
	4	Suelo	Asfalto
	5	Asfalto	Suelo
	6	Vegetación Alta	Vegetación Media
	7	Vegetación Media	Vegetación Alta
	8	Vegetación Media	Vegetación Baja
	9	Vegetación Baja	Suelo

Cuadro 10. Errores en el algoritmo considerados tolerables.

Para conocer la magnitud de aquellos errores causados por el algoritmo considerados como tolerables, se midió la precisión de cada de las clases encontradas dentro de la imagen en la figura 27 y 29, y se comparó con la precisión observada en la matriz de errores. El Cuadro 10 muestra la precisión de cada una de las clases encontradas en las imágenes de manera individual.

Cuadro 11. Precisión individual de cada clase.

		Ко	blenz, Aleman	ia.	Мс	orelos, México	elos, México	
		Valores	Valores	Precisión	Valores	Valores	Precisión	
No.	CLASE	correctos	erróneos	(%)	correctos	erróneos	(%)	
1	Agua Profunda	90,450	224	99.8	125	85	59.5	
2	Agua Somera	85,820	11	100.0	368	22086	1.6	
3	Suelo	851,212	377,687	69.3	675191	125574	84.3	
4	Asfalto	181,241	29,212	86.1	91569	8352	91.6	
5	Veg. Alta	150,734	31,955	82.5	19806	26486	42.8	
6	Veg. Media	499,978	261,430	65.7	543642	171927	76.0	
7	Veg. Baja	46,653	66,432	41.3	13707	13182	51.0	
8	Veg. Oscura	7,561	2,147	77.9	667	8389	7.4	
9	Nube	368	15	96.1	-	-	-	
10	Sombra	1,630	850	65.7	-	-	-	
	Total	1915647	769963	71.3	1345075	376081	78.1	

Las clases con menor precisión son aquellas que presentan mayor número de asignaciones incorrectas en la matriz de error, y como era de esperarse, corresponden a las clases Suelo, Vegetación Baja, y Sombra.

Sin embargo, al considerar la baja importancia de estos errores y la precisión individual de cada una de las clases respecto a los valores reales, se calculó que el error debido a la similitud entre clases fue de únicamente 13%. Este valor, además de ser relativamente bajo, puede ser descartado para muchos fines por las razones anteriormente mencionadas.

5.5 Observaciones generales para la clasificación genérica.

A continuación se hacen algunas observaciones generales que es importante resaltar para el uso del algoritmo de clasificación, además de su mejoramiento, aplicaciones, y limitaciones.

5.5.1 Ventajas.

El uso de este algoritmo tiene varias ventajas respecto a la implementación de otros métodos de clasificación de coberturas terrestres que usan métodos estadísticos. La principal ventaja de éste, es que a diferencia de todos los demás clasificadores de objetos, su ejecución no requiere de sitios de entrenamiento. Esto significa que la clasificación de objetos no requiere ningún otro insumo además de las bandas de reflectancia, haciendo innecesaria (para los objetivos del algoritmo) la información verificada en campo.

Además, casi todo el proceso se hace de manera automática una vez que el algoritmo está programado. Lo único que se requiere es hacer el pre-procesamiento de imágenes para convertir los valores de radianza a reflectancia y la remoción de efectos atmosféricos.

Finalmente, por la estructura del algoritmo basada en decisiones booleanas, es mucho más rápido para una computadora la clasificación de coberturas terrestres por este método que por medio de los clasificadores tradicionales que requieren una gran cantidad de cálculos principalmente estadísticos.

Sin embargo, el uso de este algoritmo y de este tipo de imágenes, supone algunos problemas debido a sus características.

5.5.2 Desventajas.

Dentro de las posibles limitaciones que se pueden presentar durante la implementación de este algoritmo, la principal desventaja es que puede haber confusión entre clases similares debido a la ausencia de bandas térmicas y de radiación infrarroja media que limiten la cantidad de datos en otras longitudes de onda. Esto significa que para alguna clasificación que involucre dichas bandas de

otro sensor, será más fácil discriminar entre objetos con firmas espectrales similares.

Adicionalmente, por la arbitrariedad con la que se definieron los umbrales, es posible que para quien implementa este algoritmo que las coberturas vegetales denominadas como "baja", "media" y "alta" tengan una connotación diferente. Como se mencionó anteriormente, en la mayoría de los trabajos de investigación donde se hace mención de ésta terminología, estas clases son definidas a criterio del autor en cada trabajo; por lo que, lo que de acuerdo al algoritmo corresponde a alguna de las clases anteriores, podría no significar lo mismo para otro autor.

5.5.3 Mejoras que se le pueden hacer al algoritmo de clasificación.

Aunque las ventajas de la implementación de este algoritmo pueden significar un ahorro de tiempo respecto a otros clasificadores, es posible hacer más autónomo el proceso de clasificación, como lo hizo Palacios *et al.* (2006).

Este autor, programó su método de clasificación de tal manera que las correcciones para la remoción de efectos debido a la atmósfera fueran parte del mismo algoritmo; y una mejora similar se le puede hacer al algoritmo presentado en este trabajo.

El algoritmo trabaja a partir de valores de reflectancia, pero si se implementan las mejoras anteriormente mencionadas, es posible que se automatice la corrección atmosférica; y así, incluso las imágenes con nivel de procesamiento 1B podrían no requerir un tratamiento previo.

Finalmente, si se desea hacer un análisis que requiera imágenes de días consecutivos, es deseable que se incorpore al algoritmo un método de corrección de efectos angulares de la imagen causados por la geometría iluminación-sensor como el propuesto por Bolaños *et al.* (2007).

5.5.4 Posibles aplicaciones.

Tradicionalmente, los clasificadores de objetos terrestres se han utilizado para la obtención de mapas de uso del suelo y para medir el cambio en el uso de la tierra a largo plazo. Sin embargo, dada la periodicidad de toma de imagen en una misma

área por los satélites RapidEye, es posible hacer otro tipo de estudios más específicos que requieren análisis multitemporal con periodos cortos de tiempo.

Algunos ejemplos de lo que puede hacerse con los resultados de la implementación este algoritmo son:

- Cuantificación de áreas afectadas por incendios; además de observar el avance de la afectación diariamente, se puede calcular de manera rápida la superficie afectada por éstos.
- Cálculo de tazas de deforestación. En lugares en donde el paisaje cambia rápidamente debido a actividades humanas, muchas veces se hace necesaria la cuantificación en tiempo real de superficies afectadas; y la clasificación automática de dos o más imágenes tomadas en días consecutivos de la misma área, puede significar una ayuda para estos fines.
- Cálculo de superficies afectadas por inundaciones. Si las condiciones de nubosidad lo permiten, es posible hacer la clasificación de la misma escena en 2 fechas diferentes, y por lo tanto conocer inmediatamente el área de afectación causada por este tipo de fenómenos.

Postgrado de Hidrociencias

6 CONCLUSIONES

- En el presente trabajo se desarrolló un algoritmo de clasificación de objetos terrestres basado en decisiones booleanas dentro de un árbol de decisión en donde es posible diferenciar 11 clases diferentes con una precisión del 87.1%. Por sus características, este algoritmo no requiere de sitios de entrenamiento y se basa en los patrones espectrales de cada pixel.
- La metodología utilizada en el presente trabajo fue adecuada para la generación del algoritmo de clasificación genérica de objetos para el caso de las imágenes RapidEye.
- Las clases que presentan una mayor precisión al correr el algoritmo fueron Agua Profunda, Agua Somera, Vegetación de cobertura Alta y Nubes.
- La clasificación genérica de objetos terrestres utilizando imágenes RapidEye representa un ahorro de tiempo respecto a las clasificaciones basadas en métodos estadísticos utilizados tradicionalmente debido a que no requiere información de campo, y a que es un proceso desatendido por el usuario al no necesitar sitios de entrenamiento.
- Por la periodicidad de la toma de imágenes por los satélites RapidEye, es posible realizar diferentes tipos de estudios en el campo de los recursos naturales utilizando este algoritmo; mismos que difícilmente se pueden hacer utilizando imágenes de otros sensores.
- La ausencia de bandas que registren radiación de longitudes de onda mayores, tales como la infrarroja media y la infrarroja térmica, representan un problema para la clasificación de objetos cuyos patrones espectrales son muy similares en el espectro visible e infrarrojo cercano.

7 RECOMENDACIONES.

Existen diversas mejoras que se le pueden hacer al algoritmo presentado en este trabajo con el fin de hacer más autónomo el proceso. Algunas de las mejoras más factibles son las siguientes:

Incorporar la conversión a reflectancia dentro del algoritmo. Actualmente, el algoritmo trabaja únicamente con valores de reflectancia, pero es deseable que se incorpore el método de conversión a partir de la radianza, disminuyendo así el preprocesamiento necesario a las imágenes para su aplicación.

Incorporar la corrección atmosférica al algoritmo. Esta mejora puede hacerse a la par de la anterior, y de esta manera, el ahorro de tiempo podría ser mayor ya que uno de los pasos más tardados para la implementación del algoritmo, es precisamente esta parte del procesamiento.

Incorporar corrección de los efectos dela geometría de iluminación-visión (BRDF). Esta mejora es deseable si lo que se desea es hacer un análisis multitemporal de la misma escena en un periodo de tiempo relativamente corto, ya que estandarizaría los valores de reflectancia entre imágenes de diferentes fechas.

Automatizar el algoritmo con todas las recomendaciones anteriores mediante el uso de un lenguaje de programación. Es decir, que lea directamente desde el metadato los datos de la imagen; que lea el formato original de la misma, y que realice los cálculos y procesos necesarios que conlleven a la obtención de una imagen clasificada. Si se logra esto, el proceso de clasificación de coberturas terrestres quedaría completamente automatizado.

8 **REFERENCIAS**

- Ayala, R. M., & Menenti, M. (2001). Metodología para la búsqueda del mejor clasificador de imágenes de satélite. *Teledetección, medio ambiente y cambio global.*, 469-472.
- Bolaños González, M. A., Paz Pellat, F., Palacios Velez, E., Mejía Sáenz, E., &
 Huete, A. (2007). Modelación de los efectos de la geometría Sol-Sensor en la reflectancia de la vegetación. *Agrociencia, 41*, 527-537.
- Chavez, P. S. (1996). Image-Based Atmospheric Corrections Revisited and Improved. *Photogrammetric Engineering and Remote Sensing, 62*(9), 1025-1036.
- Chuvieco, E. (1990). Fundamentos de teledetección espacial. España: Rialp.
- Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V., & Calvin, W. M. (1993).*The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0.*U.S. Geological Survey.
- Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V., & Calvin, W. M. (1993). The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns. U.S. Geological Survey.
- Cortijo, F. J., Pérez, B. N., & Damas, S. (1997). A comparison of multispectral image classifiers using high-dimensional simulated data sets. Barcelona: VII Symposium on Pattern Recognition and Image Analysis.
- Eastman, J. R. (2009). IDRISI Taiga, Guide to GIS and Imagine Processing. Clark University. Worcester, MA. USA: Clark Labs.
- Han, L. (1997). Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. *Photogramm Eng. Remote Sensing.*, 63, 701-705.
- IDL. (2009). Atmospheric Correction Module: QUAC and FLAAASH User's Guide (4.7 ed.). IDL.

- Jaewon, C., Joon-Sun, W., & Lee, S. (2008). ATC: An Image-based Atmospheric Correction Software in MATLAB and SML. *Korean Journal of Remote Sensing*, 24(5), 417-425.
- Jensen, J. R. (2000). *Remote Sensing of the Environment. An Earth Resource Perspective.* New Jersey: Prentice Hall.
- Jhonston, C. A. (1998). *Geographic Information Systems in Ecology.* Minnesota, USA: Blackwell Science.
- Lambeck, P. F., Kauth, R., & Thomas, G. S. (1978). Data screening and prepocessing for Landsat MSS data. University of Michigan, Ann Harbor.: Proceedings 12th International Symposium on Remote Sensing of Environmental.
- Lobell, D., & Asner, G. (2002). Moisture effects on soil reflectance. Soil Scientific American Journal, 66, 722-727.
- Mattew, M. W., Adler-Golden, S. M., Berk, A., Ritsmeier, S. C., Levine, R. Y., Barnsein, L. S., . . . Miller, D. P. (2000). Status of Atmospheric Correction Using a MODTRAN-4 based algorithm. SPIE Proceedings, Altorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI., 4049(6), 199-207.
- Palacios Velez, L. A., Paz Pellat, F., Oropeza Mota, J. L., Figueroa Sandoval, B., Martínez Menes, M., Ortiz Solorio, C. A., & Exebio García, A. (2006). Clasificador Genérico de Objetos en Imágenes ETM+. *Agrociencia, 40*(005), 613-626.
- Pascual Ramírez, F., Paz Pellat, F., Martínez Menes, M., Palacios Velez, E., Mejía Sáenz, E., & Rubio Granados, E. (2009). Clasificador genérico de objetos en Imágenes AVHRR. *Terra Latinoamericana, 28*, 1-13.
- Paz Pellat, F., Palacios Velez, E., Bolaños González, M., Palacios Sánchez, L., Martinzez Menes, M., Mejía Sáenz, E., & Huete, A. (2007). Diseño de un índice espectral de la vegetación; NDVIcp. Agrociencia, 41, 539-554.

Paz Pellat, F., Palacios Vélez, E., Mejía Sáenz, E., Martínez Menes, M., & Palacios Sánchez, L. (2005). Análisis de los espacios espectrales de la reflectividad del follaje de los cultivos. *Agrociencia*, *39*, 293-301.

- Ranganath, R., Navalgund, V., Jayaraman, R., & Roy, P. S. (2007). Remote Sensing Applications: An Overview. *Current Science*, *93*, 1747-1766.
- RapidEye US, LLC. (2012). Satellite Imagery Product Specifications (4 ed.). Germany: RapidEye.
- Richardson, A. J., & Wiegand, C. L. (1977). *A table look-up procedure for rapidly mapping vegetation cover and crop development.* Purdue University, West Lafayette, IN, USA: LARS Symposia.
- Salisbury, J. W., Walter, L. S., Vergo, N., & D'Aria, D. M. (1991). Infrared (2.1-25 micrometers) Spectra of Minerals: Johns Hopkins University Press.
- Schuster, C., Forster, M., & Kleinschmit, B. (2012). Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. *International Journal of Remote Sensing*, *33*(17), 5583-5599.
- Stoner, E. R., & Baumgardner, M. F. (1981). Characteristic variations in reflectance of surface soils. *Soil Scientific American Journal, 45*, 1161-1165.
- Wharton, S. (1989). *Knowledge-Based Spectral Classification of Remotely Sensed Image Data.* USA: John Wiley and Sons.

9 ANEXOS.

Anexo 1. Convoluciones de la librería espectral 'Brown University Relab Spectrometer'.

Brown University Relab Spectrometer	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241577	555.741638	658.149353	709.026978	803.087341
Column 2: ACTINOLITE_AM3000~~1	0.432525	0.46246	0.427046	0.421949	0.441074
Column 3: ALUNITE_AL705~~2	0.67956	0.730702	0.785539	0.797419	0.80356
Column 4: ALUNITE_AL706~~3	0.764031	0.828545	0.851018	0.859092	0.862737
Column 5: BUDDINGTONITE_NHB2301~~4	0.406004	0.469905	0.517577	0.536194	0.561387
Column 6: CALCITE_CO2004~~5	0.883307	0.902519	0.91677	0.921205	0.924625
Column 7: CHLORITE_CH2402~~6	0.482344	0.5272	0.477053	0.455336	0.477618
Column 8: DOLOMITE_COD2005~~7	0.783657	0.836411	0.869604	0.877545	0.881452
Column 9: DRYGRASS~~8	0.340532	0.455294	0.585275	0.628899	0.673814
Column 10: GOETHITE_FE2600~~9	0.042925	0.122796	0.175923	0.200394	0.20783
Column 11: GREENVEG~~10	0.186742	0.257961	0.182694	0.377956	0.728174
Column 12: GYPSUM_SU2202~~11	0.882229	0.905975	0.921204	0.92392	0.926618
Column 13: HALLOYSITE_KLH503~~12	0.765933	0.821151	0.862694	0.873744	0.883919
Column 14: HEMATITE_FE2602~~13	0.084853	0.087026	0.117114	0.141863	0.137126
Column 15: ILLITE-SMECTITE_IS200~~14	0.346414	0.471374	0.543529	0.5652	0.587457
Column 16: ILLITE_IL105~~15	0.215498	0.245253	0.260377	0.267323	0.29158
Column 17: JAROSITE_JR2501~~16	0.273785	0.497466	0.667641	0.731913	0.613538
Column 18: KAOLINITE_KL500~~17	0.78876	0.85004	0.890168	0.904313	0.918705
Column 19: KAOLINITE_KL502~~18	0.62334	0.674926	0.706905	0.715546	0.72068
Column 20: MUSCOVITE_IL107~~19	0.525354	0.572846	0.613857	0.629797	0.655312
Column 21: NOTRONITE_SMN454~~20	0.457486	0.615874	0.626682	0.672335	0.686374
Column 22: PYROPHYLLITE_PY602~~21	0.743085	0.774799	0.792734	0.800621	0.813305
Column 23: SEPIOLITE_SEP3101~~22	0.505394	0.573156	0.665466	0.703678	0.760379
Column 24: SIDERITE_COS2002~~23	0.208734	0.283002	0.375855	0.414633	0.410778
Column 25: SMECTITE_SMC403~~24	0.8	0.845832	0.869063	0.877585	0.882216
Column 26: SMECTITE_SMM402~~25	0.624972	0.712233	0.731049	0.753838	0.767057
Column 27: TALC_TL2702~~26	0.853819	0.878988	0.886815	0.887002	0.866723
Column 28: TREMOLITE_AMT3001~~27	0.739941	0.788257	0.814705	0.821263	0.821325

Anexo 2. Convoluciones de la librería espectral 'CSES SIRIS (GER) Spectrometer'.

CSES SIRIS (GER) Spectrometer	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241577	555.741638	658.149353	709.026978	803.087341
Column 2: ACTINOLITE_AM3000~~1	0.201351	0.215283	0.183758	0.179004	0.188379
Column 3: ALUNITE_AL705~~2	0.609782	0.651871	0.70412	0.714987	0.715514
Column 4: ALUNITE_AL706~~3	0.74249	0.805744	0.825724	0.832392	0.837288

Column 5: BUDDINGTONITE_NHB2301~~4	0.330012	0.381083	0.421733	0.43794	0.458119
Column 6: CALCITE_CO2004~~5	0.729182	0.748678	0.762318	0.766265	0.765935
Column 7: CHLORITE_CH2402~~6	0.419487	0.462778	0.42091	0.399758	0.413149
Column 8: DOLOMITE_COD2005~~7	0.68875	0.727025	0.747875	0.751791	0.745324
Column 9: DRYGRASS~~8	0.340889	0.455785	0.585488	0.629901	0.67394
Column 10: GOETHITE_FE2600~~9	0.034822	0.088051	0.134593	0.149441	0.159243
Column 11: GREENVEG~~10	0.186801	0.257897	0.182404	0.379162	0.728466
Column 12: GYPSUM_SU2202~~11	0.716888	0.726207	0.718237	0.711462	0.702709
Column 13: HALLOYSITE_KLH503~~12	0.657544	0.707735	0.736118	0.742379	0.744558
Column 14: HEMATITE_FE2602~~13	0.05215	0.050058	0.070109	0.08706	0.088223
Column 15: ILLITE-SMECTITE_IS200~~14	0.322918	0.419861	0.48188	0.496816	0.516453
Column 16: ILLITE_IL101~~15	0.49155	0.539145	0.554704	0.55814	0.55387
Column 17: ILLITE_IL105~~16	0.178761	0.202125	0.2144	0.219338	0.23602
Column 18: JAROSITE_JR2501~~17	0.229749	0.410391	0.555174	0.614922	0.516735
Column 19: KAOLINITE_KL500~~18	0.645797	0.707119	0.749739	0.76183	0.774521
Column 20: KAOLINITE_KL502~~19	0.35518	0.381081	0.390952	0.394504	0.389848
Column 21: MUSCOVITE_IL107~~20	0.383636	0.418106	0.443167	0.454902	0.468919
Column 22: NOTRONITE_SMN454~~21	0.398093	0.534817	0.546852	0.586321	0.598292
Column 23: PYROPHYLLITE_PY602~~22	0.601526	0.630924	0.640777	0.649981	0.652749
Column 24: RECTORITE_ISR202~~23	0.324895	0.450586	0.531845	0.548674	0.560422
Column 25: SEPIOLITE_SEP3101~~24	0.406011	0.458869	0.531729	0.563656	0.604306
Column 26: SIDERITE_COS2002~~25	0.185547	0.239897	0.320653	0.356821	0.344391
Column 27: SMECTITE_SMC403~~26	0.661937	0.710695	0.737964	0.749629	0.750916
Column 28: SMECTITE_SMM402~~27	0.554038	0.618799	0.630386	0.643086	0.646855
Column 29: TALC_TL2702~~28	0.672845	0.700031	0.707316	0.710203	0.693819
Column 30: TREMOLITE_AMT3001~~29	0.701826	0.723135	0.736132	0.737261	0.722696

Anexo 3. Convoluciones de la librería espectral 'USGS Denver Beckman Spectrometer'.

USGS Denver Beckman Spectrometer	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.1493	709.0269	803.0873
Column 2: ACTINOLITE_AM3000~~1	0.202738	0.219796	0.182514	0.177749	0.194842
Column 3: ALUNITE_AL705~~2	0.64306	0.689042	0.739536	0.753467	0.763519
Column 4: ALUNITE_AL706~~3	0.729419	0.79676	0.824933	0.836715	0.844588
Column 5: BUDDINGTONITE_NHB2301~~4	0.404809	0.472881	0.526599	0.550072	0.578317
Column 6: CALCITE_CO2004~~5	0.860798	0.884366	0.905866	0.91466	0.922853
Column 7: CHLORITE_CH2402~~6	0.411878	0.454151	0.411631	0.391376	0.416623
Column 8: DOLOMITE_COD2005~~7	0.745976	0.801977	0.841484	0.851907	0.858861
Column 9: DRYGRASS~~8	0.343615	0.455485	0.582949	0.630833	0.671995
Column 10: GOETHITE_FE2600~~9	0.031369	0.102068	0.157137	0.185301	0.20153
Column 11: GREENVEG~~10	0.188145	0.257856	0.184558	0.392217	0.725789
Column 12: GYPSUM_SU2202~~11	0.830382	0.857407	0.878837	0.883582	0.889272

Column 13: HALLOYSITE_KLH503~~12	0.748479	0.802896	0.847012	0.861743	0.87431
Column 14: HEMATITE_FE2602~~13	0.058317	0.060882	0.091894	0.119831	0.121741
Column 15: ILLITE-SMECTITE_IS200~~14	0.312324	0.426742	0.499624	0.527356	0.554089
Column 16: ILLITE_IL101~~15	0.523608	0.596522	0.637775	0.649367	0.656678
Column 17: ILLITE_IL105~~16	0.240089	0.27844	0.302914	0.316581	0.347841
Column 18: JAROSITE_JR2501~~17	0.2397	0.450673	0.615563	0.6848	0.593373
Column 19: KAOLINITE_KL500~~18	0.744498	0.814475	0.8648	0.884501	0.902582
Column 20: KAOLINITE_KL502~~19	0.538473	0.590294	0.626859	0.640289	0.6496
Column 21: MUSCOVITE_IL107~~20	0.517029	0.562746	0.604235	0.623437	0.648719
Column 22: NOTRONITE_SMN454~~21	0.445405	0.605873	0.617541	0.668803	0.693615
Column 23: PYROPHYLLITE_PY602~~22	0.761699	0.791349	0.80982	0.819029	0.828211
Column 24: RECTORITE_ISR202~~23	0.373837	0.53042	0.623879	0.641578	0.656992
Column 25: SEPIOLITE_SEP3101~~24	0.52	0.586024	0.675018	0.715868	0.766572
Column 26: SIDERITE_COS2002~~25	0.195848	0.273354	0.373825	0.421044	0.429527
Column 27: SMECTITE_SMC403~~26	0.758952	0.805283	0.833972	0.844546	0.852534
Column 28: SMECTITE_SMM402~~27	0.628408	0.69255	0.710369	0.726357	0.735783
Column 29: TALC_TL2702~~28	0.835308	0.859338	0.869565	0.871334	0.858643
Column 30: TREMOLITE_AMT3001~~29	0.670453	0.70474	0.725678	0.732871	0.733278

Anexo 4. Convoluciones de la librería espectral 'John Hopkins University spectral library'.

Minerales

	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241577	555.7416	658.1493	709.0269	803.0873
Column 2: Augite-hypersthene Andesite					
(Intermediate Andesite.H2)~~1	0.209617	0.214785	0.21516	0.214475	0.209557
Column 3: Basaltic Andesite (Intermediate					
Andesite.H4)~~2	0.098886	0.107768	0.111922	0.113676	0.115689
Column 4: Anorthosite (Mafic Anorthos.H1)~~3	0.162211	0.169223	0.154025	0.154202	0.156829
Column 5: Aplite (Felsic Aplite.H1)~~4	0.449011	0.492128	0.502437	0.499944	0.496318
Column 6: Basalt (Mafic Basalt.H10)~~5	0.102544	0.12928	0.139576	0.137847	0.129249
Column 7: Basalt (Mafic Basalt.H1)~~6	0.040539	0.043062	0.043928	0.044626	0.045488
Column 8: Basalt (Mafic Basalt.H2)~~7	0.079587	0.079218	0.079461	0.080801	0.080591
Column 9: Basalt (Mafic Basalt.H5)~~8	0.148243	0.153502	0.156867	0.15715	0.154653
Column 10: Basalt (Mafic Basalt.7)~~9	0.160838	0.172108	0.17521	0.173941	0.165183
Column 11: Basalt (Mafic Basalt.H9)~~10	0.099978	0.110203	0.113131	0.112656	0.10849
Column 12: Diabase (Mafic Diabase.H1)~~11	0.174786	0.181511	0.18125	0.179717	0.173222
Column 13: Diabase (Mafic Diabase.H2)~~12	0.150549	0.156664	0.15648	0.157517	0.151015
Column 14: Diorite (Intermediate Diorite.H1)~~13	0.112471	0.114312	0.104775	0.101506	0.098925
Column 15: Dunite (Ultramafic Dunite.H1)~~14	0.217332	0.27535	0.26419	0.24622	0.208227
Column 16: Gabbro (Mafic Gabbro.H1)~~15	0.099871	0.104652	0.104296	0.102625	0.10263
Column 17: Alkalic Granite (Felsic Granite.H1)~~16	0.160521	0.170144	0.164895	0.162303	0.16182

Column 18: Granite (Felsic Granite.H2)~~17	0.155841	0.195848	0.249329	0.264733	0.274444
Column 19: Granite (Felsic Granite.H3)~~18	0.199329	0.213804	0.223058	0.22615	0.22848
Column 20: Granite (Felsic Granite.H5)~~19 Column 21: Granodiorite (Intermediate	0.244347	0.282882	0.324961	0.331461	0.331979
Granodior.H1)~~20 Column 22: Granodiorite (Intermediate	0.176275	0.183194	0.180644	0.179866	0.178141
Granodior.H2)~~21	0.096747	0.108738	0.11174	0.111521	0.112798
Column 23: Ijolite (Ultramafic Ijolite.H1)~~22	0.085942	0.092933	0.094639	0.09236	0.090669
Column 24: Lamprophyre (Mafic Lamproph.H1)~~23 Column 25: Monzonite (Intermediate	0.082835	0.08425	0.083333	0.081553	0.079715
Monzonite.H1)~~24	0.249533	0.280636	0.290584	0.289717	0.285871
Column 26: Norite (Mafic Norite.H1)~~25	0.288355	0.292196	0.287761	0.287348	0.283518
Column 27: Norite (Mafic Norite.H2)~~26 Column 28: Rhyolitic obsidian (Intermediate	0.092954	0.102686	0.101897	0.100455	0.093126
Obsidian.H1)~~27	0.054266	0.051565	0.052556	0.053548	0.054683
Column 29: Picrite (Ultramafic Picrite.H1)~~28	0.065125	0.090137	0.099449	0.095778	0.07811
Column 30: Picrite (Ultramafic Picrite.H2)~~29 Column 31: Quartz Monzonite (Intermediate	0.186972	0.22054	0.220048	0.214756	0.194091
Qmonzonite.H1)~~30	0.222218	0.285081	0.31623	0.329477	0.338988
Column 32: Rhyolite (Felsic Rhyolite.H1)~~31 Column 33: Alkalic Syenite (Intermediate	0.095922	0.115082	0.16465	0.179049	0.211708
Syenite.H1)~~32 Column 34: Nepheline Syenite (Intermediate	0.130425	0.147536	0.150709	0.14746	0.144317
Syenite.H2)~~33 Column 35: Tonalite (Bonsall Tonalite)	0.361803	0.386187	0.387332	0.385421	0.383694
(Intermediate Tonalite.H1)~~34	0.234489	0.247673	0.241288	0.238086	0.235255

Rocas

	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241	555.741	658.143	709.078	803.0841
Column 2: Augite-hypersthene Andesite (Intermediate					
Andesite.H2)~~1	0.257924	0.286686	0.316309	0.323692	0.325238
Column 3: Basaltic Andesite (Intermediate Andesite.H4)~~2	0.193652	0.209602	0.22149	0.222215	0.221116
Column 4: Anorthosite (Mafic Anorthos.H1)~~3	0.413226	0.428829	0.425977	0.429417	0.443364
Column 5: Basalt (Mafic Basalt.H10)~~4	0.192081	0.222112	0.245866	0.251842	0.254507
Column 6: Basalt (Mafic Basalt.H1)~~5	0.173784	0.195134	0.208977	0.215183	0.224625
Column 7: Basalt (Mafic Basalt.H2)~~6	0.121443	0.128033	0.134708	0.13569	0.137374
Column 8: Basalt (Mafic Basalt.H5)~~7	0.182338	0.195998	0.208254	0.211323	0.215447
Column 9: Basalt (Mafic Basalt.7)~~8	0.192039	0.211676	0.225015	0.228667	0.229137
Column 10: Basalt (Mafic Basalt.H9)~~9	0.143861	0.172131	0.197361	0.202355	0.205091
Column 11: Diabase (Mafic Diabase.H1)~~10	0.288721	0.31515	0.33059	0.335324	0.32821
Column 12: Diabase (Mafic Diabase.H2)~~11	0.288549	0.318307	0.339114	0.344722	0.332736
Column 13: Diorite (Intermediate Diorite.H1)~~12	0.172221	0.194653	0.190998	0.19511	0.220033
Column 14: Dunite (Ultramafic Dunite.H1)~~13	0.523814	0.576501	0.589439	0.579699	0.553577
Column 15: Gabbro (Mafic Gabbro.H1)~~14	0.181494	0.197921	0.201439	0.202768	0.212719
Column 16: Alkalic Granite (Felsic Granite.H1)~~15	0.3487	0.355835	0.34197	0.338799	0.346103
Column 17: Granite (Felsic Granite.H2)~~16	0.348675	0.422065	0.516029	0.534886	0.552439
Column 18: Granite (Felsic Granite.H3)~~17	0.380196	0.417742	0.447368	0.453039	0.466314

Column 19: Granite (Felsic Granite.H5)~~18	0.359958	0.446982	0.527879	0.54514	0.559588
Column 20: Granodiorite (Intermediate Granodior.H1)~~19	0.164072	0.195417	0.212057	0.214161	0.229624
Column 21: Granodiorite (Intermediate Granodior.H2)~~20	0.277679	0.296472	0.30331	0.309932	0.323514
Column 22: Ijolite (Ultramafic Ijolite.H1)~~21	0.147448	0.178669	0.19407	0.188606	0.195046
Column 23: Lamprophyre (Mafic Lamproph.H1)~~22	0.205698	0.223983	0.229265	0.22886	0.232508
Column 24: Monzonite (Intermediate Monzonite.H1)~~23	0.230051	0.257537	0.264448	0.262321	0.269468
Column 25: Norite (Mafic Norite.H1)~~24	0.066093	0.078062	0.073897	0.076276	0.093965
Column 26: Norite (Mafic Norite.H2)~~25 Column 27: Rhyolitic obsidian (Intermediate	0.275155	0.318707	0.340474	0.345807	0.333562
Column 28: Dicrite (Elltramafic Dicrite H1)~~27	0.355257	0.410455	0.334485	0.242212	0.432234
Column 29: Picrite (Ultramafic Picrite.H2)~~28 Column 30: Quartz Monzonite (Intermediate Qmonzonite.H1)~~29	0.264945 0.461478	0.311202 0.525981	0.328747	0.333256	0.327577
Column 31: Rhyolite (Felsic Rhyolite.H1)~~30	0.247018	0.307176	0.412718	0.441223	0.481324
Column 32: Alkalic Syenite (Intermediate Syenite.H1)~~31 Column 33: Nepheline Syenite (Intermediate	0.226568	0.248372	0.261494	0.263401	0.268783
Syenite.H2)~~32 Column 34: Tonalite (Bonsall Tonalite) (Intermediate	0.458818	0.493241	0.481204	0.474007	0.481387
Tonalite.H1)~~33	0.225225	0.262322	0.273331	0.269124	0.286649

Construidos por el hombre (1)

rapideye_manmade1	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.247	555.741638	658.149353	709.026978	803.087341
Concretes)~~1	0.30542	0.333768	0.350913	0.355803	0.360209
0095UUUASP)~~2 Column 4: Construction Asphalt (Paving Asphalts	0.058197	0.072857	0.089425	0.095769	0.103994
0096UUUASP)~~3 Column 5: Construction Tar (Tar	0.060576	0.07287	0.085395	0.090936	0.097558
0099UUUTAR)~~4	0.052144	0.051094	0.049334	0.048952	0.04976
0100UUUTAR)~~5	0.076545	0.07255	0.069921	0.070087	0.069662
Concretes 0397UUUCNC)~~6	0.305356	0.334624	0.34565	0.349958	0.353273
0402UUUPNT)~~7 Column 9: Plack gloss paint (Paints	0.038146	0.037898	0.036192	0.036506	0.036812
0403UUUPNT)~~8 Column 10: Black gloss paint (Paints	0.043746	0.043023	0.041757	0.041584	0.041909
0405UUUPNT)~~9	0.034789	0.036919	0.037579	0.038137	0.038506
Column 11: Black paint (Paints 0406UUUPNT)~~10 Column 12: Pine Wood (Woods	0.034466	0.035842	0.03624	0.036713	0.036917
0410UUUWOD)~~11 Column 13: Construction Concrete (Paving	0.295344	0.48188	0.714708	0.790191	0.845779
Concretes 0424UUUCNC)~~12 Column 14: Asphaltic concrete (Paving Concretes	0.214461	0.255342	0.315433	0.331763	0.351237
0425UUUASP)~~13	0.144603	0.181598	0.220434	0.237051	0.255888

Column 15: Construction Concrete (Cement					
Cinderblock 0432UUUCNC)~~14	0.280032	0.332893	0.361373	0.366624	0.36844

Construidos por el hombre (2)

rapideye_manmade2	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241	555.748	658.149	709.028	803.0841
Column 2: Red smooth-faced Brick (Bricks 0097UUUBRK)~~1	0.108684	0.144121	0.220572	0.24468	0.270685
Column 3: Cinders (Cinders 0101UUUCIN)~~2	0.038192	0.041291	0.043893	0.045016	0.046442
Column 4: Aluminum Metal (Metal 0384UUUALM)~~3	0.463401	0.499675	0.52874	0.53597	0.531609
Column 5: Olive green gloss paint (Paints 0385UUUPNT)~~4	0.124077	0.184657	0.117447	0.108631	0.415512
Column 6: Olive green gloss paint (Paints 0386UUUPNT)~~5	0.125291	0.18637	0.118813	0.109998	0.455884
Column 7: Pine Wood (Woods 0404UUUWOD)~~6	0.304588	0.513516	0.770366	0.844596	0.89256
Column 8: Olive green paint (Paints 0407UUUPNT)~~7	0.130075	0.190389	0.121721	0.113124	0.608609
Column 9: Olive green paint (Paints 0408UUUPNT)~~8	0.124363	0.182984	0.11579	0.107362	0.563694
Column 10: Bare Red Brick (Bricks 0413UUUBRK)~~9	0.046729	0.087913	0.203842	0.242034	0.271639
Column 11: Terra cotta Tiles (Tile 0484UUUPOT)~~10	0.092371	0.11507	0.14105	0.152729	0.161292
Column 12: Black tar paper (Roofing Paper					
0522UUUTAR)~~11	0.023877	0.025224	0.026892	0.027664	0.028857
Column 13: Black tar paper (Roofing Paper					
0523UUUTAR)~~12	0.041923	0.041775	0.041831	0.041978	0.042323
Column 14: Galvanized Steel Metal (Metal					
0525UUUSTLb)~~13	0.300983	0.30063	0.277911	0.269001	0.253833
Column 15: Oxidized Galvanized Steel Metal (Metal					
0526UUUSTLa)~~14	0.277336	0.260717	0.232175	0.220058	0.202564
Column 16: Reddish Asphalt roofing shingle (Shingle					
0672UUUASP)~~15	0.033124	0.040936	0.060837	0.066627	0.068442
Column 17: Construction Asphalt (Paving Asphalts					
0674UUUASP)~~16	0.071766	0.075944	0.079434	0.080676	0.082184
Column 18: Copper Metal (Metal 0681UUUCOP)~~17	0.130718	0.157354	0.169795	0.166929	0.163583
Column 19: Copper Metal (Metal 0682UUUCOP)~~18	0.084985	0.182682	0.363481	0.397122	0.455023
Column 20: Copper Metal (Metal 0692UUUCOP)~~19	0.3582	0.39719	0.237339	0.196167	0.203628

Minerales (2)

rapideye_meta_crs	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241	555.7416	658.1493	709.0269	803.087341
Column 2: Chloritic Gneiss (Gneiss Gneiss1.doc)~~1 Column 3: Garnet Gneiss (Gneiss	0.374749	0.3985	0.389182	0.493139	0.684129
gneiss2.doc)~~2	0.195512	0.209392	0.220691	0.219268	0.219689
Column 4: Syenite Gneiss (Gneiss					
gneiss4.doc)~~3	0.206937	0.224978	0.226933	0.226467	0.222309
Column 5: Albite Gneiss (Gneiss	0 467077	0 50570	0 5001 00	0 510000	0 521002
gneiss5.000) ²²² 4 Column 6: Diorite Gneiss (Gneiss	0.467277	0.50576	0.500169	0.510802	0.531982
gneiss7.doc)~~5	0.070043	0.09178	0.080303	0.083001	0.106393
Column 7: Hornfels (Hornfels					
hornfe2.doc)~~6	0.114816	0.110113	0.102117	0.100407	0.099886
Column 8: Spotted Hornfels (Hornfels hornfe3.doc)~~7	0.084427	0.090437	0.091836	0.091269	0.091654
Column 9: Dolomitic Marble (Marble)~~8	0.367067	0.36305	0.351647	0.351942	0.344769
Column 10: Serpentine Marble (Marble)~~9	0.367067	0.36305	0.351647	0.351942	0.344769
Column 11: Dolomitic Marble (Marble					
marble4.doc)~~10	0.671014	0.695716	0.69382	0.690741	0.679021
Column 12: Serpentine Marble (Marble					
marble5.doc)~~11	0.558147	0.756239	0.778041	0.815364	0.822869
Column 13: White Marble (Marble marble6.doc)~~12	0.81493	0.828276	0.832672	0.83652	0.834204
Column 14: Pink Marble (Marble marble7.doc)~~13	0.388849	0.467401	0.58271	0.609832	0.636163
Column 15: Phyllite (Phyllite	0 442200	0 44 4266	0 4 4 0 0 4 2	0 4 0 0 0 5 0	0 4 0 0 0 4 7
	0.113398	0.114366	0.110042	0.109658	0.106847
Column 16: Green Quartzite (Quartzite qtzite2.doc)~~15	0.526705	0.554226	0.565006	0.680894	0.760351
Column 17: Pink Quartzite (Quartzite qtzite3.doc)~~16	0.116927	0.160589	0.331417	0.391256	0.410141
Column 18: Purple Quartzite (Quartzite qrtzit4.doc)~~17	0.355554	0.400621	0.489817	0.520738	0.525917
Column 19: Gray Quartzite (Quartzite qrtzit5.doc)~~18	0.346133	0.414589	0.472718	0.492819	0.518086
Column 20: Graphite Schist (Schist schist10.doc)~~19	0.093556	0.097784	0.101446	0.103192	0.10682
Column 21: Hornblende Schist (Schist schist2.doc)~~20	0.076386	0.083303	0.077856	0.077189	0.075907
Column 22: Mica Schist (Schist					
schist3.doc)~~21	0.137265	0.158969	0.166049	0.165015	0.164582
Column 23: Tourmaline Schist (Schist schist4.doc)~~22	0.091852	0.114416	0.132007	0.128895	0.124016
Column 24: Graphite Schist (Schist schist5.doc)~~23	0.076924	0.078781	0.079708	0.080083	0.080595
Column 25: Tremolite Schist (Schist schist6.doc)~~24	0.733387	0.77827	0.791456	0.806603	0.759137
Column 26: Anthophyllite Mica Schist (Schist					
schist8.doc)~~25	0.071622	0.086377	0.10745	0.116842	0.114907

Minerales (3)

rapideye_meta_fn	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.1493	709.0269	803.087341
Column 2: Syenite Gneiss (Gneiss gneiss4.doc)~~1	0.420839	0.436436	0.428495	0.418728	0.413472
Column 3: Chloritic Gneiss (Gneiss Gneiss1.doc)~~2	0.507773	0.558251	0.56726	0.658619	0.739916
Column 4: Garnet Gneiss (Gneiss gneiss2.doc)~~3	0.361286	0.405045	0.430187	0.43246	0.439735

Column 5: Albite Gneiss (Gneiss gneiss5.doc)~~4	0.651112	0.686772	0.686414	0.683615	0.700666
Column 6: Hornblende Gneiss (Gneiss gneiss6.doc)~~5	0.179653	0.198615	0.191767	0.19183	0.210778
Column 7: Diorite Gneiss (Gneiss gneiss7.doc)~~6	0.108097	0.127352	0.119475	0.123724	0.147073
Column 8: Augen Gneiss (Gneiss gneiss8.doc)~~7	0.307362	0.349116	0.357255	0.351021	0.366511
Column 9: "Banded" Hornfels (Hornfels hornfel1.doc)~~8	0.377448	0.425551	0.436388	0.431877	0.447852
Column 10: Hornfels (Hornfels hornfel2.doc)~~9	0.2431	0.247742	0.244411	0.24333	0.24759
Column 11: Spotted Hornfels (Hornfels hornfel3.doc)~~10	0.276314	0.311804	0.334173	0.336317	0.351168
Column 12: Dolomitic Marble (Marble)~~11	0.627675	0.632537	0.631343	0.626197	0.622974
Column 13: Serpentine Marble (Marble)~~12	0.510153	0.564095	0.563679	0.55657	0.568665
Column 14: Dolomitic Marble (Marble marble4.doc)~~13	0.803438	0.814051	0.814122	0.807863	0.800674
Column 15: Serpentine Marble (Marble marble5.doc)~~14	0.743066	0.822583	0.835238	0.838457	0.842752
Column 16: White Marble (Marble marble6.doc)~~15	0.843269	0.857341	0.860975	0.856577	0.857331
Column 17: Pink Marble (Marble marble7.doc)~~16	0.723311	0.771677	0.816682	0.821433	0.828349
Column 18: Phyllite (Phyllite phyllit1.doc)~~17	0.114966	0.123368	0.123247	0.121637	0.12086
Column 19: Green Quartzite (Quartzite qtzite2.doc)~~18	0.720545	0.753592	0.768682	0.782903	0.793196
Column 20: Pink Quartzite (Quartzite qtzite3.doc)~~19	0.32835	0.433524	0.594176	0.617938	0.633623
Column 21: Purple Quartzite (Quartzite qrtzit4.doc)~~20	0.502082	0.562308	0.656754	0.670459	0.678816
Column 22: Gray Quartzite (Quartzite qrtzit5.doc)~~21	0.612548	0.67493	0.718606	0.725265	0.733751
Column 23: Green Quartzite (Quartzite qrtzit6.doc)~~22	0.455067	0.496044	0.518963	0.530171	0.544549
Column 24: Graphite Schist (Schist schist10.doc)~~23	0.189757	0.204106	0.2201	0.227685	0.240802
Column 25: Hornblende Schist (Schist schist2.doc)~~24	0.252543	0.294987	0.292459	0.29545	0.322814
Column 26: Mica Schist (Schist schist3.doc)~~25	0.195937	0.227628	0.244201	0.246794	0.24813
Column 27: Graphite Schist (Schist schist5.doc)~~26	0.101809	0.105795	0.107124	0.106166	0.105387
Column 28: Tremolite Schist (Schist schist6.doc)~~27 Column 29: Anthophyllite Mica Schist (Schist	0.760925	0.786288	0.800555	0.796702	0.782263
schist8.doc)~~28	0.139674	0.1791	0.232426	0.25049	0.265056
Column 30: Hornblende Schist (Schist schist9.doc)~~29	0.236749	0.253052	0.234235	0.235002	0.254406

Rocas (2)

rapideve sed crs	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.24577	555.7463	658.1435	709.0297	803.0834
Column 2: Fossiliferous Limestone (Limestone					
limestone.1)~~1	0.249746	0.324432	0.378401	0.394658	0.412583
Column 3: Dolomitic Limestone (Limestone					
limestone.2)~~2	0.441821	0.56708	0.633032	0.656563	0.669927
Column 4: Limestone (Limestone limestone.3)~~3 Column 5: Arkosic Sandstone (Sandstone	0.127912	0.129438	0.125129	0.122054	0.118607
sandstone.1)~~4	0.258981	0.359095	0.424373	0.449509	0.481626
Column 6: Glauconitic Sandstone (Sandstone)~~5 Column 7: Sandstone (Micaceous Red) (Sandstone	0.123451	0.158971	0.157705	0.155531	0.161286
sandstone.3)~~6	0.050885	0.079117	0.146291	0.168943	0.187296
					01

Column 8: Ferruginous Sandstone (Sandstone sandstone.4)~~7	0.092947	0.120087	0.1653	0.185275	0.211092
Column 9: Shale (Arenaceous) (Shale shale.1)~~8	0.18724	0.204471	0.228911	0.240396	0.258495
Column 10: Shale (Phosphatic) (Shale shale.2)~~9	0.102015	0.119663	0.137101	0.151191	0.179954
Column 11: Shale (Calcareous) (Shale shale.3)~~10	0.267414	0.290649	0.30838	0.311161	0.314236
Column 12: Black Shale (Shale)~~11	0.059864	0.071949	0.082078	0.08593	0.088436
Column 13: Illite-bearing Shale (Shale shale.5)~~12	0.171584	0.173559	0.150281	0.13952	0.133586
Column 14: Carbonaceous Shale (Shale shale.6)~~13	0.066337	0.076452	0.085565	0.089798	0.094465
Column 15: Siltstone (Siltstone siltstone.1)~~14	0.245062	0.26233	0.285479	0.290213	0.295573
Column 16: "Limestone" Siltstone (Siltstone					
siltstone.2)~~15	0.267801	0.290959	0.312416	0.328527	0.353575

Sedimentos

rapideye_sed_fn	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.1493	709.0269	803.0873
Column 2: Limestone (Limestone limestone.3)~~1	0.276569	0.300353	0.319601	0.323057	0.332947
Column 3: Arkosic Sandstone (Sandstone sandstone.1)~~2	0.481389	0.606583	0.674933	0.69093	0.712988
Column 4: Glauconitic Sandstone (Sandstone)~~3 Column 5: Sandstone (Micaceous Red) (Sandstone	0.287743	0.363944	0.379941	0.379442	0.395852
sandstone.3)~~4	0.110423	0.161552	0.284163	0.321146	0.358076
Column 6: Ferruginous Sandstone (Sandstone	0 10272	0 221001	0 220020	0 266202	0 406702
sallustone.4) 5	0.16275	0.251961	0.529929	0.500565	0.400702
Column 7: Shale (Arenaceous) (Shale shale.1)~~6	0.234839	0.272316	0.315234	0.334463	0.366288
Column 8: Shale (Phosphatic) (Shale shale.2)~~7	0.21338	0.272684	0.345744	0.387275	0.450332
Column 9: Shale (Calcareous) (Shale shale.3)~~8	0.38078	0.433997	0.48059	0.49393	0.518692
Column 10: Black Shale (Shale)~~9	0.070431	0.085501	0.106116	0.116079	0.13232
Column 11: Illite-bearing Shale (Shale shale.5)~~10	0.332694	0.372035	0.352088	0.338026	0.349069
Column 12: Carbonaceous Shale (Shale shale.6)~~11	0.075637	0.092053	0.113244	0.124452	0.141828
Column 13: Siltstone (Siltstone siltstone.1)~~12	0.263491	0.2992	0.35058	0.367053	0.394427
Column 14: "Limestone" Siltstone (Siltstone siltstone.2)~~13	0.561014	0.623317	0.672108	0.689976	0.715473

Hielo

rapideye_snow	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.74163	658.14935	709.02697	803.08734
Coarse Granular Snow	0.977587	0.971613	0.942575	0.921451	0.871492
Fine Snow	0.991911	0.989717	0.978463	0.96924	0.950425
Frost	0.99468	0.993456	0.986763	0.981413	0.969576
Medium Granular Snow	0.985078	0.980751	0.960558	0.946364	0.91077

Suelos

rapideye_soils	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241	555.7416	658.1493	709.0269	803.087341
Column 2: Very dark grayish brown silty loam (Plaggept					
85P3707)~~1	0.097511	0.157518	0.231878	0.273168	0.333117
Column 3: Grayish brown loam (Haplustall 85P4569)~~2	0.079383	0.124481	0.182967	0.219423	0.269373
Column 4: Dark grayish brown silty loam (Agialboll					
85P5339)~~3	0.038263	0.068742	0.10489	0.124457	0.158324
Column 5: Pale brown silty loam (Fragiboralf					
86P1994)~~4	0.088488	0.185146	0.286146	0.3187	0.357544
Column 6: Dark brown fine sandy loam (Haplumbrept					
86P4561)~~5	0.036401	0.082473	0.135579	0.163601	0.202029
Column 7: Gray silty clay (Haplaquoll 86P4603)~~6	0.052419	0.085114	0.122878	0.14506	0.183423
Column 8: Reddish brown fine sandy loam (Paleustalf					
87P1087)~~7	0.15862	0.206235	0.272971	0.299415	0.334817
Column 9: Reddish brown fine sandy loam (Paleustalf					
87P2376)~~8	0.043466	0.116587	0.234055	0.271129	0.314496
Column 10: Brown sandy loam (Paleustalf 87P2410)~~9	0.032559	0.082994	0.149637	0.184261	0.241079
Column 11: Brown to dark brown gravelly loam					
(Haploxeralf 87P313)~~10	0.032839	0.064805	0.110706	0.134843	0.173873
Column 12: Brown to dark brown gravelly fine sandy					
loam (Xerumbrept 87P325)~~11	0.06417	0.101297	0.151246	0.174006	0.205284
Column 13: Brown silty loam (Camborthid 87P337)~~12	0.088762	0.174171	0.262645	0.292976	0.328298
Column 14: Brown loamy fine sand (Haplustalf					
87P3468)~~13	0.095111	0.145742	0.211181	0.24412	0.28997
Column 15: Brown fine sandy loam (Haplustalf					
87P3665)~~14	0.098988	0.177652	0.27987	0.310197	0.347105
Column 16: Brown fine sandy loam (Haplustalf					
87P3671)~~15	0.113547	0.16576	0.236049	0.267172	0.308984
Column 17: Gray/dark brown extremely stoney coarse					
sandy (Cryumbrept 87P3855)~~16	0.022713	0.05978	0.100618	0.125859	0.167804
Column 18: Dark reddish brown organic-rich silty loam					
(Cryohumod 87P4264)~~17	0.084144	0.10844	0.156203	0.199978	0.268317
Column 19: Very dark grayish brown loam (Cryoboroll					
87P4453)~~18	0.009981	0.050551	0.110038	0.137775	0.174322
Column 20: Dark reddish brown fine sandy loam					
(Paleustalf 87P473)~~19	0.100175	0.158889	0.275115	0.316876	0.357457
Column 21: Brown to dark brown sand					
(Quartzipsamment 87P706)~~20	0.075617	0.144931	0.207992	0.232602	0.262633
Column 22: Brown to dark brown loamy sand					
(Hapludult 87P707)~~21	0.092938	0.16918	0.244403	0.278389	0.31976
Column 23: Vary dark grayish brown loam (Agriudoll					
87P757)~~22	0.019309	0.081757	0.158021	0.196206	0.257675
Column 24: Brown to dark brown sandy loam (Hapludoll					
87P764)~~23	0.063981	0.143829	0.233311	0.269964	0.320166
Column 25: Dark yellowish brown micaceous loam					
(Dystrochrept 88P2535)~~24	0.053859	0.170735	0.290285	0.331821	0.374212
Column 26: Brown sandy loam (Haplumbrept					
88P4699)~~25	0.059624	0.105336	0.158811	0.188624	0.223256

Vegetación

rapideye_veg	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.1493	709.0269	803.087341
Column 2: Conifer (Conifers conifers.doc)~~1	0.052359	0.092299	0.045221	0.195642	0.50138

Column 3: Decidous (Deciduous decidous.doc)~~2	0.061511	0.094716	0.051235	0.206226	0.531388
Column 4: Grass (Green grass grass.doc)~~3	0.043491	0.097305	0.051114	0.175474	0.476026

Anexo 5. Convoluciones de la librería espectral 'JPL Mineral Spectral library with <45 micrometers grainsize'.

rapideve inl1	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658,149353	709.026978	803.087341
Column 2: ACTINOLITE IN-4A~~1	0.566537	0.609213	0.566133	0.577137	0.595306
Column 3: ALBITE TS-6A~~2	0.742615	0.76289	0.768604	0.769865	0.772796
Column 4: ALMANDINE GARNET NS-4A~~3	0.348637	0.373809	0.391929	0.394369	0.40156
Column 5: ALUNITE SO-4A~~4	0.73224	0.805708	0.859563	0.869531	0.867622
Column 6: AMBLYGONITE P-3A~~5	0.804622	0.818324	0.824137	0.825559	0.825832
Column 7: ANALCIME TS-18A~~6	0.762128	0.800161	0.833886	0.844299	0.855283
Column 8: ANATASE SYNTHETIC O-12A~~7	0.944475	0.957447	0.95923	0.959374	0.959298
Column 9: ANDESINE TS-4A~~8	0.717571	0.784437	0.815344	0.820676	0.82431
Column 10: ANGLESITE SO-10A~~9	0.466368	0.524834	0.577206	0.595789	0.617817
Column 11: ANHYDRITE SO-1A~~10	0.826773	0.838723	0.851563	0.863971	0.879496
Column 12: ANORTHITE TS-5A~~11	0.65619	0.688291	0.694278	0.695546	0.696452
Column 13: ANTHOPHYLLITE IN-8A~~12	0.652219	0.67059	0.668433	0.665325	0.651257
Column 14: ANTLERITE SO-11A~~13	0.476619	0.484513	0.147785	0.124642	0.146079
Column 15: APATITE P-1A~~14	0.748632	0.776717	0.779656	0.782248	0.791833
Column 16: APHTHITALITE SO-9A~~15	0.879768	0.909017	0.921634	0.92516	0.927697
Column 17: ARSENOPYRITE S-5A~~16	0.118058	0.121893	0.123844	0.125058	0.125032
Column 18: ATACAMITE H-4A~~17	0.332008	0.338195	0.174264	0.148898	0.170749
Column 19: AUGITE IN-15A~~18	0.156128	0.193051	0.152612	0.130704	0.117185
Column 20: AZURITE C-12A~~19	0.384136	0.366228	0.210616	0.185318	0.193871
Column 21: BARITE SO-3A~~20	0.911502	0.922324	0.925966	0.928703	0.93288
Column 22: BERYL CS-2A~~21	0.561872	0.565541	0.563116	0.558764	0.548499
Column 23: BIOTITE PS-23A~~22	0.087358	0.106143	0.109109	0.107481	0.118809
Column 24: BORAX B-6A~~23	0.881619	0.894188	0.897509	0.897999	0.897785
Column 25: BORNITE S-9A~~24	0.048421	0.042681	0.050332	0.057966	0.070539
Column 26: BRUCITE OH-1A~~25	0.893321	0.920518	0.936036	0.941883	0.938552
Column 27: BUDDINGTONITE FELDS TS-11A~~26	0.438426	0.532864	0.606535	0.630461	0.654903
Column 28: BYTOWNITE TS-13A~~27	0.66058	0.699526	0.715863	0.721337	0.726718
Column 29: CALCITE C-3A~~28	0.75079	0.794517	0.822488	0.831788	0.842199
Column 30: CALCITE C-3D~~29	0.68781	0.727463	0.758317	0.773013	0.79206
Column 31: CALCITE C-3E~~30	0.825494	0.843499	0.852959	0.857821	0.864254
Column 32: CASSITERITE O-3A~~31	0.077055	0.093902	0.127097	0.139583	0.150896
Column 33: CELESTITE SO-5A~~32	0.836154	0.851093	0.86515	0.869822	0.868488
Column 34: CERUSSITE C-10A~~33	0.878938	0.903941	0.922871	0.927254	0.930768

Colegio de Postgraduados

Column 35: CHABAZITE TS-15A~~34	0.822098	0.852157	0.872688	0.879432	0.885944
Column 36: CHALCOCITE S-8A~~35	0.028994	0.026751	0.026268	0.025791	0.025672
Column 37: CHALCOPYRITE S-4A~~36	0.031779	0.05234	0.063815	0.06646	0.070539
Column 38: CHLORITE (PYROCHLORITE) PS-	0.040000	0 000005	0.00070	0.040077	0.070040
	0.312093	0.323395	0.268276	0.249977	0.272019
Column 39: CHLORITE (RIPIDOLITE) PS-12A~38	0.239318	0.276382	0.223419	0.206704	0.226539
Column 40: CHLORITE (RIPIDOLITE) PS-12A~39	0.239318	0.276382	0.223419	0.206704	0.226539
Column 41: CHLORITE (THURINGITE) PS-12F~~40	0.215591	0.274862	0.257584	0.2486	0.258774
Column 42: CHLORITE PS-12C~~41	0.417008	0.452529	0.403402	0.385726	0.416522
Column 43: CLINOZOISITE SS-4A~~42	0.428551	0.499066	0.627292	0.648239	0.653765
Column 44: COLEMANITE B-1A~~43	0.945096	0.960414	0.973847	0.975657	0.97286
Column 45: COLUMBITE O-7A~~44	0.050453	0.051017	0.060848	0.061092	0.071849
Column 46: COOKEITE PS-9A~~45	0.39721	0.466611	0.491914	0.496358	0.499375
Column 47: CORDIERITE CS-3A~~46	0.567665	0.603211	0.631712	0.651747	0.647728
Column 48: CORRENSITE PS-10A~~47	0.266224	0.374249	0.423705	0.441728	0.483289
Column 49: CORUNDUM SYNTHETIC O-15A~~48	0.904334	0.903956	0.899393	0.897003	0.892192
Column 50: CRISTOBALITE TS-7A~~49	0.562203	0.584723	0.60438	0.610353	0.608421
Column 51: CRYOLITE H-1A~~1	0.902624	0.919413	0.927839	0.92945	0.929737
Column 52: CUMMINGTONITE IN-6A~~2	0.149968	0.176608	0.172401	0.16823	0.171007
Column 53: DICKITE PS-3A~~3	0.683939	0.769789	0.836854	0.861301	0.872368
Column 54: DIOPSIDE IN-9B~~4	0.305273	0.345086	0.355053	0.36156	0.377987
Column 55: DOLOMITE C-5A~~5	0.298737	0.406175	0.603355	0.644615	0.675825
Column 56: DOLOMITE C-5C~~6	0.826503	0.838728	0.845702	0.850796	0.858263
Column 57: ENSTATITE IN-10B~~7	0.456886	0.477777	0.485304	0.484855	0.432456
Column 58: EPIDOTE SS-1A~~8	0.345663	0.423474	0.447345	0.464591	0.477016
Column 59: EPIDOTE SS-1C~~9	0.346185	0.455943	0.490088	0.504268	0.523303
Column 60: FAYALITE NS-1A~~10	0.094059	0.13275	0.145205	0.14593	0.140475
Column 61: FERROAXINITE CS-4A~~11	0.481765	0.505944	0.577379	0.613657	0.646868
Column 62: FLUORITE H-2B~~12	0.573973	0.578587	0.577541	0.576947	0.575898
Column 63: FLUORITE PURPLE H-2A~~13	0.871902	0.874337	0.905621	0.913089	0.918363
Column 64: FORSTERITE SYNTHETI NS-2A~~14	0.5718	0.575786	0.576099	0.576289	0.577446
Column 65: GAHNITE O-11A~~15	0.636445	0.629157	0.657605	0.677795	0.701816
Column 66: GALENA S-7A~~16	0.133196	0.119269	0.117645	0.115988	0.113359
Column 67: GIBBSITE SYNTHETIC OH-3A~~17	0.935535	0.945284	0.948084	0.947352	0.94403
Column 68: GLAUBERITE SO-8A~~18	0.786888	0.827022	0.840873	0.845509	0.853968
Column 69: GLAUCONITE PS-19A~~19	0.196552	0.253932	0.179985	0.150237	0.141165
Column 70: GLAUCOPHANE IN-3A~~20	0.293217	0.304427	0.302723	0.315033	0.341375
Column 71: GOETHITE OH-2A~~21	0.0416	0.174367	0.263765	0.309296	0.352186
Column 72: GRAPHITE E-1A~~22	0.042881	0.040607	0.040154	0.040487	0.04265
Column 73: GROSSIII AR GARNET NS-38~~23	0 77552	0 796445	0 814342	0 820884	0 823232
Column 74: GYPSUM SO-28~~24	0 936184	0.947622	0.952421	0.953225	0.952431
Column 75: HALITE HALITE~~25	0.550104	0.947022	0.202721	0.9992259	0.901///2
	0.077041	0.060791	0.000200	0.226046	0.222021
	0.040040	0.009704	0.102423	0.220040	0.232301
COMMIN / /. REMATTLE STIVITETIC U-18 2/	0.020591	0.050782	0.23/383	0.210192	0.31543

Column 78: HEMIMORPHITE SS-2A~~28	0.890129	0.911085	0.929966	0.933078	0.933962
Column 79: HOWLITE B-5A~~29	0.965088	0.980221	0.990658	0.990766	0.984886
Column 80: HYDROXYAPOPHYLLITE PS-22A~~30	0.866033	0.875179	0.876601	0.877805	0.877278
Column 81: HYPERSTHENE IN-14A~~31	0.369411	0.398705	0.435878	0.457008	0.444588
Column 82: ILLITE PS-11A~~32	0.299815	0.362028	0.425482	0.454771	0.498583
Column 83: JAROSITE SO-7A~~33	0.187787	0.356357	0.599027	0.679634	0.643744
Column 84: JOHANNSENITE IN-12A~~34	0.082114	0.123318	0.165705	0.178663	0.198014
Column 85: KAOLINITE DISORDERED PS-1B~~35	0.722929	0.839235	0.887216	0.895059	0.904715
Column 86: KAOLINITE WELL ORDERED PS-1A~~36	0.838056	0.882504	0.911956	0.923376	0.932608
Column 87: KERNITE B-2A~~37	0.921233	0.936305	0.947901	0.94913	0.943927
Column 88: LABRADORITE TS-2A~~38	0.796443	0.81185	0.818241	0.819194	0.818261
Column 89: LABRADORITE TS-2B~~39	0.464837	0.47258	0.489104	0.49652	0.511618
Column 90: LEPIDOLITE LAVENDER PS-13B~~40	0.731526	0.719162	0.765683	0.771704	0.776889
Column 91: LEPIDOLITE YELLOW PS-13A~~41	0.662149	0.725301	0.741124	0.7467	0.749627
Column 92: MAGNESIOCHROMITE O-8A~~42	0.063781	0.081044	0.108008	0.115623	0.137486
Column 93: MAGNESITE C-6A~~43	0.835221	0.862027	0.868456	0.871513	0.877764
Column 94: MAGNETITE O-4A~~44	0.042551	0.041685	0.041378	0.040844	0.040435
Column 95: MALACHITE C-7A~~45	0.630626	0.628807	0.29576	0.236219	0.215223
Column 96: MARCASITE S-10A~~46	0.066712	0.075232	0.073918	0.072952	0.070435
Column 97: MICROCLINE TS-17A~~47	0.662747	0.719998	0.757022	0.761826	0.767453
Column 98: MIMETITE A-1A~~48	0.739719	0.861847	0.906893	0.915589	0.918645
Column 99: MOLYBDENITE S-11A~~49	0.096069	0.084797	0.089365	0.114302	0.148554
Column 100: MONTEBRASITE P-2A~~1	0.630185	0.634473	0.634748	0.634163	0.634489
Column 101: MONTMORILLONITE CAL PS-2B~~2	0.830044	0.875267	0.902601	0.912926	0.915926
Column 102: MONTMORILLONITE SOD PS-2D~~3	0.680708	0.750323	0.764452	0.779506	0.787999
Column 103: MUSCOVITE PS-16A~~4	0.587748	0.609191	0.61518	0.616214	0.618624
Column 104: NATROJAROSITE SO-7C~~5	0.195333	0.474388	0.655324	0.713284	0.663164
Column 105: NATROLITE TS-8A~~6	0.801158	0.82874	0.837029	0.838005	0.840649
Column 106: NEPHELINE TS-16A~~7	0.771802	0.790906	0.807926	0.811823	0.816585
Column 107: NONTRONITE PS-6A~~8	0.334556	0.516916	0.618248	0.663311	0.68822
Column 108: NONTRONITE PS-6B~~9	0.152122	0.352949	0.439948	0.509189	0.534183
Column 109: NONTRONITE PS-6D~~10	0.171232	0.30932	0.364853	0.461821	0.566113
Column 110: OLIGOCLASE TS-3A~~11	0.80665	0.824634	0.833073	0.834923	0.838072
Column 111: ORTHOCLASE TS-12A~~12	0.801374	0.814041	0.820861	0.822699	0.824948
Column 112: PALYGORSKITE PS-4A~~13	0.619486	0.685294	0.703108	0.714481	0.727611
Column 113: PERICLASE SYNTHETIC O-14A~~14	0.988092	0.989846	0.987712	0.987666	0.986506
Column 114: PLUMBOJAROSITE SO-7B~~15	0.172922	0.40622	0.616815	0.677224	0.656193
Column 115: PREHNITE PS-21A~~16	0.780385	0.794532	0.799358	0.801715	0.803834
Column 116: PYROLUSITE O-6A~~17	0.055187	0.052077	0.049514	0.049193	0.050243
Column 117: PYRITE S-2A~~18	0.069333	0.080733	0.084849	0.086524	0.081864
Column 118: PYROPHYLLITE PS-7A~~19	0.678972	0.780958	0.837819	0.850288	0.860844
Column 119: PYRRHOTITE S-12A~~20	0.045099	0.054917	0.06435	0.068132	0.074389
Column 120: QUARTZ CHRYSOPRASE TS-1E~~21	0.694006	0.708787	0.703462	0.707356	0.717373

egi	0	d	е		
stgi	ra	dι	Ja	d	DS

Column 121: QUARTZ MILKY TS-1D~~22	0.779893	0.78644	0.787739	0.787427	0.788503
Column 122: QUARTZ ROCK CRYSTAL TS-1A~~23	0.797591	0.802891	0.802479	0.801978	0.802479
Column 123: QUARTZ ROSE TS-1C~~24	0.768868	0.777756	0.780917	0.781124	0.780315
Column 124: QUARTZ SMOKY TS-1B~~25	0.728314	0.739613	0.746487	0.750285	0.758427
Column 125: REALGAR S-3A~~26	0.048902	0.242157	0.806144	0.826032	0.866059
Column 126: RHODOCHROSITE C-8A~~27	0.593183	0.625903	0.670059	0.680521	0.691243
Column 127: RHODONITE IN-1A~~28	0.499753	0.55949	0.667139	0.687919	0.703884
Column 128: RIEBECKITE IN-7A~~29	0.132202	0.131428	0.126623	0.136378	0.168106
Column 129: RUTILE O-2A~~30	0.188454	0.259375	0.33625	0.365584	0.404655
Column 130: SANIDINE TS-14A~~31	0.560016	0.642619	0.698737	0.712035	0.721485
Column 131: SAPONITE PS-24A~~32	0.770329	0.860637	0.886716	0.902265	0.905529
Column 132: SCHEELITE T-1A~~33	0.597615	0.683595	0.732348	0.744579	0.755423
Column 133: SCORODITE A-2A~~34	0.482953	0.604282	0.699607	0.729512	0.724602
Column 134: SEPIOLITE PS-5A~~35	0.770474	0.788678	0.797404	0.797363	0.795786
Column 135: SERPENTINE PS-20A~~36	0.658506	0.691029	0.701079	0.701403	0.701146
Column 136: SIDERITE C-9A~~37	0.27297	0.390905	0.482591	0.503427	0.496911
Column 137: SILLIMANITE NS-8A~~38	0.746348	0.77446	0.786503	0.790749	0.792097
Column 138: SMITHSONITE C-11A~~39	0.873968	0.889354	0.892044	0.885843	0.871756
Column 139: SODALITE TS-10A~~40	0.635399	0.617727	0.630669	0.696032	0.755041
Column 140: SPHALERITE S-1A~~41	0.310424	0.417824	0.482878	0.516728	0.553676
Column 141: SPODUMENE IN-13A~~42	0.718248	0.754444	0.784497	0.792256	0.796653
Column 142: STIBNITE S-6A~~43	0.109681	0.099362	0.091978	0.103008	0.489346
Column 143: STILBITE TS-9A~~44	0.841056	0.855693	0.863308	0.8646	0.867767
Column 144: STRONTIANITE C-1A~~45	0.84041	0.869165	0.893612	0.899017	0.899763
Column 145: SULFUR E-2A~~46	0.73251	0.8796	0.881623	0.88226	0.881936
Column 146: TALC PS-14A~~47	0.847902	0.861825	0.848505	0.847645	0.832911
Column 147: TINCALCONITE B-4A~~48	0.926	0.947371	0.963447	0.967056	0.962732
Column 148: TITANITE NS-7A~~49	0.749857	0.816816	0.842376	0.853983	0.861164
Column 149: TOPAZ NS-6A~~1	0.50877	0.506948	0.503212	0.501834	0.502489
Column 150: TOURMALINE DRAVITE-S CS-1A~~2	0.065954	0.068913	0.055503	0.051603	0.061653
Column 151: TREMOLITE IN-5A~~3	0.655173	0.670392	0.674729	0.67516	0.675928
Column 152: TRIPHYLITE P-4A~~4	0.61076	0.681028	0.732725	0.729052	0.741021
Column 153: TRONA C-4A~~5	0.769909	0.809896	0.83714	0.847115	0.85942
Column 154: TSCHERMIGITE SO-6A~~6	0.897047	0.913831	0.917801	0.918604	0.917389
Column 155: ULEXITE B-3A~~7	0.929484	0.944703	0.954751	0.955805	0.950103
Column 156: VERMICULITE PS-18A~~8	0.631161	0.689125	0.721478	0.733934	0.750199
Column 157: VERMICULITE PS-18B~~9	0.262233	0.381032	0.442111	0.454206	0.491346
Column 158: VESUVIANITE SS-3A~~10	0.718349	0.763276	0.778429	0.785858	0.789366
Column 159: WITHERITE C-2A~~11	0.751331	0.760996	0.76413	0.767835	0.772755
Column 160: WOLLASTONITE IN-2A~~12	0.81517	0.832312	0.834696	0.836029	0.834878
Column 161: ZINCITE SYNTHETIC O-13A~~13	0.943931	0.957556	0.95665	0.956851	0.955718
Column 162: ZIRCON NS-9A~~14	0.357332	0.472465	0.585614	0.632236	0.663821

Postgrado de Hidrociencias

Anexo 6. Convoluciones de la librería espectral 'JPL Mineral Spectral library with 45-125 micrometers grainsize'.

	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241577	555.741638	658.149353	709.026978	803.087341
Column 2: ACTINOLITE IN-4A~~1	0.335977	0.379642	0.32096	0.330808	0.352942
Column 3: ALBITE TS-6A~~2	0.690733	0.722294	0.727087	0.731333	0.737206
Column 4: ALMANDINE GARNET NS-4A~~3	0.25956	0.317091	0.417663	0.428951	0.470582
Column 5: ALUNITE SO-4A~~4	0.621504	0.719561	0.829867	0.854759	0.86093
Column 6: AMBLYGONITE P-3A~~5	0.825304	0.843708	0.860234	0.86365	0.865619
Column 7: ANDESINE TS-4A~~6	0.722604	0.774852	0.790781	0.79442	0.798654
Column 8: ANGLESITE SO-10A~~7	0.220032	0.261212	0.299701	0.316321	0.338882
Column 9: ANHYDRITE SO-1A~~8	0.657455	0.667778	0.692859	0.727545	0.776445
Column 10: ANORTHITE TS-5A~~9	0.599331	0.64264	0.652467	0.653091	0.644831
Column 11: ANTHOPHYLLITE IN-8A~~10	0.582426	0.608304	0.604891	0.597765	0.56756
Column 12: ANTLERITE SO-11A~~11	0.232033	0.235067	0.073227	0.067679	0.071366
Column 13: APATITE P-1A~~12	0.652307	0.676433	0.653142	0.653279	0.673805
Column 14: APHTHITALITE SO-9A~~13	0.862809	0.890331	0.903559	0.907493	0.910156
Column 15: ARSENOPYRITE S-5A~~14	0.13008	0.135706	0.138809	0.139463	0.141087
Column 16: ATACAMITE H-4A~~15	0.181018	0.169029	0.044584	0.032668	0.039017
Column 17: AZURITE C-12A~~16	0.231282	0.224939	0.064209	0.044306	0.044598
Column 18: BARITE SO-3A~~17	0.893472	0.906669	0.910192	0.915317	0.919584
Column 19: BERYL CS-2A~~18	0.660693	0.658953	0.638549	0.607388	0.537341
Column 20: BIOTITE PS-23A~~19	0.105281	0.12648	0.132569	0.132074	0.147753
Column 21: BORAX B-6A~~20	0.900211	0.905116	0.904819	0.904464	0.901723
Column 22: BORNITE S-9A~~21	0.061788	0.050382	0.05659	0.065794	0.081826
Column 23: BRUCITE OH-1A~~22	0.791336	0.849739	0.89186	0.897636	0.871885
Column 24: BUDDINGTONITE FELDS TS-11A~~23	0.263593	0.338688	0.428043	0.466832	0.513313
Column 25: CALCITE C-3A~~24	0.665748	0.733961	0.781822	0.797319	0.813063
Column 26: CALCITE C-3D~~25	0.618869	0.689284	0.746931	0.771005	0.800718
Column 27: CALCITE C-3E~~26	0.805538	0.825267	0.836287	0.841392	0.84551
Column 28: CASSITERITE O-3A~~27	0.047596	0.0475	0.051966	0.053258	0.055805
Column 29: CELESTITE SO-5A~~28	0.871113	0.871516	0.884235	0.90329	0.918868
Column 30: CERUSSITE C-10A~~29	0.82814	0.858779	0.879187	0.882836	0.887349
Column 31: CHALCOCITE S-8A~~30	0.072897	0.067553	0.063518	0.062507	0.062329
Column 32: CHALCOPYRITE S-4A~~31 Column 33: CHLORITE (PYROCHLORITE) PS-	0.06043	0.099175	0.120663	0.125017	0.128531
12E~~32	0.136336	0.142227	0.098966	0.089223	0.105728
Column 34: CHLORITE (RIPIDOLITE) PS-12A~~33	0.112244	0.124712	0.092334	0.084084	0.092438
Column 35: CHLORITE (THURINGITE) PS-12F~~34	0.100866	0.123858	0.1056	0.098221	0.101072
Column 36: CHLORITE PS-12C~~35	0.244365	0.265365	0.21168	0.196213	0.221935
Column 37: CLINOZOISITE SS-4A~~36	0.251595	0.295479	0.489773	0.51063	0.491187
Column 38: COLEMANITE B-1A~~37	0.895925	0.920085	0.937567	0.938739	0.936204

legi	0 0	de		
stg	rac	lua	do	5

Column 39: COLUMBITE O-7A~~38	0.060773	0.059059	0.058838	0.059193	0.060823
Column 40: COOKEITE PS-9A~~39	0.486172	0.565318	0.591109	0.597978	0.597516
Column 41: CORDIERITE CS-3A~~40	0.461197	0.450826	0.482083	0.519487	0.505306
Column 42: CORRENSITE PS-10A~~41	0.123157	0.18291	0.212386	0.224394	0.256342
Column 43: CORUNDUM SYNTHETIC O-15A~~42	0.928726	0.929567	0.926094	0.925681	0.922422
Column 44: CRYOLITE H-1A~~43	0.902946	0.909678	0.910851	0.911283	0.910576
Column 45: CUMMINGTONITE IN-6A~~44	0.071761	0.081075	0.079221	0.077552	0.074979
Column 46: DIOPSIDE IN-9B~~45	0.234228	0.290038	0.301746	0.310166	0.337213
Column 47: DOLOMITE C-5A~~46	0.151857	0.235335	0.439542	0.493172	0.535015
Column 48: DOLOMITE C-5C~~47	0.776671	0.806142	0.827313	0.835356	0.845464
Column 49: ENSTATITE IN-10B~~48	0.345545	0.388408	0.41846	0.41563	0.259566
Column 50: EPIDOTE SS-1A~~49	0.163447	0.250152	0.283302	0.323398	0.349051
Column 51: EPIDOTE SS-1C~~1	0.19775	0.305831	0.335407	0.370381	0.397211
Column 52: FAYALITE NS-1A~~2	0.053078	0.071331	0.077405	0.076306	0.070969
Column 53: FERROAXINITE CS-4A~~3	0.267296	0.280346	0.381723	0.448189	0.517135
Column 54: FLUORITE H-2B~~4	0.665958	0.675626	0.691114	0.69855	0.705504
Column 55: FLUORITE PURPLE H-2A~~5	0.76272	0.750463	0.829662	0.846564	0.858645
Column 56: GAHNITE O-11A~~6	0.492191	0.413333	0.449849	0.485626	0.534646
Column 57: GALENA S-7A~~7	0.143496	0.129141	0.128577	0.12782	0.125132
Column 58: GLAUBERITE SO-8A~~8	0.715955	0.749244	0.765017	0.772005	0.78577
Column 59: GLAUCONITE PS-19A~~9	0.070167	0.079163	0.048416	0.039382	0.03587
Column 60: GLAUCOPHANE IN-3A~~10	0.138462	0.138828	0.132665	0.142789	0.166303
Column 61: GRAPHITE E-1A~~11	0.033081	0.03111	0.030495	0.030808	0.03258
Column 62: GROSSULAR GARNET NS-3B~~12	0.732349	0.764622	0.809606	0.829391	0.824819
Column 63: GYPSUM SO-2B~~13	0.912288	0.918259	0.917047	0.916347	0.910445
Column 64: HALITE HALITE~~14	0.880422	0.899227	0.909832	0.911247	0.911875
Column 65: HEMATITE O-1A~~15	0.064023	0.073635	0.09932	0.10799	0.105062
Column 66: HEMIMORPHITE SS-2A~~16	0.873198	0.886278	0.891979	0.891416	0.889516
Column 67: HOWLITE B-5A~~17	0.761834	0.778269	0.786416	0.785037	0.780551
Column 68: HYDROXYAPOPHYLLITE PS-22A~~18	0.87815	0.888609	0.885787	0.887978	0.88521
Column 69: JAROSITE SO-7A~~19	0.115769	0.201952	0.339924	0.397198	0.371834
Column 70: JOHANNSENITE IN-12A~~20	0.035263	0.046486	0.056286	0.058623	0.063718
Column 71: KERNITE B-2A~~21	0.917672	0.933887	0.945325	0.94679	0.941743
Column 72: LABRADORITE TS-2A~~22	0.759206	0.794797	0.810623	0.815499	0.81514
Column 73: LABRADORITE TS-2B~~23	0.232148	0.238672	0.266247	0.287338	0.322412
Column 74: LEPIDOLITE LAVENDER PS-13B~~24	0.584905	0.529886	0.642461	0.645623	0.647918
Column 75: LEPIDOLITE YELLOW PS-13A~~25	0.607996	0.726582	0.766085	0.777227	0.753251
Column 76: MAGNESIOCHROMITE O-8A~~26	0.053758	0.051174	0.052854	0.052573	0.054475
Column 77: MAGNESITE C-6A~~27	0.779296	0.848621	0.869075	0.873446	0.882237
Column 78: MAGNETITE O-4A~~28	0.055033	0.054113	0.053715	0.053007	0.051224
Column 79: MALACHITE C-7A~~29	0.404041	0.390192	0.087825	0.055768	0.050743
Column 80: MARCASITE S-10A~~30	0.02092	0.030841	0.04708	0.055912	0.068783
Column 81: MICROCLINE TS-17A~~31	0.55331	0.661863	0.741865	0.752155	0.7631

Colegio de Postgraduados

Column 82: MIMETITE A-1A~~32	0.471097	0.73079	0.8272	0.840988	0.852142
Column 83: MOLYBDENITE S-11A~~33	0.169767	0.145667	0.152102	0.169253	0.193825
Column 84: MONTEBRASITE P-2A~~34	0.715212	0.726596	0.731122	0.732161	0.732866
Column 85: MUSCOVITE PS-16A~~35	0.482167	0.554578	0.595491	0.606576	0.612874
Column 86: NATROJAROSITE SO-7C~~36	0.114349	0.293677	0.430404	0.48541	0.449224
Column 87: NATROLITE TS-8A~~37	0.796326	0.835214	0.848939	0.85105	0.855194
Column 88: NEPHELINE TS-16A~~38	0.751357	0.77182	0.778701	0.78092	0.786872
Column 89: NONTRONITE PS-6B~~39	0.09611	0.239046	0.304841	0.370078	0.398732
Column 90: OLIGOCLASE TS-3A~~40	0.76461	0.78058	0.796908	0.797079	0.800598
Column 91: ORTHOCLASE TS-12A~~41	0.804676	0.836993	0.852741	0.856849	0.861224
Column 92: PLUMBOJAROSITE SO-7B~~42	0.124106	0.277174	0.42718	0.479344	0.465029
Column 93: PREHNITE PS-21A~~43	0.809633	0.822307	0.821419	0.82918	0.827037
Column 94: PYRITE S-2A~~44	0.125389	0.151149	0.160337	0.163576	0.155125
Column 95: PYROLUSITE O-6A~~45	0.109862	0.105361	0.09917	0.09873	0.099094
Column 96: PYROPHYLLITE PS-7A~~46	0.59023	0.722846	0.793588	0.809927	0.8281
Column 97: QUARTZ CHRYSOPRASE TS-1E~~47	0.733113	0.757545	0.678651	0.700133	0.764227
Column 98: QUARTZ MILKY TS-1D~~48	0.856346	0.864685	0.866389	0.866455	0.867499
Column 99: QUARTZ ROCK CRYSTAL TS-1A~~49	0.829004	0.834688	0.8347	0.835178	0.835943
Column 100: QUARTZ ROSE TS-1C~~1	0.802893	0.821235	0.839392	0.841748	0.844859
Column 101: QUARTZ SMOKY TS-1B~~2	0.619293	0.645446	0.670305	0.687993	0.722096
Column 102: REALGAR S-3A~~3	0.05643	0.136897	0.69673	0.722408	0.759063
Column 103: RHODOCHROSITE C-8A~~4	0.610538	0.613068	0.744861	0.753613	0.759586
Column 104: RHODONITE IN-1A~~5	0.369224	0.411788	0.585516	0.611348	0.61505
Column 105: RIEBECKITE IN-7A~~6	0.031281	0.029329	0.027775	0.029117	0.035735
Column 106: RUTILE O-2A~~7	0.0944	0.107099	0.145475	0.166661	0.203425
Column 107: SCHEELITE T-1A~~8	0.44257	0.540809	0.606925	0.627922	0.639471
Column 108: SCORODITE A-2A~~9	0.182429	0.281351	0.398027	0.450043	0.436303
Column 109: SEPIOLITE PS-5A~~10	0.788757	0.821484	0.849289	0.856823	0.863796
Column 110: SERPENTINE PS-20A~~11	0.56855	0.660827	0.669096	0.662099	0.664698
Column 111: SIDERITE C-9A~~12	0.19672	0.327344	0.448651	0.498611	0.397648
Column 112: SILLIMANITE NS-8A~~13	0.681241	0.737942	0.77005	0.782708	0.790728
Column 113: SMITHSONITE C-11A~~14	0.842565	0.859416	0.855569	0.825999	0.774568
Column 114: SODALITE TS-10A~~15	0.472191	0.405628	0.418814	0.535491	0.669794
Column 115: SPHALERITE S-1A~~16	0.147906	0.226117	0.282235	0.324601	0.381633
Column 116: SPODUMENE IN-13A~~17	0.73164	0.750925	0.791328	0.800151	0.807529
Column 117: STIBNITE S-6A~~18	0.13743	0.126046	0.117159	0.122137	0.33906
Column 118: STILBITE TS-9A~~19	0.833587	0.861733	0.87787	0.879496	0.879579
Column 119: STRONTIANITE C-1A~~20	0.812076	0.847006	0.872542	0.88003	0.883002
Column 120: SULFUR E-2A~~21	0.706199	0.924559	0.9282	0.928711	0.928705
Column 121: TALC PS-14A~~22	0.872615	0.884918	0.855994	0.851529	0.822629
Column 122: TINCALCONITE B-4A~~23	0.930399	0.948995	0.96353	0.9643	0.958114
Column 123: TITANITE NS-7A~~24	0.606158	0.729974	0.78289	0.833133	0.854556
Column 124: TOPAZ NS-6A~~25	0.564319	0.564945	0.563196	0.563971	0.567287

Column 125: TOURMALINE DRAVITE-S CS-1A~~26	0.017116	0.015731	0.014712	0.01527	0.018387
Column 126: TREMOLITE IN-5A~~27	0.735681	0.765804	0.78021	0.783323	0.783513
Column 127: TRIPHYLITE P-4A~~28	0.458682	0.51621	0.602806	0.568351	0.566478
Column 128: TRONA C-4A~~29	0.6658	0.720895	0.762013	0.777359	0.792979
Column 129: TSCHERMIGITE SO-6A~~30	0.896402	0.901455	0.901526	0.900679	0.89579
Column 130: ULEXITE B-3A~~31	0.908147	0.922654	0.931567	0.930913	0.921642
Column 131: VERMICULITE PS-18A~~32	0.54575	0.626342	0.674023	0.689414	0.704641
Column 132: VERMICULITE PS-18B~~33	0.165737	0.254008	0.301651	0.309204	0.339495
Column 133: VESUVIANITE SS-3A~~34	0.577387	0.666046	0.705042	0.72842	0.737715
Column 134: WITHERITE C-2A~~35	0.778437	0.817669	0.84081	0.853661	0.867348
Column 135: WOLLASTONITE IN-2A~~36	0.787361	0.80559	0.802483	0.805098	0.802255
Column 136: ZIRCON NS-9A~~37	0.29867	0.374757	0.497369	0.58571	0.62843

Anexo 7. Convoluciones de la librería espectral 'JPL Mineral Spectral library with 125-500 micrometers grainsize'.

	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.149353	709.026978	803.087341
Column 2: ACTINOLITE IN-4A~~1	0.155128	0.184272	0.138764	0.145251	0.162349
Column 3: ALBITE TS-6A~~2	0.627952	0.671672	0.680794	0.682754	0.688446
Column 4: ALMANDINE GARNET NS-4A~~3	0.112514	0.160458	0.313408	0.333928	0.43145
Column 5: ALUNITE SO-4A~~4	0.478858	0.603181	0.754126	0.787597	0.797143
Column 6: AMBLYGONITE P-3A~~5	0.774122	0.795783	0.820312	0.824038	0.825757
Column 7: ANDESINE TS-4A~~6	0.676129	0.730269	0.742487	0.745116	0.750927
Column 8: ANGLESITE SO-10A~~7	0.145314	0.168767	0.19268	0.203453	0.220359
Column 9: ANHYDRITE SO-1A~~8	0.497496	0.509977	0.539273	0.578554	0.636823
Column 10: ANORTHITE TS-5A~~9	0.425027	0.473166	0.479666	0.477272	0.462014
Column 11: ANTHOPHYLLITE IN-8A~~10	0.469597	0.494317	0.491683	0.483022	0.437926
Column 12: ANTLERITE SO-11A~~11	0.203708	0.203682	0.09486	0.089387	0.091668
Column 13: APATITE P-1A~~12	0.518203	0.532413	0.484324	0.481543	0.506755
Column 14: APHTHITALITE SO-9A~~13	0.807674	0.84718	0.868754	0.87431	0.878437
Column 15: ARSENOPYRITE S-5A~~14	0.09733	0.10255	0.106189	0.107824	0.11022
Column 16: ATACAMITE H-4A~~15	0.135826	0.119826	0.032154	0.026614	0.025824
Column 17: AZURITE C-12A~~16	0.167054	0.157167	0.037114	0.027625	0.028168
Column 18: BARITE SO-3A~~17	0.871736	0.887275	0.893588	0.900999	0.906708
Column 19: BERYL CS-2A~~18	0.623549	0.608741	0.560716	0.499386	0.384946
Column 20: BIOTITE PS-23A~~19	0.108306	0.13084	0.13734	0.136073	0.154173
Column 21: BORAX B-6A~~20	0.918251	0.92436	0.922907	0.92101	0.911518
Column 22: BORNITE S-9A~~21	0.065221	0.049994	0.052512	0.061797	0.078859
Column 23: BRUCITE OH-1A~~22	0.643876	0.735288	0.814642	0.820517	0.758391
Column 24: BUDDINGTONITE FELDS TS-11A~~23	0.275638	0.345022	0.420032	0.450942	0.490045

Postgrado de Hidrociencias

Colegio de Postgraduados

Column 25: CALCITE C-3A~~24	0.598483	0.694083	0.771289	0.798564	0.828745
Column 26: CALCITE C-3D~~25	0.581776	0.64656	0.70508	0.732756	0.768025
Column 27: CALCITE C-3E~~26	0.789694	0.823005	0.843402	0.851398	0.855885
Column 28: CASSITERITE O-3A~~27	0.049999	0.048039	0.048284	0.04921	0.051142
Column 29: CELESTITE SO-5A~~28	0.773644	0.762926	0.766741	0.792139	0.825939
Column 30: CERUSSITE C-10A~~29	0.760907	0.794402	0.819217	0.823628	0.82872
Column 31: CHALCOCITE S-8A~~30	0.067914	0.06409	0.061414	0.061101	0.06208
Column 32: CHALCOPYRITE S-4A~~31 Column 33: CHLORITE (PYROCHLORITE) PS-	0.061496	0.087883	0.096518	0.096592	0.096492
	0.090025	0.097159	0.00000	0.002300	0.071294
	0.100212	0.102555	0.079524	0.075304	0.077201
Column 35: CHLORITE (THORINGTE) PS-12F ³³ 34	0.080759	0.095376	0.081705	0.076294	0.077201
Column 36: CHLORITE PS-12C-35	0.194647	0.20491	0.165694	0.154062	0.170693
Column 37: CLINOZOISITE SS-4A ⁻¹³ 36	0.147733	0.1/21/8	0.363926	0.374214	0.343226
	0.796524	0.826397	0.844778	0.846281	0.844119
Column 39: COLUMBITE D-7A ³⁰³ 38	0.054492	0.052581	0.051886	0.052473	0.054661
Column 40: COORETTE PS-9A ³⁰⁰ 39	0.433175	0.528506	0.56529	0.578665	0.581706
Column 41: CORDIERTIE CS-3A ³²² 40	0.30744	0.285243	0.314214	0.354788	0.335458
Column 42: CORRENSITE PS-10A ²⁰⁰ 41	0.089415	0.128251	0.145283	0.151979	0.172901
Column 43: CORUNDUM SYNTHETIC U-15A ²⁰² 42	0.957733	0.960263	0.956/3/	0.955274	0.951765
Column 44: CRYOLITE H-1A~~43	0.865789	0.8/1/03	0.872502	0.8/1985	0.870633
Column 45: CUMMINGTONITE IN-6A~~44	0.048766	0.052057	0.050686	0.050216	0.050198
Column 46: DIOPSIDE IN-9B~~45	0.118762	0.153344	0.153533	0.158509	0.178118
Column 47: DOLOMITE C-5A~~46	0.101931	0.158209	0.326666	0.378462	0.420236
Column 48: DOLOMITE C-5C~~47	0.689525	0.736957	0.776996	0.791538	0.80491
Column 49: ENSTATITE IN-10B~~48	0.227163	0.269037	0.303086	0.297694	0.143857
Column 50: EPIDOTE SS-1A~~49	0.05833	0.098155	0.116447	0.145179	0.166674
Column 51: EPIDOTE SS-1C~~1	0.104434	0.176316	0.205457	0.249527	0.271941
Column 52: FAYALITE NS-1A~~2	0.041842	0.053539	0.056211	0.055059	0.052902
Column 53: FERROAXINITE CS-4A~~3	0.140716	0.150309	0.236157	0.304584	0.385578
Column 54: FLUORITE H-2B~~4	0.593013	0.607752	0.6315	0.64158	0.652477
Column 55: FLUORITE PURPLE H-2A~~5	0.643072	0.630323	0.733106	0.757305	0.77432
Column 56: GAHNITE O-11A~~6	0.351706	0.262811	0.298111	0.333575	0.383136
Column 57: GALENA S-7A~~7	0.150098	0.135395	0.135328	0.134686	0.131235
Column 58: GLAUBERITE SO-8A~~8	0.629698	0.664726	0.687988	0.699538	0.720586
Column 59: GLAUCONITE PS-19A~~9	0.073184	0.073184	0.047309	0.039093	0.034537
Column 60: GLAUCOPHANE IN-3A~~10	0.080239	0.080525	0.075047	0.079202	0.089603
Column 61: GRAPHITE E-1A~~11	0.037739	0.035636	0.035066	0.035708	0.03794
Column 62: GROSSULAR GARNET NS-3B~~12	0.642427	0.68716	0.763238	0.797761	0.785328
Column 63: GYPSUM SO-2B~~13	0.926164	0.935099	0.938042	0.937432	0.92968
Column 64: HALITE HALITE~~14	0.860016	0.877447	0.886129	0.887493	0.887675
Column 65: HEMATITE O-1A~~15	0.068864	0.074639	0.094288	0.101746	0.099007
Column 66: HEMIMORPHITE SS-2A~~16	0.833897	0.847843	0.853846	0.854085	0.852416
Column 67: HOWLITE B-5A~~17	0.872074	0.913462	0.932165	0.932894	0.925731

Colegio de Postgraduados

Column 68: HYDROXYAPOPHYLLITE PS-22A~~18	0.849917	0.863956	0.855552	0.860026	0.852672
Column 69: JAROSITE SO-7A~~19	0.116392	0.205351	0.353378	0.414888	0.384372
Column 70: JOHANNSENITE IN-12A~~20	0.030624	0.035435	0.039312	0.040227	0.043815
Column 71: KERNITE B-2A~~21	0.90494	0.917204	0.925764	0.927133	0.920284
Column 72: LABRADORITE TS-2A~~22	0.680032	0.742087	0.774182	0.785301	0.784516
Column 73: LABRADORITE TS-2B~~23	0.094833	0.097676	0.114816	0.129887	0.159192
Column 74: LEPIDOLITE LAVENDER PS-13B~~24	0.469539	0.406906	0.536485	0.538263	0.538448
Column 75: LEPIDOLITE YELLOW PS-13A~~25	0.526395	0.669408	0.72106	0.737579	0.700369
Column 76: MAGNESIOCHROMITE O-8A~~26	0.056402	0.054539	0.053393	0.053399	0.055317
Column 77: MAGNESITE C-6A~~27	0.736552	0.815509	0.840642	0.84433	0.854007
Column 78: MAGNETITE O-4A~~28	0.058179	0.057234	0.056878	0.055799	0.053692
Column 79: MALACHITE C-7A~~29	0.296238	0.280352	0.061044	0.040953	0.03694
Column 80: MARCASITE S-10A~~30	0.044492	0.055783	0.069568	0.076235	0.087828
Column 81: MICROCLINE TS-17A~~31	0.436672	0.562414	0.667647	0.682409	0.696244
Column 82: MIMETITE A-1A~~32	0.247113	0.548284	0.70579	0.729735	0.751569
Column 83: MOLYBDENITE S-11A~~33	0.245458	0.208269	0.214961	0.229627	0.248941
Column 84: MONTEBRASITE P-2A~~34	0.679071	0.692611	0.699757	0.701617	0.702458
Column 85: MUSCOVITE PS-16A~~35	0.400282	0.486144	0.550902	0.572844	0.57593
Column 86: NATROJAROSITE SO-7C~~36	0.121597	0.297131	0.422695	0.471133	0.43239
Column 87: NATROLITE TS-8A~~37	0.756372	0.801982	0.818273	0.819785	0.824829
Column 88: NEPHELINE TS-16A~~38	0.669181	0.692098	0.698736	0.701488	0.708516
Column 89: NONTRONITE PS-6B~~39	0.116479	0.2583	0.342841	0.381489	0.404351
Column 90: OLIGOCLASE TS-3A~~40	0.653679	0.664242	0.677783	0.67932	0.679668
Column 91: ORTHOCLASE TS-12A~~41	0.709781	0.74807	0.763256	0.766724	0.770159
Column 92: PLUMBOJAROSITE SO-7B~~42	0.124403	0.270175	0.406585	0.450757	0.432188
Column 93: PREHNITE PS-21A~~43	0.736519	0.751415	0.742702	0.759859	0.753887
Column 94: PYRITE S-2A~~44	0.129223	0.157542	0.168861	0.173715	0.164464
Column 95: PYROLUSITE O-6A~~45	0.095238	0.091662	0.086847	0.086108	0.08706
Column 96: PYROPHYLLITE PS-7A~~46	0.499946	0.63614	0.715759	0.735319	0.754366
Column 97: QUARTZ CHRYSOPRASE TS-1E~~47	0.660749	0.69309	0.533563	0.567733	0.693285
Column 98: QUARTZ MILKY TS-1D~~48	0.837048	0.846804	0.848642	0.848944	0.849938
Column 99: QUARTZ ROCK CRYSTAL TS-1A~~49	0.802818	0.812007	0.816484	0.819942	0.824918
Column 100: QUARTZ ROSE TS-1C~~1	0.713373	0.741272	0.77382	0.778115	0.782176
Column 101: QUARTZ SMOKY TS-1B~~2	0.458132	0.49441	0.532675	0.560302	0.617711
Column 102: REALGAR S-3A~~3	0.066057	0.121997	0.565924	0.597415	0.651589
Column 103: RHODOCHROSITE C-8A~~4	0.519062	0.514738	0.698585	0.708627	0.714097
Column 104: RHODONITE IN-1A~~5	0.246536	0.274688	0.458627	0.484696	0.478055
Column 105: RIEBECKITE IN-7A~~6	0.026683	0.024782	0.023391	0.023589	0.025831
Column 106: RUTILE O-2A~~7	0.088341	0.087291	0.098141	0.107439	0.125267
Column 107: SCHEELITE T-1A~~8	0.376163	0.474362	0.532962	0.552337	0.559276
Column 108: SCORODITE A-2A~~9	0.130704	0.184278	0.268882	0.314506	0.299092
Column 109: SEPIOLITE PS-5A~~10	0.698559	0.741237	0.777982	0.788474	0.798186
Column 110: SERPENTINE PS-20A~~11	0.41215	0.539378	0.535578	0.520102	0.524258

Postgrado de Hidrociencias

0.440412

Postgrado de Hidrociencias

0.487277

0.335996

Column 111: SIDERITE C-9A~~12	0.169718	0.283018	0.377769	0.43538	0.301203
Column 112: SILLIMANITE NS-8A~~13	0.596373	0.701479	0.751898	0.778421	0.800655
Column 113: SMITHSONITE C-11A~~14	0.775551	0.79877	0.786907	0.734335	0.652076
Column 114: SODALITE TS-10A~~15	0.345457	0.267418	0.277804	0.405765	0.58062
Column 115: SPHALERITE S-1A~~16	0.10822	0.144798	0.176913	0.208593	0.253602
Column 116: SPODUMENE IN-13A~~17	0.666937	0.672948	0.716131	0.722975	0.73043
Column 117: STIBNITE S-6A~~18	0.123687	0.114568	0.108312	0.115382	0.272187
Column 118: STILBITE TS-9A~~19	0.755278	0.798318	0.824156	0.826074	0.824222
Column 119: STRONTIANITE C-1A~~20	0.695365	0.7384	0.769916	0.779565	0.785873
Column 120: SULFUR E-2A~~21	0.582362	0.914868	0.922874	0.924223	0.924093
Column 121: TALC PS-14A~~22	0.870036	0.885134	0.837669	0.829639	0.786361
Column 122: TINCALCONITE B-4A~~23	0.883513	0.908864	0.924191	0.925462	0.917638
Column 123: TITANITE NS-7A~~24	0.438642	0.598169	0.662279	0.73933	0.766524
Column 124: TOPAZ NS-6A~~25	0.500016	0.498302	0.493523	0.494414	0.500704
Column 125: TOURMALINE DRAVITE-S CS-1A~~26	0.024571	0.02301	0.021826	0.021536	0.025834
Column 126: TREMOLITE IN-5A~~27	0.690785	0.730813	0.752004	0.756746	0.756499
Column 127: TRIPHYLITE P-4A~~28	0.282541	0.329758	0.429351	0.380331	0.384107
Column 128: TRONA C-4A~~29	0.563387	0.631676	0.682476	0.699213	0.717473
Column 129: TSCHERMIGITE SO-6A~~30	0.882372	0.886557	0.888867	0.887189	0.876682
Column 130: ULEXITE B-3A~~31	0.823453	0.83986	0.84711	0.844503	0.83578
Column 131: VERMICULITE PS-18A~~32	0.595185	0.673644	0.718019	0.731399	0.742934
Column 132: VERMICULITE PS-18B~~33	0.117433	0.167908	0.193294	0.195358	0.216348
Column 133: VESUVIANITE SS-3A~~34	0.426049	0.527399	0.580625	0.613927	0.62604
Column 134: WITHERITE C-2A~~35	0.678622	0.727475	0.754601	0.767205	0.780962
Column 135: WOLLASTONITE IN-2A~~36	0.704892	0.729621	0.726331	0.72959	0.72752

Anexo 8. Convoluciones de la librería espectral 'USGS Vegetation Spectral Library'.

0.182955

0.233154

rapideye_usgs_veg	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2415	555.7416	658.1493	709.0269	803.0873
Column 2: aspenlf1.spc Aspen_Leaf-A DW92-2~~1	0.038583	0.073541	0.03926	0.174357	0.45991
Column 3: aspenlf2.spc Aspen_Leaf-B DW92-3~~2 Column 4: blackbru.spc Blackbrush ANP92-9A	0.03652	0.064824	0.034286	0.168606	0.473486
leaves~~3	0.042814	0.076915	0.051568	0.165861	0.513689
Column 5: bluespru.spc Blue_Spruce DW92-5					
needle~~4	0.083705	0.103467	0.065449	0.149619	0.395324
Column 6: cheatgra.spc Cheatgrass ANP92-11A mix~~5	0.062073	0.087676	0.14571	0.201152	0.281407
Column 7: drygrass.spc Dry_Long_Grass AV87-2~~6	0.168377	0.239802	0.304991	0.328511	0.34842
Column 8: firtree.spc Fir_Tree IH91-2 Complete~~7	0.050149	0.101694	0.06262	0.221844	0.533019
Column 9: grass.spc Lawn_Grass GDS91 (Green)~~8	0.037463	0.084206	0.04438	0.185296	0.688269
Column 10: juniper.spc Juniper_Bush IH91-4B whol~~9	0.083924	0.140065	0.10342	0.280365	0.59968
Column 11: maplelea.spc Maple_Leaves DW92-1~~10	0.037348	0.081836	0.039879	0.204942	0.634534

Column 136: ZIRCON NS-9A~~37

Column 12: pinonpin.spc Pinon_Pine ANP92-14A					
ndl~~11	0.049822	0.093721	0.058086	0.192889	0.542392
Column 13: rabbitbr.spc Rabbitbrush ANP92-27					
whol~~12	0.110829	0.170376	0.132313	0.261511	0.499365
Column 14: russiano.spc Russian_Olive DW92-4~~13	0.104581	0.143228	0.111094	0.263716	0.703376
Column 15: sagebrus.spc Sage_Brush IH91-1B					
Whole~~14	0.176745	0.24119	0.242833	0.353675	0.548257
Column 16: saltbrus.spc Saltbrush ANP92-31A					
Garrt~~15	0.173827	0.272855	0.258471	0.383346	0.638081
Column 17: tumblewe.spc Tumbleweed ANP92-2C					
Dry~~16	0.098056	0.153484	0.236457	0.276324	0.326812
Column 18: walnutle.spc Walnut_Leaf SUN					
(Green)~~17	0.067286	0.144625	0.085592	0.266755	0.530835

Anexo 9. Convoluciones de la librería espectral 'Published Dry Plant Material Spectra'.

rapideye_veg_1dry	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.2417	555.7416	658.1493	709.0269	803.0873
Column 2: CDE001:Spruce Cellulose~~1	0.86186	0.877373	0.882945	0.882687	0.878642
Column 3: CDE002: Cotton Cellulose~~2	0.816031	0.845605	0.860837	0.864293	0.863065
Column 4: CDE003: Wet Cotton Cellulose~~3	0.707599	0.726186	0.73165	0.729154	0.721185
Column 5: CDE004: Loblolly Pine Lignin~~4	0.298169	0.434903	0.573687	0.633702	0.71622
Column 6: CDE005: Sweetgum Lignin~~5	0.339121	0.443517	0.570332	0.630566	0.715486
Column 7: CDE006: B-Glucan~~6	0.806195	0.841223	0.869193	0.879683	0.891226
Column 8: CDE007: Xylan (Oat)~~7	0.850149	0.915232	0.945213	0.949386	0.948197
Column 9: CDE008: Arabinogalactan (Larch)~~8	0.640261	0.703959	0.765769	0.789292	0.808885
Column 10: CDE009: Starch~~9	0.835012	0.864034	0.887365	0.892051	0.892141
Column 11: CDE010: Citrus Pectin~~10	0.419458	0.530048	0.654199	0.701131	0.752664
Column 12: CDE011: Apple Pectin~~11	0.193865	0.283187	0.390418	0.419982	0.442718
Column 13: CDE012: Carnauba Wax~~12	0.69142	0.821303	0.873871	0.895016	0.90751
Column 14: CDE013: Tannic Acid~~13	0.292683	0.448132	0.660899	0.742313	0.819966
Column 15: CDE014: D-Rib 1 5-Diph Carboxylase~~14	0.136926	0.217731	0.306358	0.374703	0.486806
Column 16: CDE015: Humic Acid~~15	0.013059	0.021736	0.044178	0.062713	0.10516
Column 17: CDE016: Giant Wildrye~~16	0.075271	0.13541	0.067288	0.254185	0.770996
Column 18: CDE017: Bigberry Manzanita~~17	0.186543	0.258386	0.182196	0.377175	0.724014
Column 19: CDE018: Mormon Tea~~18	0.075781	0.147308	0.090025	0.276306	0.592082
Column 20: CDE019: Big Sagebrush~~19	0.224019	0.258692	0.240273	0.322655	0.56347
Column 21: CDE021: White Peppermint~~20	0.072079	0.115732	0.070072	0.249328	0.732476
Column 22: CDE022: Pinyon Pine~~21	0.127785	0.175595	0.119799	0.283097	0.665647
Column 23: CDE023: Sycamore (Lower)~~22	0.112248	0.216399	0.139277	0.338615	0.630653
Column 24: CDE024: Sycamore (Upper)~~23	0.058614	0.123419	0.066619	0.271585	0.632452
Column 25: CDE025: White Peppermint (Yellow)~~24	0.063569	0.192854	0.180706	0.427508	0.566083
Column 26: CDE026: Sycamore (Lower) (Yellow)~~25	0.139823	0.332261	0.354359	0.523298	0.626894
Column 27: CDE027: Sycamore (Upper) (Yellow)~~26 Column 28: CDE029: Bigberry Manzanita (Grey	0.071472	0.269341	0.286489	0.515076	0.639367
Wood)~~27	0.164949	0.180933	0.199893	0.209655	0.228386

Column 29: CDE030: Bigberry Manzanita (Grey Leaf)~~28	0.199611	0.225295	0.2512	0.268288	0.300384
Column 30: CDE031: Bigberry Manzanita (Pericarp)~~29	0.037784	0.063046	0.172949	0.240928	0.337628
Column 31: CDE032: Bigberry Manzanita (Red Bark)~~30	0.030736	0.039699	0.172064	0.320706	0.515706
Column 32: CDE033: Bigberry Manzanita (Brown Wood)~~31	0.11938	0.193763	0.426921	0.556009	0.714563
Column 33: CDE034: Bigberry Manzanita (Brown Leaf)~~32	0.098555	0.151173	0.377369	0.478118	0.59346
Column 34: CDE035: CA Buckwheat (Grey Bark)~~33	0.104867	0.132464	0.181913	0.214936	0.271553
Column 35: CDE036: CA Buckwheat (Grey Wood)~~34	0.211396	0.223741	0.238748	0.24585	0.251459
Column 36: CDE037: CA Buckwheat (Grey Leaves)~~35	0.043373	0.049596	0.063312	0.080581	0.124201
Column 37: CDE038: CA Buckwheat (Brown Wood)~~36 Column 38: CDE039: CA Buckwheat (Brown	0.250569	0.34935	0.567864	0.669315	0.776143
Flowers)~~37	0.028606	0.045919	0.1/315/	0.293807	0.47291
Leaves)~~38	0.057893	0.105422	0.230985	0.307669	0.419815
Column 40: CDE041: Big Sagebrush (Grey Bark)~~39	0.086377	0.117555	0.168769	0.190009	0.215546
Column 41: CDE042: Big Sagebrush (Grey Wood)~~40	0.332551	0.367747	0.401601	0.41752	0.444169
Column 42: CDE043: Big Sagebrush (Grey Leaves)~~41	0.096145	0.124585	0.169019	0.196347	0.234973
Column 43: CDE044: Big Sagebrush (Brown Wood)~~42 Column 44: CDE045: Big Sagebrush (Brown	0.199068	0.311729	0.481204	0.566852	0.681782
Flowers)~~43 Column 45: CDE046: Big Sagebrush (Senesced	0.121225	0.192001	0.309777	0.370916	0.460281
Leaves)~~44	0.198389	0.264358	0.344645	0.385095	0.449719
Column 46: CDE047: Pinyon Pine (Grey Bark)~~45	0.08397	0.107931	0.149697	0.174618	0.218099
Column 47: CDE048: Pinyon Pine (Grey Wood)~~46	0.223343	0.268292	0.308621	0.329369	0.370035
Column 48: CDE049: Pinyon Pine (Grey Cone)~~47	0.073518	0.098411	0.144318	0.172835	0.217094
Column 49: CDE050: Pinyon Pine (Black Needles)~~48	0.02336	0.026913	0.041709	0.055663	0.081364
Column 50: CDE051: Pinyon Pine (Brown Wood)~~49	0.271193	0.447574	0.657727	0.722696	0.780984
Column 51: CDE052: Pinyon Pine (Brown Cone)~~1	0.064881	0.11852	0.330848	0.467393	0.621657
Column 52: CDE053: Pinyon Pine (Brown Needles)~~2	0.088197	0.154388	0.295848	0.373452	0.472243
Column 53: CDE054: Pinyon Pine (Sap)~~3	0.063974	0.101393	0.239812	0.333464	0.418972
Column 54: CDE056: Giant Wildrye (Grey Leaf)~~4	0.251555	0.293651	0.327159	0.336674	0.347703
Column 55: CDE057: Giant Wildrye (Yellow Stem))~~5	0.379167	0.521593	0.660249	0.710989	0.756175
Column 56: CDE058: Giant Wildrye (Yellow Leaf)~~6	0.227649	0.378195	0.543203	0.596698	0.643247
Column 57: CDE059: Giant Wildrye (Brown Leaf)~~7	0.142439	0.213983	0.37004	0.463453	0.599848
Column 58: CDE060: Mormon Tea (Grey Bark)~~8	0.089419	0.102647	0.117924	0.135128	0.161641
Column 59: CDE061: Mormon Tea (Grey Wood)~~9	0.175894	0.18733	0.20286	0.213285	0.231411
Column 60: CDE062: Mormon Tea (Grey Stems)~~10	0.089666	0.114052	0.14503	0.162207	0.185302
Column 61: CDE063: Mormon Tea (Brown Wood)~~11	0.134186	0.230225	0.364369	0.416633	0.498158
Column 62: CDE064: Mormon Tea (Yellow Stems)~~12 Column 63: CDE065: White Peppermint (Grey	0.135583	0.351822	0.532714	0.60182	0.678036
Leat)~~13 Column 64: CDE066: White Peppermint (Brown	0.103396	0.138764	0.196247	0.232104	0.280663
Bark) 14	0.149921	0.222406	0.343939	0.410343	0.49/462
Column 65: CDE067: White Peppermint (Tan Bark)~~15 Column 66: CDE068: White Peppermint (Brown	0.259247	0.321263	0.456674	0.545271	0.6/5/69
wood) 10	0.2058/5	0.370713	0.53513	0.0128/3	0.718356

Column 67: CDE069: White Peppermint (Brown Leaf)~~17 Column 68: CDE070: White Peppermint (Seed	0.159753	0.268396	0.437558	0.499477	0.553446
Capsules)~~18	0.021264	0.032405	0.058589	0.083049	0.12498
Column 69: CDE071: Sycamore (Grey Bark)~~19	0.071884	0.089806	0.122882	0.144765	0.186792
Column 70: CDE072: Sycamore (Grey Wood)~~20 Column 71: CDE073: Sycamore (Decayed Leaf	0.15203	0.172556	0.200374	0.214119	0.238051
[Lower])~~21 Column 72: CDE074: Sycamore (Decayed Leaf	0.222668	0.25696	0.317495	0.357221	0.422753
[Upper])~~22	0.098646	0.147206	0.24891	0.332103	0.475027
Column 73: CDE075: Sycamore (Brown Bark)~~23	0.183912	0.247006	0.408625	0.5052	0.62826
Column 74: CDE076: Sycamore (Brown Wood)~~24 Column 75: CDE077: Sycamore (Brown Leaf	0.302711	0.425899	0.61541	0.688684	0.767698
[Upper])~~25	0.148378	0.202939	0.396143	0.52953	0.663684

Anexo 10. Convoluciones de la librería espectral 'Jasper Ridge Spectral Library for Green Vegetation, Dry Vegetation, and Rocks'.

rapideye_veg_2gm	Banda 1	Banda 2	Banda 3	Banda 4	Banda 5
Column 1: Wavelength	477.241577	555.741638	658.149353	709.026978	803.087341
Column 2: Arroyo Willow~~1	0.049958	0.12079	0.085406	0.303287	0.845429
Column 3: Bay Laurel~~2	0.056575	0.179127	0.092733	0.362634	0.870866
Column 4: Blue Oak~~3	0.07674	0.119315	0.088796	0.249915	0.573669
Column 5: California Valley Oak~~4	0.047127	0.107176	0.076154	0.256398	0.738036
Column 6: C. Buckeye~~5	0.192857	0.341123	0.561935	0.640495	0.725718
Column 7: Chamise (Flower)~~6	0.029455	0.066483	0.168422	0.257225	0.391885
Column 8: Chamise (Green)~~7	0.010269	0.063011	0.031986	0.167869	0.384091
Column 9: Coast Redwood (Dry)~~8	0.054594	0.114098	0.273127	0.403182	0.582893
Column 10: Coast Redwood (Green)~~9	0.04602	0.11663	0.069882	0.260188	0.718614
Column 11: Coast Sage~~10	0.075675	0.123738	0.139705	0.210416	0.316315
Column 12: Common Buck Bush~~11	0.064182	0.128316	0.088907	0.280336	0.813862
Column 13: Coyote Bush 1~~12	0.070325	0.164576	0.115385	0.322542	0.607963
Column 14: Coyote Bush 2~~13	0.065576	0.16174	0.094881	0.321716	0.654512
Column 15: Dove Weed~~14	0.341034	0.431835	0.380313	0.533286	0.745057
Column 16: Dry Grass~~15	0.142983	0.21007	0.299206	0.339472	0.401703
Column 17: Leather Oak~~16	0.130499	0.226566	0.194462	0.382006	0.662782
Column 18: Live Oak~~17	0.055931	0.140703	0.083691	0.319744	0.684419
Column 19: Madrone~~18	0.046958	0.153749	0.077439	0.352335	0.809794
Column 20: Red Willow~~19	0.053547	0.105947	0.084718	0.276059	0.84333
Column 21: Toyon~~20	0.050142	0.134961	0.086817	0.343515	0.805637
Column 22: Tarweed~~21	0.035087	0.10068	0.077654	0.219184	0.457978
Column 23: Jasper Ridge Butano Sandstone~~22	0.097518	0.160787	0.210494	0.232835	0.275187
Column 24: Jasper Ridge Grassland Soil~~23	0.096819	0.17512	0.270565	0.301066	0.342368
Column 25: Jasper Ridge Gravel~~24	0.103986	0.13822	0.15577	0.160967	0.176907
Column 26: Jasper Ridge Serpentine~~25	0.038806	0.061309	0.086082	0.095597	0.109331