

COLEGIO DE POSTGRADUADOS

INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS

CAMPUS MONTECILLO POSTGRADO EN SOCIECONOMÍA ESTADÍSTICA E INFORMATICA ECONOMÍA

IMPACTO DE LA PRODUCCIÓN DE BIOCOMBUSTIBLES EN ESTADOS UNIDOS EN EL MERCADO DE MAÍZ (Zea maíz L) EN MÉXICO

ARELY ROMERO PADILLA

TESIS

PRESENTADA COMO REQUISITO PARCIAL

PARA OBTENER EL GRADO DE:

MAESTRA EN CIENCIAS

MONTECILLO, TEXCOCO, ESTADO DE MÉXICO

2013

La presente tesis titulada "Impacto de la producción de biocombustibles en Estados Unidos en el mercado de maíz (Zea maíz L.) en México", realizada por la alumna: Arely Romero Padilla, bajo la dirección del Consejo Particular indicado, ha sido aprobada por el mismo y aceptada como requisito parcial para obtener el grado de:

MAESTRA EN CIENCIAS SOCIECONOMÍA ESTADÍSTICA E INFORMÁTICA ECONOMÍA

AH

CONSEJO PARTICULAR

ASESOR: Dr. Oscar Antonio Arana Coronado

ASESOR: Mahasha Martina Sanchez

ASESOR: Dr. Jaime Malaga

IMPACTO DE LA PRODUCCIÓN DE BIOCOMBUSTIBLES EN ESTADOS UNIDOS EN EL MERCADO DE MAÍZ (Zea maíz L) EN MÉXICO

RESUMEN

En los últimos años, México ha venido importado grandes cantidades del maíz que consume su población. Ante esta dependencia alimentaria, nuestro país es vulnerable a los cambios en la producción internacional de este cereal y altamente susceptible a las decisiones y políticas que se establecen en Estados Unidos por ser éste el principal proveedor de maíz a México y el principal productor y exportador a nivel mundial. Aunado a ello, ante la crisis energética mundial se ha dado un crecimiento en la producción de biocombustibles, en donde Estados Unidos ha destinado gran parte su producción de maíz a la generación de etanol, lo que impacta directamente la disposición de este cereal para exportarse a los países deficitarios como México. El objetivo de este estudio fue evaluar los efectos que las políticas de producción de biocombustibles en Estados Unidos ocasionan en el mercado de maíz en México. Para alcanzar este objetivo se utilizó información de FAPRI, INEGI, BANXICO, USDA y SIACON y, como herramientas se utilizaron un modelo de regresión y las elasticidades precio de la oferta y precio de la demanda de México para establecer 6 escenarios posibles de política en la producción de biocombustibles en Estados Unidos. Los resultados obtenidos muestran que durante el período de 2011-2025, teniendo como referencia las proyecciones estimadas por FAPRI, el precio de maíz en México bajaría de un 10% en la ausencia del límite de mezcla de etanol y un precio de petróleo alto (US \$100/barril), y alcanzaría hasta un 16% en ausencia de ambas políticas (Limite de mezcla y Norma de Combustibles Renovables). Con la eliminación de ambas políticas y un precio bajo de petróleo (US \$50/barril) la demanda de maíz se incrementaría hasta en un 4%, mientras que la oferta se reduciría hasta en un 6.7%; y, como consecuencia, las importaciones se incrementarían hasta un 31% con la eliminación de las políticas de producción de biocombustibles en Estados Unidos.

Palabras Clave: Importaciones, Biocombustibles, Maíz, Políticas Agrícolas, Precios agrícolas.

IMPACT OF THE UNITED STATES BIOFUELS' PRODUCTION ON MEXICAN CORN (Zea maize L) MARKET

ABSTRACT

In recent years, Mexico has been consuming large quantities of imported corn. Given this food dependency, our country became vulnerable to international production changes of this grain and highly susceptible to the decisions and policies established in the United States, who is the main supplier of corn to Mexico and the largest producer and exporter worldwide. Additionally, given the recent global energy crisis, the world has increased the production of biofuels and the United States has spent much of its corn output producing ethanol which in turn directly impacts its exports to importing countries like Mexico. The objective of this study was to evaluate the U.S. biofuels policy effects on the Mexican corn market. To achieve this goal, information from FAPRI, INEGI, BANXICO, USDA and SIACON was utilized. As a quantitative tool, a regression model and the price elasticities of Mexican corn supply and demand were used running 6 possible policy scenarios with respect to U.S biofuel production. The results show that during the period 2011-2025, taking FAPRI projections as reference, the Mexican corn price would fall from 10% in the absence of ethanol blend wall and a high oil price (\$ 100/barrel) up to 16% in the absence of both policies (ethanol blend wall and Renewable Fuels Standard). With the elimination of both policies in the United States and low price of oil (\$ 50/barrel) Mexican corn demand would increase up to 4%, while supply would decline up to 6.7% and as a result, imports would increase 31%.

Key words: Imports, Biofuels, Corn, Agricultural Policy, Agricultural Prices.

AGRADECIMIENTOS

A DIOS por darme la oportunidad de poder cumplir cada meta y objetivo en mi vida.

Al pueblo trabajador mexicano que a través del Consejo Nacional de Ciencia y Tecnología

(CONACyT) sostuvo mis estudios.

Al Colegio de Postgraduados y en particular al programa en Economía por acogerme en esta fase

profesional de mi vida.

Al Dr. Martín Hernández Juárez quien en todo momento me apoyo y oriento en esta etapa. Por

su tiempo y sugerencias, y sobre todo por su confianza.

Al Dr. Roberto Carlos García Sánchez y Dr. Oscar Antonio Arana Coronado por su constante

atención y esmerada revisión de este trabajo. Por la ayuda, confianza y amistad que me han

brindado.

Al Dr. Jaime Malaga y Dr. Eduardo Segarra, quienes me brindaron apoyo y tiempo. Por su

disposición a escucharme y ofrecerme sugerencias. Pero sobre todo por la confianza y

oportunidad que me dieron de vivir una experiencia maravillosa.

DEDICATORIAS

Con amor...

A mis padres Rosario Padilla G. y Manuel Romero P.

A mis hermanos Blanca Estala y Juan Manuel

A mis sobrinos Yaretzi, Victor y Yolotzin

ÍNDICE

CAPITULO I	1
INTRODUCCIÓN	1
1.1 Antecedentes	1
1.2 Problema de Investigación	3
1.3 Objetivos	5
1.3.1 Objetivo general	5
1.3.2 Objetivos particulares	5
1.4 Hipótesis	5
1.4.1 Hipótesis general	5
1.4.2 Hipótesis particulares	5
1.5 Metodología	7
1.5.1 Datos y Fuentes de información	7
1.5.2 El modelo	3
1.5.2.1 Cambio en importaciones	9
1.5.3 Escenarios)
CAPITULO II1	1
SITUACIÓN DEL MERCADO DEL MAÍZ1	1
2.1 Ámbito Internacional	1
2.2 Estados Unidos	7
2.3 Ámbito Nacional	2
2.3.1 Políticas aplicadas al cultivo de maíz en México	3
CAPITULO III3	1
PRODUCCIÓN DE BIOCOMBUSTIBLES	1
3.6 Ámbito internacional	3
3.6.1 Brasil	4
3.6.2 Europa	5
3.6.3 América	9
3.6.4 Asia	Э
3.6.5 África	2
3.5.6 Australia	2
3.7 Estados Unidos	2

3.7.1 Legislación y políticas en Estados Unidos	46
3.7.1.1 Norma de Combustibles Renovables (RFC)	47
3.7.1.2 Norma de Combustibles para bajar emisiones de carbón en California, Estados Unidos (LSFC en inglés)	49
3.7.1.3 Mezcla de Etanol	50
3.7.1.4 Aranceles a etanol y créditos fiscales	51
3.7.2 Tecnologías para la producción de etanol en Estados Unidos	51
3.8 Ámbito Nacional	52
CAPITULO IV	55
MARCO TEORICO	55
4.1 Mercado	55
4.2 La teoría de la oferta	55
4.2.1 Aspectos estáticos y dinámicos de la oferta	57
4.3 La teoría de la demanda	57
4.3.1 Demanda de etanol.	60
4.4 Precio.	64
4.4.1 Formación del precio	64
4.4.2 Incremento en el precio de maíz	64
4.5 Elasticidad	66
4.5.1 Elasticidades de la demanda	66
4.5.2 Elasticidades de la oferta	71
4.6 El modelo de Regresión	74
4.6.1 Autocorrelación	76
4.6.2 Modelos Econométricos Dinámicos	78
4.6.2.1 El Papel del tiempo o del rezago, en Economía	79
4.6.3 Variables dicotómicas	79
CAPITULO V	81
ANÁLISIS DE RESULTADOS	81
5.1 Modelo de Regresión Estimado	81
5.2 Elasticidad de Transmisión de Precios (ETP)	84
5.3 Cambios con la eliminación de las políticas de Estados Unidos.	84
5.3.1 Altos precios de petróleo	87

5.3.1.1. Escenario 1a. Eliminación de ambas políticas (Norma de Combustibles Rer y Límite de mezcla de etanol)	
5.3.1.2. Escenario 1b. Eliminación del Límite de mezcla de etanol	90
5.3.1.3. Escenario 1c. Eliminación de la Norma de combustibles Renovables	91
5.3.2. Bajos precios de petróleo	92
5.3.2.1. Escenario 2a. Eliminación de ambas políticas (Norma de Combustibles Renovables y Límite de mezcla de etanol)	93
5.3.2.2. Escenario 2b. Eliminación del Límite de mezcla de etanol	94
5.3.2.3. Escenario 2c. Eliminación de la Norma de Combustibles Renovables	95
CAPITULO VI	98
CONCLUSIONES	98
BIBLIOGRAFÍA	101
ANEXOS	108

INDICE DE FIGURAS

Figura 1. Precios internacionales de maíz 2002-2012	12
Figura 2. Superficie sembrada y producción mundial de maíz 2000-2010	12
Figura 3. Principales países productores de maíz 2011/2012	13
Figura 4. Principales países exportadores de maíz 2011/2012	14
Figura 5. Principales países consumidores de maíz 2011/2012	15
Figura 6. Principales países importadores de maíz 2011/2012	16
Figura 7. Producción de granos para alimento de ganado en Estados Unidos	17
Figura 8. Superficie sembrada y rendimiento de maíz en Estados Unidos, 1926-2007	18
Figura 9. Producción de maíz en Estados Unidos 1995-2011	19
Figura 10. Usos de maíz en Estados Unidos 1980-2013	21
Figura 11. Usos de maíz en México por sector, 2006	23
Figura 12. Producción y demanda de maíz en México 1990-2010	24
Figura 13. Superficie sembrada y cosecha de maíz 1990-2010	25
Figura 14. Precio real de maíz al productor 1990-2010 (base 2010)	26
Figura 15. Importaciones de maíz en México, 1980-2010	27
Figura 16. Producción de etanol combustible en Brasil, 1975-2010	36
Figura 17. Consumo y producción de etanol biocombustible en Europa, 2003-2010	37
Figura 18. Consumo y producción de etanol biocombustible en Sudamérica, 2000-2010	39
Figura 19. Producción de etanol combustible en China, 2002-2010	40
Figura 20. Consumo y producción de etanol biocombustible en Asia, 2002-2010	41
Figura 21. Producción de etanol y uso de maíz para su producción en Estados Unidos, 2009-2012	43
Figura 22. Uso de maíz usado en la producción de etanol y exportaciones en Estados Unidos, 2000-2012	43
Figura 23. Producción de etanol en estados Unidos	44
Figura 24. Demanda de etanol y precio de maíz	61
Figura 25. Relación entre maíz para etanol y oferta de alimento	62
Figura 26. Demanda de etanol para maíz y comida y precio d la comida	63
Figura 27 Curvas de oferta con distintas elasticidades	73
Figura 28. Precios de maíz en México ante diferentes escenarios de políticas de etanol cuando el precio petróleo es alto, 2011-2025	
Figura 29. Importaciones de maíz en México ante diferentes escenarios, cuando los precios de petróleo s altos, 2011-2025	
Figura 30. Precios de maíz en México ante diferentes escenarios de políticas de etanol cuando el precio petróleo es bajo 2011-2025	
Figura 31. Importaciones de maíz en México ante diferentes escenarios, cuando los precios de petróleo s bajos 2011-2025	

INDICE DE CUADROS

Cuadro 1. Coeficiente de variación en el precio de maíz bajo diferentes escenarios, según McPhail y Bab (2011).	
Cuadro 2. Elasticidades precio de la oferta y precio de la demanda de maíz en México.	10
Cuadro 3. Producción de etanol combustible mundial 2011	34
Cuadro 4. Producción de etanol biocombustible en los principales países de Europa	38
Cuadro 5. Producción y consumo de etanol, 2009-2011	45
Cuadro 6. Producción de maíz y uso para etanol y granos de destilería	45
Cuadro 7. Volumen de producción de biocombustibles renovables y avanzados en Estados Unidos	49
Cuadro 8. Volumen de etanol anhidro introducido en la matriz energética	54
Cuadro 9. Elasticidades de la demanda	70
Cuadro 10. Elasticidades de la oferta	74
Cuadro 11. Resumen del modelo de regresión estimado	83
Cuadro 12. Coeficientes de variación promedio de precios, demanda, oferta e importaciones bajo diferescenarios	
Cuadro 13. Máximos y mínimos de precios e importaciones de maíz en México ante diferentes escenarios	s 86

SIGLAS

ASERCA: Apoyos y Servicios a la Comercialización Agropecuaria

DDGS: Granos de destilería solubles

ePURE: European Renewable Ethanol

EIA: Energy Information Administration

EISA: Energy Independence and Security Act

EPA: Environmental Protection Agency

ERS: Economic Research Service

E10: Gasolina mezclada con 10% de etanol

E15: Gasolina mezclada con 15% de etanol

IFPRI: International Food Policy Research Institute.

LSFC: Low Carbon Fuel Standard

RFA: Renewable Fuel Association

RFS: Renewable Fuel Standard, Energy Policy Act of 2005

RFS2: Renewable Fuel Standard, Energy Independence and Security Act of 2007

RIN: Renewable Identification Number

SAGARPA: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación

SENER: Secretaría de Energía

SIAP: Servicio de Información Agroalimentaria y Pesquera

TLCAN: Tratado de Libre Comercio de América del Norte

USDA: United States Department of Agriculture

WASDE: World Agriculture Supply and Demand Estimates

CAPITULO I INTRODUCCIÓN

1.1 Antecedentes

Actualmente, la crisis energética mundial y el aumento del precio del crudo han llevado al ser humano a buscar nuevas formas de obtención de energía alternativas y menos contaminantes que suplan paulatinamente al petróleo como recurso no renovable. Para ello se ha optado por el uso y la explotación de fuentes de energía renovables, como el viento, el sol, las olas, la Geotérmica y la biomasa. De estos últimos se desprende el término de bioenergía (Gonzales, 2009).

En 1997, bajo el Protocolo de Kyoto, 39 países acordaron reducir las emisiones de gases de efecto invernadero en un 5% para el período 2008-2012, tomando como base las emisiones del año 1990. Ante ello, se inició la búsqueda de fuentes alternativas de combustible para sustituir a los combustibles fósiles empleados hasta entonces. De esta manera surgen los biocombustibles como una fuente alternativa de energía.

El crecimiento en la producción de biocombustibles y la aplicación de políticas en estos, han traído una nueva fuente de volatilidad en los mercados de productos agrícolas básicos, afectando la seguridad alimentaria de muchos países, especialmente los países importadores de alimentos.

Cada día, el mundo consume alrededor de 21 millones de barriles de gasolina y otros 21 millones de barriles de diesel. Estas cantidades se traducen en una demanda potencial de alrededor de 30 millones de barriles de etanol y 23 millones de barriles de biodiesel al día. Para efectos de ilustración solamente, si la demanda potencial de etanol se traduce en hectáreas de caña de azúcar o maíz, los dos principales materias primas para el etanol, entonces se requiere la plantación de 300 millones de hectáreas de caña de azúcar o 590 millones de hectáreas de maíz, alrededor de 15 y 5 veces, respectivamente, de las plantaciones actuales del mundo de esos cultivos (Hazell et al., 2006).

Existe una relación directa entre los precios altos de maíz y los de los alimentos, debido a que los altos costos de maíz provocan un incremento en los precios de alimento para el ganado, lo que provoca un incremento en precios de carne, huevo, leche y productos lácteos.

El maíz es el la principal materia prima usada para la producción de etanol en Estados Unidos, por lo que el rápido aumento en los precios de maíz coincide con el crecimiento exponencial de la producción de etanol de maíz en este país.

Estados Unidos ha estado mezclado etanol en la gasolina desde finales de 1970, pero solo en la última década se ha convertido en una porción importante en la mezcla de gasolina. La mezcla de etanol con gasolina fue poco más del 1% en volumen en 2001, pero alcanzo cerca del 10% del consumo interno de gasolina en 2011 (EIA, 2012).

De acuerdo a la Asociación de Combustibles Renovables (RFA, por sus siglas en inglés) la producción de etanol en Estados Unidos se incrementó de 4 000 millones de galones en 2005 a casi 14 000 millones en 2011. Este importante y continuo crecimiento fue impulsado por las políticas establecidas para la producción de etanol y los altos precios del petróleo.

El mercado de etanol en Estados Unidos es restringido por el límite superior de mezcla que se puede mezclar con gasolina. Las políticas actuales permiten una mezcla de 10% de etanol por volumen (E10).

Respecto al etanol obtenido de maíz, cabe señalar que un bushel de maíz, equivalente a 25.2 kg, produce alrededor de 2.6 galones (9.84L) de etanol, pero en la industria estadounidense se podría producir hasta 3.02 galones por bushel.

Para México, el maíz es el cultivo de mayor importancia, ya que constituye una de las actividades más importantes del sector rural, no solo en términos de uso de suelo, sino que también en el empleo y en el suministro de alimentos de la población rural y urbana. A nivel nacional se identifican aproximadamente 2 millones de productores dedicados al cultivo de maíz, de estos el 85% lleva a cabo su labor en predios cuya extensión es menor o igual a 5 hectáreas (SIAP, 2007).

Desde enero de 2008, el mercado nacional de maíz mexicano se liberó totalmente al mercado externo con la eliminación de todas las tarifas arancelarias establecidas, esto con base a la entrada de vigor del TLCAN, firmado entre Estados Unidos, Canadá y México en enero de 1994. De esta manera, a partir de 2008 la cantidad de maíz importada se ha incrementado notablemente y está en función de la cantidad producida y el consumo interno.

En 2007, México fue el cuarto productor mundial de maíz según el SIAP y para 2011 según el USDA pasó a ser el séptimo. También es el segundo importador de este cereal después de Japón con 11.2 millones de toneladas.

En México, el tema del maíz es un tema muy sensible para la adopción de políticas agrícolas que reorienten su producción y destino. Se menciona por ejemplo, que puede entrar a la carrera para producir bioenergía, pero de no hacerlo en forma apropiada, la gente se enfrentaría al dilema de llenar el tanque de gasolina y contar con electricidad a cambio de sacrificar la canasta básica alimentaria (González, 2009).

1.2 Problema de Investigación

La humanidad se enfrenta a un cambio de paradigma en materia de energía, al pasar de la extracción de combustibles fósiles de fuentes no renovables con impactos negativos al medio ambiente, a la generación de energía con fuentes renovables en armonía con el medio ambiente. Este paso genera importantes interrogantes por sus impactos en la producción de alimentos para la población. En el caso de México, este contexto es particularmente sensible por dos razones; la primera, por basar su alimentación en el maíz, el cual es una de las principales materias primas para la producción de etanol; y, la segunda, por ser un país petrolero.

Ante la disminución de la oferta mundial y el aumento de los precios de los combustibles fósiles existe una tendencia creciente en la generación de alternativas energéticas para satisfacer la demanda. Así, la producción de materias primas para generar biocombustibles compite con la producción de alimentos, fibras y madera. La producción de etanol a partir de granos como el maíz impacta el comercio mundial de los alimentos.

Aunque el etanol puede ser producido a partir de diferentes cultivos, en Estados Unidos el maíz es la materia prima principal para la producción de este biocombustible. Por lo que la introducción de la producción de etanol genera una nueva demanda para maíz.

Aproximadamente el 40% de la producción de maíz de Estados Unidos es actualmente destinado para la producción de etanol; y debido a que este país es el más grande productor y exportador de maíz, esta cantidad representa aproximadamente el 15% de la producción global.

En Estados Unidos, el consenso sugiere que, al final de 2011, el aumento de la demanda de maíz para la industria de etanol se traducirá en una reducción de las exportaciones de maíz y suministro alimenticio (Auld, 2012).

En México hay que tomar en cuenta dos efectos. El primero, es sobre la balanza comercial (y, en especial, sobre la balanza comercial del sector agropecuario). El segundo, es sobre los precios domésticos y, en especial, sobre las cadenas de producción, tanto de la tortilla como de los productos pecuarios.

La dependencia de maíz que presenta nuestro país lo hace más vulnerable a los cambios mundiales del mercado de este grano. La relación comercial que tiene México con Estados Unidos importando más de una cuarta parte del maíz que consume agrava la situación del mercado nacional y lo hace completamente vulnerable a las decisiones de política de Estados Unidos sobre el uso de maíz como materia prima en la producción de biocombustibles.

SAGARPA (2007) manifiesta que en México es factible aumentar la producción tanto de maíz blanco como amarillo, con incrementos en la productividad y reconversión productiva, a través de acciones de tecnificación del riego, inducción al uso de la tecnología a través de semillas mejoradas y paquetes tecnológicos, acceso a insumos a precios competitivos, esquemas de financiamiento y administración de riesgos, entre otros.

El presente trabajo de investigación busca mostrar el impacto en México del desarrollo y continuo crecimiento en la producción internacional de biocombustibles, dando énfasis en el caso de Estados Unidos como productor de etanol y principal abastecedor de maíz a México.

1.3 Objetivos

1.3.1 Objetivo general

 Evaluar los efectos potenciales que las políticas de producción de biocombustibles en Estados Unidos ocasionarían en el mercado del maíz en México durante el periodo 2011-2025.

1.3.2 Objetivos particulares

- Determinar el impacto que se presentaría en México en el precio de maíz si las políticas de producción de biocombustibles en Estados Unidos se eliminaran.
- Cuantificar el cambio en las importaciones de maíz en México ante la ausencia de las políticas de biocombustibles en Estados Unidos.

1.4 Hipótesis

1.4.1 Hipótesis general

Las políticas establecidas en Estados Unidos sobre la producción de bioetanol afectan indudablemente el mercado de maíz en México. Esto provoca una menor oferta de este cereal en el comercio mundial. Debido a su alta dependencia de las importaciones de maíz provenientes de Estados Unidos e importar aproximadamente una cuarta parte de maíz que utiliza para su consumo, México se vería afectado por el cambio que se presentará en el precio de maíz ante la eliminación de las políticas para la producción de biocombustibles.

En un escenario donde se eliminara la política de Límite de mezcla se esperaría que el precio de maíz se reduzca, incrementándose las importaciones de México. Sin embargo la reducción del precio de maíz y las importaciones en México de este cereal, dependerían también del precio de petróleo, ya que este último permitiría al mezclador decidir cuanta cantidad de etanol poner en la gasolina. En un escenario donde se eliminara la Norma de Combustibles Renovables se esperaría de igual manera que las importaciones de maíz en México aumentaran debido a la baja del precio en Estados Unidos.

1.4.2 Hipótesis particulares

- Ante ausencia de políticas que motivan la producción de bioetanol, el precio de maíz en Estados Unidos bajaría, por lo que se esperaría que México respondiera a este cambio con un incremento en las importaciones de este grano. Así mismo, al importar una mayor cantidad de maíz se esperaría una reducción del precio en el mercado mexicano.
- 2. Al eliminar ambas políticas, el efecto de la reducción del precio de maíz sería mayor, pues es el conjunto de dos fuerzas que provocarían la disminución del precio en el maíz, por lo que se esperaría que el porcentaje del incremento en las importaciones de maíz en México sea mayor en comparación con la proyección base estimada por FAPRI.

1.5 Metodología

1.5.1 Datos y Fuentes de información

Para alcanzar los objetivos planteados se obtuvieron datos anuales de 1980 al 2010 de las siguientes fuentes:

- 1. Los precios de maíz de México se obtuvieron del Sistema de Información Agroalimentaria de Consulta (SIACON-SIAP).
- 2. Los precios al productor de maíz de Estados Unidos se obtuvieron del Departamento de Agricultura de Estados Unidos (USDA).
- 3. EL índice de precios al Productor en México se obtuvo del Instituto Nacional de Estadística, Geografía e Informática (INEGI).
- 4. El tipo de cambio se obtuvo de la serie histórica que proporciona el Banco de México.
- 5. Las elasticidades precio de la oferta y las elasticidades precio de la demanda de maíz fueron obtenidas de Instituto de Investigación de Políticas Alimentarias y Agrícolas 2012 (FAPRI por sus siglas en inglés).
- 6. Los coeficientes de variación en el precio de maíz en Estados Unidos ante diferentes políticas aplicadas a la producción de etanol se obtuvieron del estudio realizado por McPhail y Babcock en 2011: "Impact of biofuel policy on US corn and gasoline price variability"
- 7. Se utilizaron las proyecciones base de importaciones de maíz en México, oferta de maíz en México, demanda de maíz en México, precio de maíz en México y precio de maíz en Estados Unidos de la base de datos de FAPRI.

Los precios de maíz de Estados Unidos fueron convertidos a pesos mexicanos utilizando el tipo de cambio histórico del Banco de México y posteriormente ambos precios -precio de maíz en México y precio de maíz en Estados Unidos- fueron deflactados con el Índice de Precios al Productor de México base 2010.

1.5.2 El modelo

Se asume que México es un país tomador de precios. Esto significa que su tamaño en el mercado mundial es relativamente pequeño, por lo que no puede incidir sobre el nivel del precio mundial del maíz. Lo anterior permite analizar el impacto del precio de maíz en Estados Unidos en México con un modelo de regresión simple. Para su procesamiento se utilizó el programa SAS (Statistical Analysis System).

Los datos colectados de precios de ambos países (estandarizados y deflactados) se utilizaron para realizar un modelo de regresión, donde el precio de maíz en México fue modelado en función del precio de maíz en Estados Unidos, el precio de maíz en México rezagado un año y el Tratado de Libre Comercio de América del Norte como una variable Dummy, como se muestra en la siguiente ecuación.

PrecioMx = f(PrecioEU, LagPrecioMx, TLCAN)

Para la estimación de las predicciones de precios en los diferentes escenarios se aplicaron los coeficientes de variación en el precio de maíz en Estados Unidos, tomados del estudio realizado por McPhail y Babcock en 2011, los cuales se presentan en el Cuadro 1. Los cambios en el precio se aplicaron sobre la proyección base de precios de maíz obtenida de FAPRI.

Cuadro 1. Coeficiente de variación en el precio de maíz bajo diferentes escenarios, según McPhail y Babcock (2011).

Escenario	Coeficiente de variación
	Precio de maíz
Altos precios de petróleo	
Con una media de US \$100 por barril	
1. Sin Norma de Combustibles Renovables (NCR) y Limite	0.2654
de mezcla (LM)	
2. Sin Límite de mezcla	0.2008
3. Sin Norma de Combustibles Renovables (NCR)	0.2441
Bajos precios de petróleo	
Con una media de US \$50 por barril	
4. Sin Norma de Combustibles Renovables (NCR) y Limite	0.3043
de mezcla (LM)	
5. Sin Límite de mezcla	0.2952
6. Sin Norma de Combustibles Renovables (NCR)	0.2497

Fuente: McPhail y Babcock (2011).

1.5.2.1 Cambio en importaciones

Las proyecciones en las importaciones de México se calcularon mediante los cambios en oferta y demanda de maíz en México. Así mismo, se consideraron los cambios en el precio estimados por McPhail y Babcock (2011), los cuales se presentan en el cuadro 1.

Para la obtención de los nuevos coeficientes de oferta y demanda de México se utilizó como herramienta las elasticidades de las mismas, obtenidas del FAPRI las cuales se muestran en el Cuadro 2. Los cambios en el precio de los diferentes escenarios se aplicaron sobre la proyección base del mismo Instituto. El cálculo y sustitución de datos se realizó con el programa de cómputo Excel.

Cuadro 2. Elasticidades precio de la oferta y precio de la demanda de maíz en México.

Tipo de elasticidad	Valor
Elasticidad precio de la demanda para consumo humano	-0.12
Elasticidad precio de la demanda para alimento de ganado	-0.15
Elasticidad precio de la oferta	0.22

Fuente: FAPRI (2012)

1.5.3 Escenarios

En este estudio, se plantean 6 escenarios divididos en 2 secciones de acuerdo al precio del petróleo: 1) precio alto con una media de US \$100 por barril y, 2) precio bajo con una media de US \$50 por barril. Para cada nivel de precio del petróleo se presentan tres escenarios: a) sin Norma de Combustibles Renovables (NCR) y Limite de mezcla (LM); b) sin Límite de mezcla; y, c) sin Norma de Combustibles Renovables (NCR). De tal manera que en la investigación se analizaron los siguientes escenarios:

1. Precios altos de petróleo.

- 1a. Eliminación de ambas políticas (Norma de Combustibles Renovables y Límite de mezcla de etanol)
- 1b. Eliminación del Límite de Mezcla de etanol
- 1c. Eliminación de la Norma de Combustibles Renovables

2. Precios bajos de petróleo

- 2a. Eliminación de ambas políticas (Norma de Combustibles Renovables y Límite de mezcla de etanol)
- 2b. Eliminación del Límite de Mezcla de etanol
- 2c. Eliminación de la Norma de Combustibles Renovables

CAPITULO II SITUACIÓN DEL MERCADO DEL MAÍZ

2.1 Ámbito Internacional

El maíz es el mayor componente del comercio mundial de granos secundarios, lo que representa alrededor de tres cuartas partes del volumen total en los últimos años. Los cereales secundarios constituyen una categoría comercial común que incluye el maíz, el sorgo, la cebada, la avena y el centeno. La mayoría del maíz que se comercializa se utiliza para la alimentación animal y cantidades más pequeñas se comercializan para usos industriales y alimenticios (USDA, 2012).

Los precios de maíz se han venido incrementando a lo largo de los años por diversos factores como lo muestra la Figura 1. Parte de este incremento en el precio es debido a los fenómenos agroclimáticos que se han presentado, principalmente la reciente sequía. Sin embargo, otro factor importante que provocó el incremento es la producción de biocombustibles a partir de etanol en Estados Unidos, que han generado una demanda adicional para este grano en el principal país productor y exportador del mundo. Carter *et al.* (2012) estimaron que los precios de maíz en 2010 fueron 50% más altos de lo que hubieran sido si la producción de maíz en Estados Unidos hubiera permanecido en niveles del 2005; también estimaron que en el periodo de 2006 a 2010 el precio de maíz habrían sido 30% más bajos si no se hubiera dado un incremento en la producción de etanol en Estados Unidos.

Los precios de maíz en 2007 fueron US \$2.14 por bushel más altos de lo que fueron en 2004. Cerca de US \$0.30 por bushel de este incremento fue debido a la expansión de etanol causada por subsidios y US \$0.14 por bushel fue causado por el mercado basado en la expansión de etanol (Babcock *et al*, 2011). En contraste, en 2009 la expansión causada por ambos, factores del mercado y subsidios representaron cerca de la mitad del aumento de los precios de maíz en relación con el precio de referencia del 2004.

US\$/tonelada

Figura 1. Precios internacionales de maíz 2002-2012

Fuente: Elaboración propia con datos de IndexMundi, 2013.

La superficie cosechada de maíz en el 2010 fue de 161 millones de hectáreas (Figura 2). El país con la mayor superficie cultivada fue Estados Unidos con 32.9 millones de hectáreas seguido de China con 32.5 millones de hectáreas, Brasil con 12 millones de hectáreas, India con 7.18 millones de hectáreas y México con 7.14 millones de hectáreas (FAO, 2012).

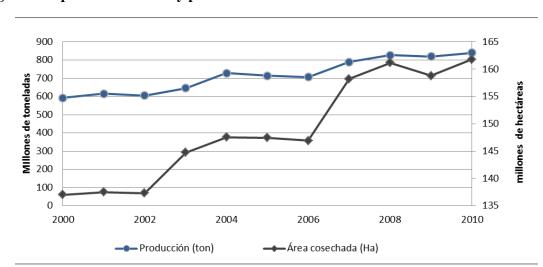


Figura 2. Superficie sembrada y producción mundial de maíz 2000-2010

Fuente: Elaboración propia con datos de FAO, 2012.

La producción mundial en 2010 de acuerdo a la FAO (2012) fue de 840 millones de toneladas. Los principales países productores de maíz para el ciclo agrícola 2011/2012, como se puede observar en la Figura 3, fueron Estados Unidos con 314 millones de toneladas, China con 192.7 millones de toneladas y Brasil con 73 millones de toneladas (USDA, 2012).

300 250 Millones de toneladas 200 150 100 50 0 Canada China Egipto Etiopía Filipinas India Mexico Ucrania Brasil Stados Unidos Indonesia Nigeria Rusia Otros Argentina Sur Africa Unión Europea

Figura 3. Principales países productores de maíz 2011/2012

Fuente: Elaboración propia con datos de USDA, 2013.

Aunque los Estados Unidos dominan el comercio mundial de maíz, las exportaciones representan una parte relativamente pequeña de la demanda de maíz de los Estados Unidos (15%). Esta baja demanda de las exportaciones significa que los precios del maíz están determinados en gran medida por las relaciones de oferta y demanda en el mercado de los Estados Unidos; y, el resto del mundo se tiene que ajustar dichos precios. La gran influencia de la oferta maíz de Estados Unidos hace que el comercio y los precios mundiales de maíz dependan del clima en la zona maicera de ese país.

Los principales exportadores de maíz en el año 2011/2012 fueron Estados Unidos con 38.4, Argentina con 16.5, Ucrania con 15.1 y Brasil con 12. 6 millones de toneladas (Figura 4). Mientras que los principales importadores de este grano fueron Japón con 14.8, México con 11.2, Korea con 7.6 y Egipto con 7.1 millones de toneladas (USDA, 2012).

SEPTION 20
15
10
5
0

Argentina Brasil Canada Unidos India Rusia Rusia Rusia Lurion Europea Tambia Otros
Union Europea Tambia Otros
Union Europea Tambia Otros

Figura 4. Principales países exportadores de maíz 2011/2012

Fuente: Elaboración propia con datos de USDA, 2013.

Debido a que Argentina, el segundo mayor exportador de maíz, se encuentra en el hemisferio sur, los agricultores argentinos siembran su maíz después de saber el tamaño de la cosecha de Estados Unidos, proporcionando de este modo una rápida oferta al mercado orientada a las cortas cosechas estadounidenses.

Varios países (Brasil, Ucrania, Rumania y Sudáfrica) han tenido importantes exportaciones de maíz cuando las cosechas han sido grandes o, los precios internacionales atractivos.

China ha sido un importante origen de incertidumbre en el comercio mundial de maíz, pasando de ser el segundo exportador más grande hace algunos años a ser un país con importaciones ocasionales de cantidades significativas. Las exportaciones chinas de maíz son en gran medida una función de subsidios a la exportación y las rebajas de impuestos, ya

que los precios del maíz en China son mucho más caros que los del mercado mundial. Las grandes existencias de maíz son costosas de mantener para el gobierno chino y su política de exportación de maíz ha fluctuado en relación a la producción del país, por lo que el comercio de maíz en China es difícil de predecir (USDA, 2012).

La Figura 5 muestra los principales consumidores de maíz en el ciclo agrícola 2011/2012, siendo los principales: Estados Unidos con 279, China con 188 y Brasil con 52.5 millones de toneladas.

300 250 Millones de tonelasas 200 150 100 50 Filipinas Ucrania India Nigeria Brasil Canada China Egipto México Otros Argentina Corea del Sur **Estados Unidos** Indonesia Japon Sur Africa Union Europea

Figura 5. Principales países consumidores de maíz 2011/2012

Fuente: Elaboración propia con datos de USDA, 2013.

Los países en desarrollo a nivel mundial han continuado incrementando sus importaciones de maíz de manera constante desde 1980. Este crecimiento de las importaciones de países en desarrollo ha impulsado el comercio mundial de maíz por encima de 70 millones de toneladas métricas cada año desde 1999/2000 (USDA, 2012).

Japón es el mayor importador mundial de maíz por el momento (Figura 6). Mientras que su producción de granos es escasa, Japón es un productor de carne muy grande, por lo que el país es un comprador regular de maíz con especial atención en la calidad. Por su parte, Corea del Sur, que es el segundo mayor importador de maíz en el mundo, es un comprador consciente en precio, dispuesto a cambiar su alimentación por trigo u otros cereales y dispuesto a comprar maíz si es la fuente más barata.

En el caso de México, es un importador creciente. Aunque es considerado un gran productor de maíz, México procesa gran parte de su producción de maíz blanco en productos alimenticios humanos, pero también se ha convertido en un gran importador de maíz amarillo y sorgo para alimentación del ganado y apoyar el incremento en producción de carne.

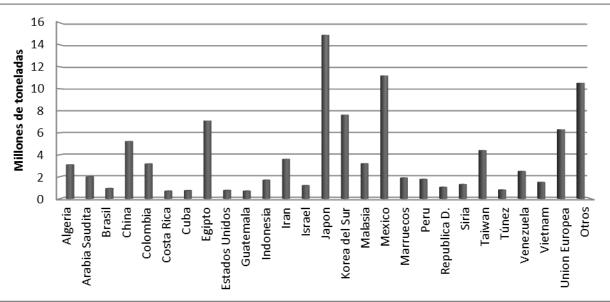


Figura 6. Principales países importadores de maíz 2011/2012

Fuente: Elaboración propia con datos de USDA, 2013

2.2 Estados Unidos

Los granos forrajeros más importantes en Estados Unidos son el maíz, sorgo, cebada y avena. Es el mayor productor mundial de maíz y actualmente exporta cerca del 15% parte de su producción anual.

El maíz es el grano más ampliamente producido en Estados Unidos para alimentar el ganado, representando más del 90% de la producción y uso de cereales forrajeros (ver Figura 7); también es el ingrediente con mayor contenido energético en la alimentación del ganado. El maíz es también procesado dentro de una amplia gama de productos alimenticios e industriales incluyendo almidón, endulzantes, aceite de maíz, bebidas, alcohol industrial, y combustible de etanol.

Cebada Sorgo 2% Avena 1% Maíz 95%

Figura 7. Producción de granos para alimento de ganado en Estados Unidos

Fuente: ERS, USDA, World Agricultural Outlook Board, 2012.

Alrededor de 32 millones de hectáreas de tierra están sembradas con maíz (Figura 8), con la mayoría de las cosechas producidas en la región de "Heartland" que incluye Illinois, Iowa, Indiana, porciones del este de Dakota del Sur y Nebraska, Kentucky y Ohio occidental y los dos tercios septentrionales de Missouri (ERS, USDA 2012).

millones de acres sembrados sembrado 200

Rendimiento acres sembrados 150

150

100

1926/27 1936/37 1946/47 1956/57 1966/67 1976/77 1986/87 1996/97 2006/07

Figura 8. Superficie sembrada y rendimiento de maíz en Estados Unidos, 1926-2007

Fuente: ERS, USDA, World Agricultural Outllok Board, 2012.

La producción de maíz se ha incrementado con el tiempo (ver Figura 9), ya que los mayores rendimientos siguieron a las mejoras en la tecnología (variedades de semillas, fertilizantes, pesticidas y maquinaria) y a las prácticas de producción (laboreo reducido, riego, rotación de cultivos y sistemas de manejo de plagas). La producción en Estados Unidos del ciclo agricola 2010/2011, según datos del WASDE 2012, fue de 12 447 millones de bushels.

14,000.00 13,000.00 12,000.00 Millones de bushels 11,000.00 10,000.00 9,000.00 8,000.00 7,000.00 1995 1997 1999 2001 2003 2005 2007 2009 2011

Figura 9. Producción de maíz en Estados Unidos 1995-2011

Fuente: Elaboración propia con datos de USDA, 2012.

Las exportaciones estadounidenses de maíz se dispararon en la década de 1970 de 13 millones de toneladas métricas en el inicio de la década a un récord de 62 millones en 1979. El crecimiento se debió a la fuerte demanda en Rusia, Japón, Europa Occidental y Oriental y países en desarrollo. Durante los próximos años, las exportaciones de maíz de Estados Unidos cayeron, tocando fondo en 31 millones de toneladas métricas en 1985, debido al pobre crecimiento de la economía mundial y la expansión de la Unión Europea. En la segunda mitad de la década de 1980, las exportaciones estadounidenses se recuperaron, alcanzando 60 millones de toneladas en 1989. Las exportaciones en la década de 1990 volvieron a disminuir a causa de factores externos, en particular la desintegración de la ex Unión Soviética y el aumento de las exportaciones de maíz de China (USDA, 2012).

Estados Unidos tiene un papel importante en el mercado mundial de maíz, con aproximadamente el 15% de la cosecha de este cereal exportado a otros países. Las exportaciones de maíz de grano representan una importante fuente de demanda para productores estadounidenses y hacen la mayor contribución neta a su balanza comercial agrícola y por ende a la economía en su conjunto. En promedio, el grano de maíz (excluyendo maíz palomero y maíz dulce) representó aproximadamente el 11% del valor de todas las exportaciones agrícolas de Estados Unidos durante la década de 1990 (USDA, 2012).

De acuerdo a al Servicio de Investigación Económica del USDA la participación de Estados Unidos en las exportaciones de maíz mundiales tuvo un promedio de 60% durante el periodo de 2003/04-2007/08. En 2008, debido a las exportaciones récord de maíz y otros cereales para alimentación animal, la participación aumentó a más del 12% del valor de exportación agrícola del país (USDA, 2012).

El Departamento de Agricultura de Estados Unidos (2012) proyecta una economía mundial más lenta y una menor demanda de maíz para amortiguar las exportaciones de maíz en el corto plazo. No obstante, los aumentos globales de la población y la demanda de los consumidores de productos cárnicos continuarán apoyando la expansión de las exportaciones de los cereales forrajeros en el largo plazo.

Dado que la producción de biocombustibles se desarrolla y expande, se continuará ejerciendo presión sobre la producción de maíz y otros cereales forrajeros en Estados Unidos.

La fuerte demanda para la producción de etanol ha resultado en más altos precios del maíz y ha proporcionado incentivos para aumentar la superficie de cultivo de maíz. En muchos casos, los agricultores han aumentado superficie cultivada de maíz mediante el ajuste de la rotación de cultivos entre el maíz y soya. Otras maneras para incrementar la superficie sembrada de maíz incluyen aumento de las tierras de cultivo que antes eran utilizadas para pastoreo y cambios de otros cultivos, como el algodón.

El maíz es un componente importante de la alimentación del ganado. La utilización en alimento para el ganado (una demanda derivada) está estrechamente relacionado con el número de animales (vacas, cerdos, y aves de corral) que se alimentan de maíz. La cantidad de maíz que se usa para la alimentación animal también depende de la oferta del cultivo y el precio, la cantidad de ingredientes adicionales utilizados en las raciones de alimento, suministros y precios de los ingredientes competitivos.

El maíz también se procesa para el consumo humano y otros usos industriales. Como se muestra en la Figura 10, los alimentos, las semillas y los usos industriales representan alrededor de un tercio de la utilización interna de Estados Unidos. Se puede dividir la demanda de maíz en las siguientes sub-demandas: demanda para alimento humano, alimento para ganado, exportaciones, almacenamientos y producción de etanol.

millones de bushels

12.5

| comida, semilla y usos industriales |
| Alcohol para combustible |
| Alimento para el ganado |
| 7.5 |
| 2.5 |
| 10 |
| 10 |
| 2004/05 |
| 2008/09 |
| 2012/13

Figura 10. Usos de maíz en Estados Unidos 1980-2013

Fuente: ERS, USDA, World Agricultural Outllok Board, 2012.

A medida que aumenta la producción de etanol, el suministro de subproductos del etanol también se incrementa. Ambos métodos para la producción de etanol (molienda en seco y molienda húmeda) generan una variedad de subproductos de valor económico, de los cuales el más importante son los granos secos de destilería con solubles (DDGS por sus siglas en inglés), que pueden ser utilizados como un ingrediente del alimento para el ganado. De acuerdo con datos del USDA (2012) cada 25 kg maíz para la producción de etanol en molienda seca genera alrededor de 7.9 kg de los DDGS. Estados Unidos ha sido el principal usuario de los DDGS como alimento para el ganado (tanto de leche y carne), pero grandes cantidades de DDGS se están dirigiendo hacia las raciones de alimento de cerdos y aves de corral.

Los agricultores pueden ser elegibles para recibir pagos del gobierno que apoyan o protegen sus ingresos. Esto incluye los pagos por contratos de producción flexible, los préstamos de comercialización, pagos de ayuda de desastres, conservación y seguros de cosechas. Los programas gubernamentales han sido fundamentales para el desarrollo de los mercados de alta fructuosa de jarabe de maíz y alcohol para combustible. Las cuotas de importación, aranceles y cuotas de importación de azúcar han hecho el mercado de alta fructuosa de maíz una alternativa económica. Recientes leyes ambientales federales han abierto el camino para un mayor uso del maíz en la producción de alcohol carburante (ERS, USDA 2010).

2.3 Ámbito Nacional

El maíz es el cultivo de mayor importancia en México, ya que constituye una de las actividades más importantes del sector rural, no solo en términos de uso de suelo, sino que también en el empleo y en el suministro de alimentos de la población rural y urbana.

El maíz blanco es la principal variedad producida en el país, utilizado principalmente para la elaboración de las tradicionales tortillas y tamales, aceite e insumos para la fabricación de barnices, pinturas, cauchos artificiales y jabones. La producción de este alcanza a cubrir la demanda en el consumo humano. Su participación en el bienio 2004-2005 fue del 94% (SIAP, 2007).

La Figura 11 muestra el porcentaje de los principales usos de este cereal.

El maíz amarillo en grano también se utiliza para consumo humano en una amplia variedad de platillos; sin embargo es utilizado principalmente como alimento para ganado y producción de almidones. La demanda de esta variedad es insuficiente para cubrir la demanda del sector pecuario. Su participación en el bienio 2004-2005 fue de solo 6%.

La participación del volumen obtenido de maíz en la producción total de cereales es creciente, ya que en 1996 la participación de maíz fue de 61.5%, en tanto que en el 2006 fue de 68.6% (SIAP, 2007).

Dentro de la cadena de maíz, el productor representa el principal eslabón y tiende a diferir considerablemente en cuanto a los sistemas de producción utilizados en las distintas regiones del país. A nivel nacional se identifican aproximadamente 2 millones de productores dedicados al cultivo de maíz. De este total, el 85% de los agricultores lleva a cabo su labor en predios cuya extensión es menor o igual a 5 hectáreas, y el resto lo hace en predios mayores a cinco hectáreas (SIAP, 2007).

Botanas y Cerealero 2%

Almidonero 36%

Pecuario 54%

Harinero 6%

Figura 11. Usos de maíz en México por sector, 2006

Fuente: SIAP, 2007.

En México existe un déficit de 43% en la producción del maíz, a pesar de ser el grano más importante en la cadena alimentaria de los mexicanos, el país importa la tercera parte de su consumo aparente (ASERCA 2012).

México ha perdido importancia en su papel de productor de maíz a nivel mundial. Según el SIACON, en 2007 México era el cuarto productor de maíz a nivel mundial, y de acuerdo a datos del USDA, en el ciclo agrícola 2011-2012 ocupó el séptimo lugar.

Los principales estados productores de maíz blanco son: Sinaloa, Jalisco, Michoacán, Chiapas, Guerrero, Estado de México y Guanajuato. En cuanto a la producción de maíz amarillo, los principales productores son: Chihuahua, Jalisco, Tamaulipas y Chiapas.

La producción se obtiene en dos ciclos: primavera-verano y otoño-invierno, bajo las más diversas condiciones agroclimáticas, de humedad, temporal y riego. Según información de SIAP (2007) el ciclo primavera-verano representó el 78.5% de la producción obtenida,

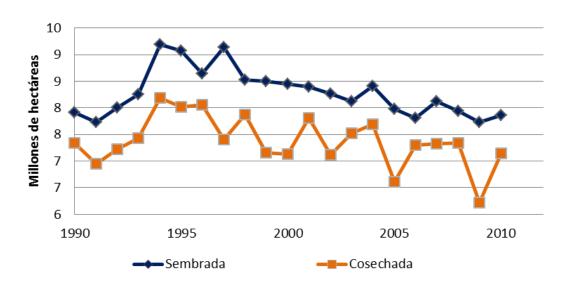
mientras que el ciclo otoño-invierno participó con el 21.5% restante. El 64% se produce bajo condiciones de temporal y el 36% en superficie irrigada. La Figura 12 muestra el comportamiento de la producción de maíz en México.

Millones de toneladas Produccion Demanda

Figura 12. Producción y demanda de maíz en México 1990-2010

Fuente: Elaboración propia con datos de FAO, 2012.

Para 2012, de acuerdo a datos de SIAP el consumo de maíz blanco se estimó en 13. 9 millones de toneladas de las cuales el consumo humano fue de 11.6 y pecuario de 1. 6. Por su parte, el consumo total de maíz amarillo fue 8. 5 millones de toneladas de las cuales 5.5 fueron para consumo pecuario y las restantes (3.1) fueron de consumo humano.


El volumen de producción de maíz en 2010 fue de 23.3 millones de toneladas, siendo Sinaloa el estado con el volumen más alto de la producción (5.2 millones de toneladas) lo que representa más de un cuarto de la producción nacional.

Durante el periodo 1996-2006 el maíz ocupó el 51% de la superficie sembrada y cosechada totales en promedio anual; generó el 7.4% del volumen de producción agrícola total, representando el 30% del valor total de la producción (SIAP, 2007). La superficie sembrada en 2010 fue de 7.8 millones de hectáreas, mientras que la cosechada fue de 7.1 millones de toneladas. Chiapas reportó la mayor superficie dedicada al cultivo de maíz con 698 mil hectáreas (SIACON, 2012).

Como se observa en la Figura 13, a pesar de la importancia del cultivo, en los últimos años se ha presentado una baja en la superficie sembrada y cosechada en el país.

Figura 13. Superficie sembrada y cosecha de maíz 1990-2010

Fuente: Elaboración propia con datos de SIAP-SIACON, 2012.

El rendimiento nacional de maíz en 2010 fue de 3.26 toneladas por hectárea, sin embargo, debido a las condiciones agroclimáticas y la diferencia en la aplicación de paquetes tecnológicos, el rendimiento es heterogéneo en todo el país. Sinaloa ocupa el primer lugar en rendimiento con 10 toneladas por hectárea, seguido de Baja california Sur (6 ton/ha), Jalisco (5.9 ton/ha) y Chihuahua (4.4 ton/ha). Mientras que Quintana Roo y Yucatán no alcanzan a producir una tonelada por hectárea (0.83 y 0.81 ton/ha respectivamente).

Los precios nominales de maíz han ido a la alza, mientras que los reales han tenido tendencia a bajar. En la Figura 14 se puede apreciar que a partir del 2005 los precios reales se han incrementado, a excepción del 2010.

Ļζ

Figura 14. Precio real de maíz al productor 1990-2010 (base 2010)

Fuente: Elaboración propia con datos de SIAP-SIACON, 2012.

Si bien México es uno de los principales productores de maíz en el mundo, también es un importante consumidor del mismo, por lo que es uno de los principales importadores a nivel mundial.

El principal proveedor de maíz grano requerido por México es Estados Unidos y se trata fundamentalmente de grano amarillo No. 2 cuyo principal uso es el pecuario.

Sin duda un elemento que favoreció las importaciones de maíz de Estados Unidos a México fue el Tratado de Libre Comercio de América del Norte (TLCAN) (ver Figura 15). Otro factor importante ha sido las variaciones en las tasas de cambio entre ambos países. El proceso de apertura comercial también influyo en la desaparición de la Compañía Nacional de Subsidios Populares (CONASUPO) en 1999 y con ello la eliminación de los precios de garantía. En ese mismo año se crea el programa Apoyo y Servicios a la Comercialización Agropecuaria (ASERCA).

En el periodo de 1996-2005, las importaciones de maíz representaron en promedio, el 29% de la producción nacional (sin contar 1997, cuando dicha participación bajó a 14%) (SIACON, 2007).

Con la implementación del TLCAN la dependencia de maíz en México creció de 7% en 1990 a 34% en recientes años (Wise, 2012).

En el 2012 de acuerdo a la balanza Disponibilidad Consumo del SIAP las importaciones de maíz blanco fueron de 1.072 millones de toneladas, mientras que las de maíz amarillo fueron de 9.345 millones de toneladas.

10,000 9,000 8,000 7,000 Miles de toneladas 6,000 5,000 4,000 3,000 2,000 1,000 0 1980 1985 1990 1995 2000 2005 2010

Figura 15. Importaciones de maíz en México, 1980-2010

Fuente: Elaboración propia con datos de FAO, 2012

Las exportaciones de maíz de México han sido poco significativas y muy fluctuantes a través de los años, fundamentalmente de maíz blanco. El destino de estas exportaciones son principalmente hacia países de Centroamérica (SIAP, 2007).

2.3.1 Políticas aplicadas al cultivo de maíz en México

SAGARPA, es la institución del gobierno Federal que se ha encargado de implementar y promover diversos programas dirigidos a incrementar la productividad en el cultivo de maíz a nivel nacional y con la finalidad de ofertar mayor cantidad de este cultivo para abastecer el mercado interno, así como incrementar el ingreso de los productores. Dentro de los programas de apoyo a la producción de maíz se encuentran los siguientes:

• PROCAMPO. El Programa de Apoyos Directos al Campo es una contribución directa que el gobierno federal otorga a través de la SAGARPA para apoyar el ingreso de los productores rurales. Este apoyo consiste en la entrega de recursos monetarios por cada hectárea o fracción sembrada y registrada por los agricultores en el Programa. El programa inicio a finales de 1993 y ha continuado hasta la fecha.

En el caso del ciclo otoño-invierno 1993-1994, el pago se fijó en \$891 por hectárea, mientras que el correspondiente al otoño-invierno 2005/2006 se ubicó en \$752, arrojando una Tasa Media Anual de Crecimiento TMAC negativa de -3% en términos nominales (SIAP, 2007).

Según SAGARPA en 2012 el apoyo para predios de hasta 5 ha, fue de \$1300 pesos por hectárea elegibles de temporal en el ciclo agrícola primavera-verano y \$963.00 por hectárea para el resto de los predios registrados en el directorio del PROCAMPO. A partir del ciclo agrícola PV/2009 se estableció un límite de apoyo de hasta 100 mil pesos por persona física beneficiaria, por ciclo agrícola.

• FIRA. La principal fuente de financiamiento proveniente del sector público es el Fideicomiso Instituido con Relación a la Agricultura (FIRA), dependiente del Banco de México, cuyas acciones están orientadas a incrementar, desarrollar la producción y la productividad de las cadenas agroalimentarias y pesqueras. Para el caso específico de maíz, el apoyo financiero que se le otorgó en 2006 a la cadena productiva del cultivo a través de este organismo, alcanzó un monto de 6,760 millones de pesos, cifra superior en 147% con respecto de 1998 (SIAP, 2007).

- SEGURO. El gobierno federal a través de AGROASEMEX destina recursos en apoyo al aseguramiento agrícola y pecuario, cuyo objetivo es apoyar a los productores para la contratación del seguro agropecuario. La superficie asegurada promedio de maíz durante el periodo 1996-2006 ascendió a 550 mil hectáreas, lo que representa más de la tercera parte (35%) de la superficie asegurada total correspondiente a los diez principales cultivos agrícolas cubiertos por esta institución.
- ASERCA. A partir de 2001, con base en la operación de Apoyos y Servicio a la Comercialización (ASERCA), se ha desarrollado una política de comercialización integral. Está comprende el Programa de Apoyos Directos al Productor por Excedentes de Comercialización para la Reconversión Productiva; Integración de Cadenas Agroalimentarias y Atención de Factores Críticos que combina apoyos directos al productor; el manejo de cupos e instrumentos de cobertura de riesgos (cobertura de precios); la promoción de exportaciones e información comercial y de comportamiento de los mercado que tiene por objetivo proporcionar certidumbre al productor en la toma de decisiones, manteniendo como prioridad la canalización de apoyos directamente al productor
- Para el caso específico de maíz y conforme con el Subprograma del Ingreso Objetivo, el 31 de julio de 2006, se estableció que para el ciclo agrícola PV 2006 el volumen estimado susceptible de recibir apoyo complementario ascendió a 4 031 800 toneladas de maíz, este volumen corresponde a todos los estados productores del grano en el país. Los apoyos van de \$150/ton a \$350/ton (SIAP, 2007).
- ALIANZA CONTIGO. Es un programa que se dio a conocer a fines de 1995, y desde entonces ha sido un instrumento central en la política de desarrollo agropecuario y rural a nivel nacional. Los objetivos específicos de Alianza están dirigidos a apoyar la organización económica campesina, fomentar la inversión rural de los productores, desarrollar capacidades de la población rural, fortalecer la organización interna de las unidades de producción, producir suficientes alimentos básicos (incluido el maíz) y avanzar en los niveles de sanidad e inocuidad agroalimentaria y pesquera.

• MASAGRO. Apoya principalmente a los pequeños productores de maíz de México a probar y usar variedades mejoradas de maíz y trigo y a promover el uso de la agricultura de conservación y otras tecnologías para incrementar sus rendimientos e ingresos, mientras se reducen sus costos. Tiene como objetivo incrementar la producción anual de maíz bajo temporal de 5 a 10 millones de toneladas anuales hacia el 2020, y aumentar la productividad de los pequeños productores de México en el orden de 8 a 14% mediante la capacitación en prácticas de mayor precisión y conservación.

Aún para la sorpresa de muchos, la producción de maíz en México ha crecido incluso con la reducción de soporte gubernamental a través de sus programas de apoyo hacia los pequeños y medianos productores, quienes son la mayoría y quienes aún producen la mayoría del maíz en México (Wise, 2010). Los principales beneficiarios de la política agrícola del país no son los medianos y pequeños agricultores del país y esto se ha dado bajo el supuesto de que los pequeños productores de maíz no pueden significativamente incrementar su productividad. Este es un argumento que ha prevalecido desde la firma del TLCAN y ahora cuestionados bajo el incremento de los costos de las importaciones de maíz, derivado de la teoría de la ventaja comparativa que sugiere que, México en un mercado global, debería producir lo que es más eficiente e importar el resto. Sin embargo, el modelo de libre comercio para generar empleo, equidad y seguridad alimentaria es ahora también muy cuestionado y más aún con los precios altos de los alimentos y su constante incremento en los últimos años (Zepeda, Wise et al., 2009). Es por ello que es necesario que el gobierno tiene que repensar sobre que políticas agrícolas es necesario implementar y los efectos en la implementación de políticas agrícolas en los productores de maíz y, en general, para la seguridad alimentaria del país.

CAPITULO III

PRODUCCIÓN DE BIOCOMBUSTIBLES

Biocombustibles es un término colectivo para los combustibles líquidos derivados de fuentes renovables, incluyendo etanol, biodiesel y otros combustibles líquidos renovables (EIA, 2012).

Los biocombustibles son recursos energéticos procesados por el ser humano a partir de materias producidas recientemente por seres vivos, a las cuales se les denomina "biomasa". Pueden ser líquidos, sólidos o gaseosos, y su finalidad última es liberar la energía contenida en sus componentes químicos mediante una reacción de combustión (Álvarez, 2009). De acuerdo a los avances en la tecnología y el tipo de insumo utilizado los biocombustibles de clasifican en las siguientes generaciones:

• Primera generación

Algunos de los insumos son de procedencia agrícola y están conformados por las partes alimenticias de las plantas, las cuales tienen un alto contenido de almidón, azúcares y aceites. Ejemplos de estas materias son el jugo de la caña de azúcar, granos de maíz, jugo de la remolacha o betabel, aceite de semilla de girasol, aceite de soya, aceite de palma, aceite de ricino, aceite de semilla de algodón, aceite de coco, aceite de maní o cacahuate, entre otros (Álvarez, 2009).

Las ventajas de estos biocombustibles son su facilidad de procesamiento, sus bajas emisiones de gases de efecto invernadero (excepto en el caso del maíz, donde el balance de estas emisiones es casi nulo) y un balance positivo en dichas emisiones, pero tiene como desventaja el desvío de recursos alimenticios hacia la producción de energéticos.

Segunda generación

Los insumos son residuos agrícolas y forestales compuestos principalmente por celulosa. Ejemplos de ellos son el bagazo de la caña de azúcar, el rastrojo de maíz (tallo, hojas y olote), paja de trigo, aserrín, hojas y ramas secas de árboles, etcétera (Álvarez, 2009).

La ventaja principal en la producción de estos biocombustibles es la inexistencia de desviaciones de alimentos provenientes de la agricultura hacia el sector energético, pero su desventaja es la poca ganancia en disminución de las emisiones de gases de efecto invernadero durante el procesamiento de los insumos, respecto a los biocombustibles de primera generación.

Tercera generación

Los insumos son vegetales no alimenticios de crecimiento rápido y con una alta densidad energética almacenada en sus componentes químicos, por lo que se les denomina "cultivos energéticos". Entre estos vegetales están los pastos perennes, árboles, plantas de crecimiento rápido, y las algas verdes y verdeazules. Su desventaja es la utilización de tierras de cultivo de alimentos para sembrar los insumos, con excepción de las algas verdes (Álvarez, 2009).

Cuarta generación

Los biocombustibles son producidos a partir de bacterias genéticamente modificadas, las cuales emplean anhídrido carbónico (CO₂) o alguna otra fuente de carbono para la obtención de los biocombustibles. A diferencia de las generaciones anteriores, en las que también se pueden emplear bacterias y organismos genéticamente modificados como insumo o para realizar alguna parte de los procesos, en la cuarta generación, la bacteria es la que efectúa la totalidad del proceso de producción de los biocombustibles. Actualmente esta generación de biocombustibles se encuentra en fase teórica, sólo se conoce la posible ruta de síntesis del etanol a partir de anhídrido carbónico.

Producción de etanol

El etanol es un producto mundialmente consolidado para uso como combustible, bien como mezcla con gasolina o bien como combustible en motores de ignición por chispa. Por eso es considerado como una de las opciones más viables para sustituir a la gasolina y colaborar en la reducción del uso de combustibles fósiles.

El etanol tiene cerca del 67% del valor energético de la gasolina sin plomo regular, lo que implica menores millas recorridas por galón. Esto sugiere que muchos consumidores comprarían etanol sólo si el precio (en volumen) es un descuento al precio de la gasolina, por lo anterior el etanol es visto como un sustituto de la gasolina.

La producción de etanol o alcohol etílico a partir de almidón o materias primas basadas en azucares esta entre las primeras empresas del hombre en procesamiento de valor agregado. Aunque los pasos básicos siguen siendo los mismos, el proceso ha sido refinado considerablemente en recientes años, dando lugar a un proceso más eficiente. Hay dos procesos de producción: molienda seca y molienda húmeda. La principal diferencia entre ellas es en el tratamiento inicial del grano (RFA, 2012).

Es importante señalar que la mezcla de 90% gasolina y 10% de etanol puede ser usada en los vehículos sin ninguna modificación en los motores. Sin embargo, para usar una mezcla de 85% gasolina y 15% etanol se estima es necesario modificar el convertidor catalítico, el tanque de combustible, los sistemas de evaporación, ignición, inyección, presión, el filtro de combustible y la bomba de gasolina, ya que los materiales que integran estas partes pueden sufrir daños.

3.6 Ámbito internacional

El surgimiento de los primeros mercados de biocombustibles en el mundo sucedió a raíz de la primera crisis petrolera ocurrida en 1973, cuando el petróleo se encareció enormemente. Esta crisis afectó a todos los países del mundo, principalmente a aquellos sin reservas petrolíferas o producción insuficiente del recurso. Entre estos últimos estaban Brasil y Estados Unidos (Álvarez, 2009).

La producción de biocombustibles y el consumo ha alcanzado dimensiones globales, negocios millonarios son subsidiados con millones de dólares por los gobiernos en Australia, Brasil, Canadá, China, Europa, India y Estados Unidos (Auld, 2012). Así, el impulso para expandir la producción de etanol y su consumo se ha convertido no sólo en una cuestión económica, sino una cuestión de política nacional y mundial (Auld, 2012).

Es importante mencionar que existe una estrecha relación entre la producción de etanol y el precio de los alimentos, ya que el incremento en el uso de biocombustibles tiene un impacto directo en los suministros de alimentos en todo el mundo.

La producción de etanol combustible a nivel mundial se presenta en el Cuadro 3.

Cuadro 3. Producción de etanol combustible mundial 2011

Continente/País	Millones de galones
Norte y centro América	14,401.34
Sur América	5,771.90
Brasil	5,573.24
Europa	1,167.64
Asia	889.70
China	554.76
Canadá	462.30
Australia	87.20
África	38.31

Fuente: RFA, 2012

3.6.1 Brasil

Dentro de los principales países productores del biocombustible, Brasil es uno de los líderes, no solo en la producción de etanol a partir de caña de azúcar, del biodiesel a partir de granos y otros vegetales, sino también en la investigación para el uso de agro-energía como una alternativa del petróleo crudo (SIAP, 2007).

El desarrollo de la tecnología de producción, aprovechamiento y uso final de biocombustibles en Brasil tiene origen en el período 1905-1925 con las primeras pruebas de etanol como combustible en vehículos automotores. En 1931, el gobierno estableció un decreto que obligaba a mezclar 5% de etanol en la nafta importada. En 1938 se extendió la mezcla de etanol a la nafta producida en Brasil.

A mediados de los años 1970, cuando se dispararon los precios del petróleo a raíz del conflicto árabe-israelí, Brasil introdujo el uso de alcohol como combustible. En este país, cuya economía dependía del petróleo importado, creó un programa de utilización de alcohol en la gasolina llamado "Proalcohol", con base en el que se promovió su crecimiento y desarrollo. Este programa tuvo gran éxito hasta 1985, mientras que la producción fue impulsada mediante el subsidio estatal y más del 90% de los automóviles nuevo de producción nacional se movían con uso exclusivo del alcohol hidratado. En los años 1990 este subsidio terminó (SIAP, 2007).

En el período de 1995 al 2002 se dieron una serie de reformas legales y constitucionales, que motivaron la creación y fortalecimiento de un mercado interno para los biocombustibles, el cual ahora compite con el de productos petrolíferos.

En 2003, se comenzaron a fabricar vehículos con la capacidad de funcionar a base de cualquier mezcla de gasolina con etanol (desde 0% hasta un 100% de etanol), llamados "flex-fuel". En 2004, el gobierno organizó el Programa Nacional de Biodiesel, para fomentar la producción del biocombustible y su introducción en el mercado energético interno. En 2005, el Congreso de Brasil emitió la Ley 11.097/2005 la cual establece los porcentajes mínimos de mezcla de biodiesel con diesel fósil. En 2007 se dejaron de fabricar automóviles movidos sólo por etanol, pues por ser éste hidratado, no puede mezclarse con gasolina como en el caso de los autos flex-fuel. En 2008 Empresa Brasileira de Aeronáutica S.A. (Embraer) fabricó y probó la primer aeronave movida sólo por etanol (Álvarez, 2009).

Hasta 2004, Brasil fue el primer productor de etanol en el mundo (Figura 16). Su producción alcanzó los 15 098 millones de litros, con costos de producción particularmente competitivos que permitieron que el precio del etanol fluctuara entre 0.16 y 0.18 dólares en 2003 (SIAP, 2007).

En 2007, Brasil produjo 21 300 millones de litros (ML) de etanol y 730 ML de biodiesel, consumió 17 767 ML de etanol, y exportó 3 532.7 ML de etanol, principalmente a Europa (Suecia y Países Bajos, mayoritariamente), Estados Unidos, Trinidad y Tobago, El Salvador y Costa Rica. En 2008, produjo 24 500 ML de etanol, por lo que se mantiene como el segundo mayor productor del mismo (Álvarez, 2009).

Petrobras es el principal comprador y distribuidor de etanol y biodiesel en Brasil, pues sólo produce combustibles fósiles y los mezcla para su venta en el mercado interno.

Figura 16. Producción de etanol combustible en Brasil, 1975-2010

Fuente: Earth Policy Institute, 2012.

3.6.2 Europa

El uso de biocombustibles en Europa se remonta a finales del siglo XIX, cuando estaban en desarrollo los primeros motores de combustión interna. En la década de 1920 los gobiernos de Alemania y Francia emitieron leyes que obligaban a mezclar etanol con gasolina para el transporte (Álvarez, 2009).

Como se puede observar en la Figura 17, la producción de etanol biocombustible en Europa no abastece el consumo, por lo que actualmente es uno de los más grandes mercados de biocombustibles en el mundo, y en cuanto al biodiesel es el mayor mercado, pues en 2008 consumió 7 694 097 toneladas de petróleo equivalente (TPE) de biocombustibles, cifra conformada por 1 166 243 TPE (2 325 ML) de etanol, 5 774 207 TPE (7 326 ML) de biodiesel y 753 617 TPE de otros biocombustibles (Álvarez, 2009).

La producción de etanol de los países de la Unión Europea se presenta en el Cuadro 4.

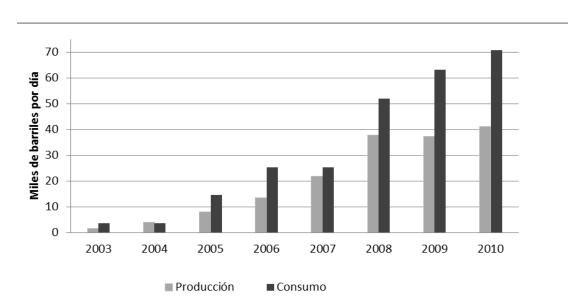


Figura 17. Consumo y producción de etanol biocombustible en Europa, 2003-2010

Fuente: Elaboración propia con datos de IndexMundi, 2013.

Cuadro 4. Producción de etanol biocombustible en los principales países de Europa

País	2011 (estimado)	2010	2009
Austria	195	197	175
Belgica	400	315	220
República Checa	110	120	113
Dinamarca	5		
Finlandia	10	10	10
Francia	1007	1050	1040
Alemania	770	761	749
Grecia	0	0	0
Hungría	173	186	150
Irlanda	10	10	10
Italia	60	60	50
Letonía	5	19	17
Lituania	18	49	31
Países Bajos	275	100	0
Polonia	167	200	166
Romania	65	67	0
Eslovaquia	130	127	118
Portugal	0	0	0
España	463	472	465
Suecia	200	205	164
Reino Unido	320	320	75
Total	4393	4268	3553

Fuente: European Bioethanol Fuel Association (ePURE)

En general, es un consumidor neto. Para satisfacer la demanda europea de biocombustibles, estos países importan etanol de Brasil, Paquistán, Sudáfrica y Ucrania, y biodiesel de Brasil y Estados Unidos.

3.6.3 América

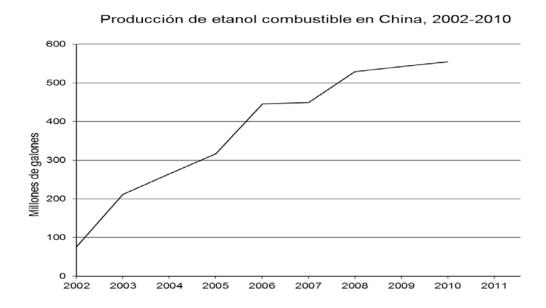
Además de Brasil y Estados Unidos que son los dos mayores productores de biocombustibles en el continente americano y en el mundo, producen etanol como biocombustible otros países de la región tales como Canadá (800 ML en 2007), Colombia (284 ML), El Salvador (277 ML), Costa Rica (149 ML), Perú (30 ML), Argentina (20 ML) y Paraguay (18 ML). Otros países como Guatemala (79 ML en 2006), Cuba (45 ML), Ecuador (45 ML), México (49 ML) y Nicaragua (30 ML), también producen etanol pero no tiene un uso final como biocombustible (Álvarez, 2009). Debido a que en América se encuentran los dos principales países productores de etanol, la producción es mayor al consumo, como se observa en la Figura 18.

En América Latina el etanol es obtenido principalmente del jugo de la caña de azúcar, aunque en Paraguay también se le produce a partir de trigo, maíz y cassava (yuca o mandioca). En Canadá, 73% del etanol es producido a partir de maíz, 17% de trigo y 3% de cebada, y el biodiesel es obtenido de canola y grasas animales (Álvarez, 2009).

Miles de barriles por día ■ Producción ■ Consumo

Figura 18. Consumo y producción de etanol biocombustible en Sudamérica, 2000-2010

Fuente: Elaboración propia con datos de IndexMundi, 2013.



3.6.4 Asia

Los mayores productores de etanol en Asia son China (1 840 ML en 2007), Tailandia (300 ML), India (250 ML), Turquía (60 ML) y Paquistán (35 ML). Otros productores de etanol son Japón, Indonesia y Filipinas. Los principales países productores de biodiesel son Indonesia (760 ML en 2007), China (338 ML) y Malasia (150 ML). Otros países productores de biodiesel son Filipinas, Japón, Tailandia e India.

China es el mayor productor asiático de etanol y es el tercer mayor productor en el mundo con 1000 millones de litros anuales (ver Figura 19), pretendiendo que en el 2020, el 10% del combustible líquido utilizado por este país sea biocombustible (SIAP, 2007). También es el segundo mayor productor de biodiesel en Asia. El 80% del etanol producido en China proviene del maíz, el restante es obtenido de trigo, sorgo, cassava y camote (Álvarez, 2009).

Figura 19. Producción de etanol combustible en China, 2002-2010

Fuente: Earth Policy Institute, 2012.

Japón está comenzando a desarrollar una industria de los biocombustibles, debido a sus compromisos con el Protocolo de Kyoto y al incremento en los precios del petróleo, del cual es el tercer mayor consumidor del mundo y uno de los principales importadores (Álvarez, 2009).

Paquistán produce etanol a partir de caña de azúcar, el cual exporta a la Unión Europea y a Suiza, compitiendo con el etanol de Brasil. India produce etanol a partir de azúcar y melazas de la caña y biodiesel de jatropha. Malasia produce biodiesel a partir del aceite de palma, del cual era el mayor productor en el mundo hasta 2007 cuando fue superado por Indonesia. Tailandia es el tercer mayor productor de aceite de palma en el mundo. Filipinas es un importador neto de etanol. Turquía produce etanol de remolacha y biodiesel a partir de aceites vegetales (Álvarez, 2009). La producción y consumo de etanol en el continente asiático se presenta en la Figura 20.

Miles de barriles por día Producción ■ Consumo

Figura 20. Consumo y producción de etanol biocombustible en Asia, 2002-2010

Fuente: Elaboración propia con datos de IndexMundi, 2013.

3.6.5 África

Los únicos países que producen etanol para uso energético son Etiopía, Malawi y Sudáfrica. Etiopía lo obtiene de la fermentación del jugo de la caña de azúcar y lo mezcla con queroseno en 50% para uso doméstico. Malawi produce etanol a partir de las melazas del procesamiento de la caña de azúcar, y lo ha mezclado con gasolina en 12% (E12) desde 1982 para uso en el sector transporte (Álvarez, 2009).

3.5.6 Australia

El país-continente produjo 140 ML de etanol en 2007, a partir de caña de azúcar, trigo y sorgo. En 2009, existen 3 plantas productoras de etanol con una capacidad instalada de 243 ML anuales, y 7 plantas de biodiesel capaces de producir 245 ML al año. El gobierno australiano pretende a mediano plazo exportar biocombustibles a Japón, Filipinas, Tailandia, Malasia y Estados Unidos (Álvarez, 2009).

3.7 Estados Unidos

Estados Unidos es el principal productor y consumidor de etanol en el mundo. Casi todo el etanol producido en este país se obtiene a partir de maíz (ver Figura 21). El uso de este grano para producción de etanol pasó de un 23% del total uso doméstico en 2006/2007 a 45% en 2010/2011 (WASDE, 2012).

En el mercado agrícola para el ciclo 2010/2011 el 40% de la cosecha de maíz y el 14% de la producción de aceite de soya fueron usados para la producción de biocombustibles y otros productos, incluyendo granos de destilería para la alimentación de ganado (EIA, 2012).

Millones de bushels Millones de galones 1,300 450 1,200 400 350 1,100 300 1,000 Producción de etanol (eje izquierdo) 900 250 Maiz usado para producir etanol (eje derecho) 800 200 700 150 0 0 2009 2010 2011 2012

Figura 21. Producción de etanol y uso de maíz para su producción en E.U., 2009-2012

Fuente: Biofuels Issues and Trends - EIA (Octubre, 2012).

Como se puede observar en la Figura 22, mientras ha existido un crecimiento en el maíz usado para la producción de etanol, las exportaciones de este cereal en Estados Unidos han presentado poca variación

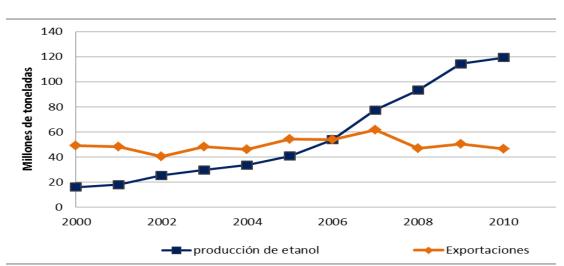


Figura 22. Uso de maíz usado en la producción de etanol y exportaciones en Estados Unidos, 2000-2012

Fuente: Elaboración propia con datos de Earth Policy Institute, 2012.

En los últimos 6 años, el crecimiento en la producción de etanol de maíz ha sido dramático, particularmente en respuesta a la Norma de Combustibles Renovables (ver Figura 23). La capacidad de producción de etanol en Estados Unidos ha incrementado más del 560% desde el 2000 en respuesta a la promulgación de nuevos estándares de combustibles renovables (EIA, 2012). Así mismo, el consumo de etanol para gasolina en este país creció de 8% en volumen en 2009 a casi 10% en 2011 y primeros meses del 2012 (ver Cuadro 5). Con casi toda la gasolina en Estados Unidos mezclada con 10% de etanol (E10), el máximo nivel aprobado para uso en todos los automóviles (EIA, 2012). De esta manera, la producción de etanol a enero de 2009 se efectuaba en 176 plantas, y estaban en construcción 45 destiladoras (Álvarez, 2009).

Produccion de Etanol (Millones de galones) 0 1 Año

Figura 23. Producción de etanol en estados Unidos

Fuente: Elaboración propia con datos de Earth Policy Institute, 2012.

Cuadro 5. Producción y consumo de etanol, 2009-2011

Consumo	2009	2010	2011
Consumo (Millones de galones)	11037	12858	12871
Consumo (porcentaje de gasolina por volumen)	8.0	9.3	9.6
Producción (Millones de galones)	10938	13298	13948

Fuente: EIA, Revisión mensual de energía, agosto 2012.

El uso de maíz para la producción de etanol fue estimado en 4.7 millones de bushels en 2010 y 4.9 millones de bushels en 2011. Para el año comerciable 2010/11, el departamento de Agricultura de Estados Unidos (USDA) reportó una producción de maíz de 12.4 millones de bushels, y en ese mismo periodo la Administración de Información de Energía (EIA por sus siglas en inglés) estimó que un total de 4.9 millones de bushels se utilizaron para la producción de etanol (Cuadro 5). Esto significa que el 40% de la cosecha de maíz de 2010 fue consumida con el fin de producir etanol y granos de destilería en el año comercial 2010/11.

Cuadro 6. Producción de maíz y uso para etanol y granos de destilería.

	Año comercial USDA		
	2009/10	2010/11	2011/12
Producción de etanol (millones de bushels)	13.1	12.4	12.4
Uso de maíz para la producción de etanol y granos de destilería (millones de bushels)	4.5	4.9	4.8
% de producción de maíz usado para la producción de etanol y granos de destilería	34	40	39

Fuente: Biofuels Issues and Trends - EIA, Octubre 2012.

3.7.1 Legislación y políticas en Estados Unidos

La legislación y sus reglamentaciones son factores importantes en la regulación de la producción y consumo de etanol y biodiesel. Las plantas procesadoras están siendo construidas para producir los volúmenes anuales necesarios y los participantes del mercado son sensibles a los cambios legislativos y reglamentarios.

Desde 2009 hasta mediados del 2012, la industria de biocombustibles en Estados Unidos aumentó su producción y se dispuso a cumplir con una Norma de Combustibles Renovables (RFC por sus siglas en inglés), la cual requiere volúmenes crecientes de uso de biocombustibles. En el 2011, la industria de biocombustibles trascendió de los incentivos fiscales para la producción de biocombustibles no celulósicos, los cuales expiraron a finales del 2011 (EIA, 2012).

Los créditos federales para la producción de etanol no celulósico y biodiesel y el arancel de importación de etanol expiraron el 31 de diciembre del 2011. Hasta ese entonces, los créditos a la producción de etanol eran de US \$0.45 por galón de etanol mezclado con gasolina mientras que el arancel de importación fue US \$0.54 por galón (EIA, 2012).

La Ley de Seguridad e Independencia Energética de 2007 (EISA por sus siglas en inglés) estableció mandatos específicos para cada año del 2009 a 2022 para cuatro categorías de combustibles renovables: diesel basado en biomasa (biodiesel), biocombustibles celulósicos, biocombustibles avanzados y el combustible renovable total. El etanol de maíz se encuentra en la categoría denominada "biocombustibles convencionales" que pretende llegar a una meta de 15 mil millones de galones en 2015 y mantenerse en ese volumen hasta el 2022. Es importante mencionar que los biocombustibles convencionales permiten tomar en cuenta al etanol de maíz, pero no obliga a ello, se podrían utilizar otros biocombustibles para llenar la parte convencional.

Con el fin de cumplir con el mandato total de combustibles renovables, el etanol de maíz se utiliza para llenar la parte de los biocombustibles convencionales, de tal manera que esto es equivalente a tener un mandato para etanol de maíz.

En conjunto, la Norma de Combustibles Renovables y el límite de mezcla crearon nuevas condiciones para la demanda de etanol, los cuales afectan la demanda de gasolina y maíz y la magnitud de la respuesta de los precios a perturbaciones en la oferta.

3.7.1.1 Norma de Combustibles Renovables (RFC)

La Norma de Combustibles Renovables es un mandato para la producción de biocombustibles en cantidades específicas para cada año, las cuales varían de acuerdo a la materia prima y proceso utilizados.

La primera Norma de Combustibles Renovables fue promulgada en el marco de la Ley Política Energética (EPA por sus siglas en inglés) del 2005 requiriendo 7.5 millones de galones de combustible renovable para ser mezclado con la gasolina para el 2012. La segunda y actual Norma de Combustibles Renovables (RFS2 por sus siglas en inglés) fue promulgada con la Ley de Seguridad e Independencia Energética del 2007 (EISA por sus siglas en inglés). El estatuto creó dos categorías principales: combustibles renovables; y, como un subconjunto, biocombustibles avanzados. La categoría de Combustibles Renovables incluye prácticamente todos los combustibles renovables producidos por las instalaciones que existían o estaban bajo construcción en 2008 y cualquier fuente de combustible renovable que cumple con una reducción del 20% en las emisiones de gases de efecto invernadero en relación con los combustibles desplazados (gasolina o diesel). Los biocombustibles avanzados, que incluyen combustibles como etanol de caña de azúcar, requieren una reducción del 50% en las emisiones de gases de efecto invernadero (EIA, 2012).

EISA 2007 prohíbe explícitamente que el etanol derivado de almidón de maíz sea considerado como un biocombustible avanzado. En 2015 y años sucesivos la cantidad máxima total de etanol de maíz que puede ser aplicado por RFS2 es de 15 millones de galones. Los requerimientos de biocombustibles avanzados se esperan incrementar de 600 millones de galones en 2009 a 21 millones de etanol equivalente en 2022 (ver Cuadro 7).

El requisito legal de biocombustibles de celulosa fue fijado en 0.1 millones de etanol equivalente en 2010, incrementándose a 16 millones de galones en 2022. Los volúmenes reglamentarios de combustibles renovables requieren incrementar el consumo para todos los biocombustibles (avanzados y no avanzados) de 9 millones de galones en 2008 a 36 millones de galones de etanol-equivalente en 2022.

Los requerimientos en volumen de biocombustibles avanzados de la RFS2 para los cuales se importa etanol de caña de azúcar, pasaron de 1.35 millones de galones en 2011 a 2 millones de galones en 2012. Las interacciones específicas entre los mercados de los distintos combustibles clasificados y RFS2 crearon oportunidades para el intercambio de etanol entre Estados Unidos y Brasil en 2012. En este escenario, Estados Unidos envían volúmenes de etanol de maíz a Brasil a cambio de etanol de caña de azúcar (EIA, 2012).

El mercado de los Números de Identificación Renovables (RIN por sus siglas en inglés) es la clave para la aplicación de la RFS. Los productores de etanol generan una RIN por cada galón de etanol convencional producido y la parte obligada recibe un RIN emitido por el productor por cada galón de etanol mezclado. El RIN es un número de 38 dígitos que permite a la Agencia de Protección Ambiental (EPA por sus siglas en inglés) rastrear la producción, el transporte y el uso de combustibles renovables para satisfacer los niveles de la Norma de Combustibles Renovables.

Cuadro 7. Volumen de producción de biocombustibles renovables y avanzados en Estados Unidos

Año Volumen de combustibles renovables (millones de galones)		Volumen de combustibles avanzados (millones de galones)	
2009	11.1	0.6	
2010	12.95	0.95	
2011	13.95	1.35	
2012	15.2	2.0	
2013	16.55	2.75	
2014	18.15	3.75	
2015	20.5	5.5	
2016	22.25	7.25	
2017	24.0	9.0	
2018	26.0	11.0	
2019	28.0	13.0	
2020	30.0	15.0	
2021	33.0	18.0	
2022	36.0	21.0	

Fuente: Energy Independence and Security Act of 2007.

3.7.1.2 Norma de Combustibles para bajar emisiones de carbón en California, Estados Unidos (LSFC en inglés)

La Junta de Recursos Atmosféricos de California (CARB en inglés), en contraste con la EPA, no asigna los biocombustibles a niveles particulares. Bajo la LCFS, cada combustible tiene su propio nivel de ciclo de vida de emisiones de gases de efecto invernadero. El nivel de las emisiones de gases de efecto invernadero se expresa como un valor equivalente de dióxido de carbono por unidad de energía, a fin de tener en cuenta constantemente los gases de efecto invernadero distintos del dióxido de carbono.

La norma requiere sustitutos de los combustibles fósiles que demuestran menor ciclo de vida de las emisiones de gases de efecto invernadero que los combustibles a los que sustituyen (EIA, 2012).

La regulación de California actualmente incluye 13 vías de etanol de maíz y 3 vías para el etanol de caña de azúcar, biodiesel y diesel renovable. El futuro del programa LCFS sigue siendo incierto, debido a las constantes apelaciones que ha tenido dicha norma (EIA, 2012).

3.7.1.3 Mezcla de Etanol

En la actualidad el modo más sencillo de usar etanol es mezclarlo con la gasolina. Sin embargo, el crecimiento de la demanda de gasolina ha disminuido considerablemente como resultado de varios factores, incluyendo los precios altos de la gasolina, el menor crecimiento económico y una mayor eficiencia de los vehículos.

La saturación de la oferta de gasolina de los Estados Unidos con etanol vendido como E10, denominado "Blend Wall", motiva a la industria del etanol para solicitar la aprobación de una mezcla de etanol de nivel medio superior al 10%. La mezcla de E85 se vende actualmente en volúmenes muy limitados porque son relativamente pocos los vehículos capaces de utilizar el combustible y son pocas las estaciones de servicio y distribución de E85.

En octubre de 2010, después de realizar pruebas de vehículos en conjunto con el Departamento de Energía, la EPA aprobó el uso de E15 en vehículos modelo 2007 y posteriores. En enero de 2011, la EPA aprobó el uso de E15 en vehículos ligeros a partir del año modelo 2001. E10 seguirá siendo el límite para los vehículos ligeros construidos antes del año 2001 y vehículos pesados (EIA, 2012).

3.7.1.4 Aranceles a etanol y créditos fiscales

En Estados Unidos, los Impuestos Especiales a los Volúmenes de Etanol (VEETC en inglés) expiraron a finales de 2011.Los altos precios del petróleo, la producción de etanol record, la saturación de la mezcla de gasolina con etanol, el fuerte mandato federal RFS2 y la necesidad de reducir los gastos de impuestos federales contribuyeron a la expiración de este crédito.

Hasta finales de 2011, las importaciones de etanol estaban sujetas a una tarifa de \$0.54 por galón. El arancel se destinaba a compensar el crédito fiscal de mezcla de etanol, de modo que sólo los productores de etanol nacionales se beneficiarían del crédito. El efecto de la tarifa era impedir las importaciones masivas directas de Brasil (EIA, 2012).

Había, sin embargo, dos maneras de importar etanol sin obligación arancelaria. Una de ellas era enviar etanol de Brasil al Caribe para su posterior procesamiento. El etanol podía después ser importado libre de aranceles bajo la Iniciativa de la Cuenca del Caribe.

3.7.2 Tecnologías para la producción de etanol en Estados Unidos

Para la producción de etanol, fueron desarrolladas diversas líneas tecnológicas de primera generación para la obtención del biocombustible, las dos más usadas tienen al grano de maíz como materia prima.

La primera de estas, conocida como de **molienda seca**, consiste en moler los granos de maíz para producir harina, a la cual se le añaden agua y enzimas para cocerla. Después se agrega levadura para fermentar la harina de maíz y obtener etanol por destilación. Esta es la ruta tecnológica más empleada actualmente, pues las plantas productoras de etanol por molienda seca constituyeron en 2008 un 80% de la capacidad de producción (Álvarez, 2009).

La segunda tecnología, conocida como de **molienda húmeda**, consiste en cocer el grano de maíz en agua caliente para separar la proteína del almidón. La fracción que contiene al almidón es molida y se le separa el almidón para secarlo. Éste es empleado para obtener azúcares, que son fermentados para obtener etanol. Aunque fue la primer ruta tecnológica en ser desarrollada, está declinando debido a su menor productividad respecto a la de molienda seca (Álvarez, 2009).

3.8 Ámbito Nacional

México exporta la mayor parte de su petróleo crudo e importa un amplio volumen de gasolina, diésel y aditivos de combustible, en su mayoría provenientes de Estados Unidos.

Los biocombustibles en México se enfrentan ahora a tiempos de incertidumbre debido al hecho de que el etanol y el biodiesel son aún más caros que sus equivalentes basados en petróleo. Las autoridades mexicanas siguen postergando la introducción comercial de los biocombustibles y los biocombustibles avanzados están aún en fase de diseño (USDA, 2012).

En México, la bioenergía representa solo el 8% del consumo de energía primaria, siendo los principales bioenergéticos el bagazo de caña, el cual se utiliza en la generación eléctrica y/o térmica en la industria azucarera; y la leña, que se utiliza en la calefacción y cocción de alimentos. A fines de 2006 se inició la construcción de la primera planta de producción de etanol a partir de maíz, la cual se localiza en el estado de Sinaloa (SIAP, 2007).

Desde hace varios años se produce etanol de caña de azúcar en los diferentes ingenios del país que cuentan con destilerías, sólo que su uso es para bebidas embriagantes e industriales, no para uso combustible.

En promedio la capacidad utilizada para la producción de etanol es de 44% respecto a la capacidad instalada; además es relativamente fácil hacer adecuaciones para ampliar esa capacidad (Becerra, 2009).

Hasta ahora, el gobierno no considera la producción de etanol a partir de maíz, debido al déficit de este grano. Becerra (2009) establece que el costo total de producir etanol de maíz en México puede llegar hasta 60 centavos de dólar por litro. La estrategia gubernamental plantea el etanol a partir de caña azúcar, el sorgo dulce y la remolacha; y el biodiesel, a partir de jatropha, palma de aceite e higuerilla.

En el análisis de costos totales que hace Becerra (2009) muestran que producir etanol, a partir de la caña de azúcar de miel pobre, es la forma más barata de hacerlo, con un costo de producción de 0.40 dólares por litro. Le siguen la caña, a través de jugo directo (\$0.43); el maíz vía seca (\$0.44); la caña miel rica (\$0.52); la caña jugo más hidrólisis (\$0.60); la remolacha (\$0.69); la yuca (\$0.79); y el sorgo (\$0.82).

No todo el etanol que se produce en México es anhidro, y se estima que la capacidad instalada para etanol combustible sería de 33 millones de litros por año, producidos fundamentalmente en los ingenios La Gloria y San Nicolás, ambos ubicados en el estado de Veracruz (Becerra, 2009). De los 58 ingenios azucareros existentes en México, sólo 18 tienen una capacidad de destilación de etanol, y sólo ocho de ellos están actualmente produciendo alcohol etílico (USDA, 2012).

Actualmente existen diez proyectos para producir etanol a partir de diversos insumos, junto con los ingenios azucareros productores o no de etanol. La oferta de alcohol en México, que puede convertirse en etanol, es de aproximadamente 39.2 millones de litros al año, con posibilidades de crecer a 89.2 millones de litros (Becerra, 2009).

El 1º de febrero de 2008 se publicó, en el Diario Oficial de la Federación, la Ley de Promoción y Desarrollo de los Bioenergéticos. Con fundamento en el artículo 12, fracción VIII de dicha Ley, la Secretaría de Energía estableció el Programa de Introducción de Bioenergéticos, el cual prevé metas específicas para la introducción de etanol anhidro en las zonas metropolitanas de Guadalajara, Monterrey y Valle de México. En cumplimiento de dicho programa, y como una primera etapa del mismo, en octubre de 2009, Petróleos Mexicanos lanzó la licitación pública nacional, cuyo objeto fue adquirir etanol anhidro para oxigenar las gasolinas de la zona metropolitana de Guadalajara, Jalisco.

En diciembre del 2011 la Secretaría de Energía (SENER) publicó el programa de Introducción de Etanol Anhidro que plantea que Petróleos Mexicanos adquirirá etanol anhidro para introducirlo en la matriz energética, de acuerdo al cuadro 8.

Cuadro 8. Volumen de etanol anhidro introducido en la matriz energética

	Volumen (millones de litros)		
Año	Mínimo	Máximo	
2012	50	100	
2013	75	150	
2014	85	175	
2015	100	200	
2016	115	230	

Fuente: Secretaría de energía SENER, 2011

Después del vuelo de prueba de Interjet en abril de 2011, Aeroméxico realizó el primer vuelo comercial transcontinental con una mezcla de 70% de combustible tradicional y 30% de biocombustible (obtenido de la jatrofa) en un vuelo de la Ciudad de México a Madrid el 1 de agosto de 2011.

Como el consumidor primario de etanol es un monopolio estatal (Pemex) no se puede determinar el precio a través de la libre oferta y demanda. Se trata de un mercado tipo monopsónio, altamente concentrado por parte del consumo y poco diversificado por parte de la producción. Es un mercado de un sólo consumidor (Pemex) y de pocos oferentes (potenciales industriales del etanol).

Wise (2012) encontró que la expansión de etanol costó a México cerca de 1.5 millones debido a los incrementos de precios de maíz relacionados con etanol. El mismo autor estima que un aumento del 20% en los precios del maíz debido a la producción de etanol, se transmite al mercado mexicano de maíz blanco elevando los costos de la tortilla, alimento básico de México en un 14%, lo que contribuye a la inseguridad alimentaria de la población, especialmente para aquellos de menores ingresos.

CAPITULO IV

MARCO TEORICO

4.1 Mercado

El mercado se define por la interacción de las fuerzas de la demanda y de la oferta que mediante el intercambio de productos trabajan para determinar o modificar el precio y no necesariamente está conformado en un lugar geográfico particular (García, et al 2003).

Suelen aceptarse cinco tipos de mercados: el de consumo, el de productores, el de distribuidores, el de gobierno y el internacional (García, et al 2003).

Gonzáles (2010) argumenta que el mercado de maíz mexicano, dada la dependencia a las importaciones provenientes de Estados Unidos se vería afectado con el aumento en los precios de petróleo, debido a que un incremento de 10% en los precios del petróleo presiona el alza de los precios de importación de México en 20.6% incrementándose considerablemente el valor de las importaciones, registrándose una ligera disminución del volumen de las importaciones en 6.1%.

4.2 La teoría de la oferta

La cantidad ofertada es la cantidad de bienes o servicios que las personas están dispuestas a vender a un determinado precio (Krugman et al., 2006). La cantidad ofrecida de un producto en el mercado depende en primer lugar de las expectativas de beneficio de los agricultores.

La ley de oferta establece que la cantidad ofrecida de un producto varía directamente con el precio, *ceteris paribus*.

La oferta agregada total o de mercado se define como una relación que muestra a las diferentes cantidades totales de un producto agrícola dado, que los productores están disouestos a ofrecer y podrían poner a la venta, a los distintos precios alternativos posibles al productor por periodo, *ceteris paribus*, (García et al., 2003)

La teoría de la oferta agrícola indica una respuesta general de los productores a cambios en ciertos determinantes causales. Estos determinantes según García et al, (2003) se pueden agrupar en:

- Económicos
- Ecológicos
- Tecnológicos
- Institucionales
- Incertidumbre

De los factores determinantes de la oferta, las variaciones del precio del producto, *ceteris paribus*, provoca cambios en la cantidad ofrecida, permaneciendo fija la curva de oferta y los cambios de los otros determinantes, *ceteris paribus*, influyen en toda la curva de oferta, provocando su desplazamiento.

Los factores determinantes de la oferta de un producto son:

- a) El precio del producto
- b) Los precios de los insumos
- c) La mano de obra
- d) El transporte
- e) Los precios del uso de la tecnología
- f) Los precios de los productos competitivos
- g) Los precios de los productos conjuntos o asociados

- h) El clima
- i) Restricciones institucionales
- j) La capacidad y características técnicas de la empresa

4.2.1 Aspectos estáticos y dinámicos de la oferta

La oferta estática se refiere a los cambios de la cantidad ofrecida que ocurren a lo largo de la curva de oferta, que son provocados por las variaciones del precio del bien, permaneciendo los demás constantes.

La oferta dinámica, se refiere, en primer lugar, a desplazamientos de la oferta que son provocados, *ceteris paribus*, por cambios en la tecnología, en los precios de los insumos, en el precio de los productos competitivos, acoplados, entre otras variables y a los que ocurren con el paso del tiempo; en segundo lugar se refiere a los retrasos en los ajustes de la cantidad ofrecida que no ocurren *instantáneamente*, debido al conocimiento imperfecto y al tiempo requerido para hacer los ajustes.

4.3 La teoría de la demanda

A la cantidad de un bien que las personas buscan comprar a un precio determinado se le denomina la demanda de ese bien (Schotter, 1996). El plan de demanda muestra la cantidad de bienes o servicios que los consumidores están dispuestos a comprar para cada nivel de precios.

Factores determinantes de la demanda de productos agrícolas:

- 1. El precio del producto
- 2. El tamaño de la población humana y su distribución por edad y área geográfica
- 3. El ingreso disponible y su distribución

- 4. Los precios y la disponibilidad de otros productos (sustitutos y complementarios)
- 5. Los gustos y las preferencias de los consumidores
- 6. Expectativas de precios e ingresos de los consumidores
- 7. La promoción de los productos

De los determinantes antes mencionados, el precio del bien, suponiendo a los demás constantes, provoca cambios en la cantidad demandada, mientras que la curva de demanda permanece fija, los otros factores establecen el nivel o posición de dicha curva, por ello se les denomina los factores de cambio de la demanda (García et al., 2003).

En forma funcional la demanda del bien (Qi) y sus factores determinantes se expresan como sigue:

$$Qi = f(Pi, N, I, Ps, Pc, G, E, K)$$

Donde:

• El precio del product (Pi). Demanda estática.

La demanda estática se refiera a los cambios de la cantidad demandada a lo lardo de la curva de demanda que provocan las variaciones del precio del producto, *ceteris paribus*, permaneciendo fija dicha curva. De acuerdo a la ley de la demanda, la cantidad demandada de un producto y su precio, *ceteris paribus*, varían inversamente; es decir, la curva de demanda tiene pendiente negativa (Gracia, et al., 2003).

- El número de habitantes de un país y su crecimiento (N)
 El número de habitantes de un país y su crecimiento, influye, ceteris paribus directamente en la demanda total de alimentos como en la de productos específicos.
- El ingreso disponible y su distribución. (I)
 El nivel de ingreso de un consumidor determina la cantidad y calidad de alimentos y servicios que puede comprar. La cantidad demandada para bienes normales superiores se encuentra relacionada directamente con el ingreso.

• Los precios y la disponibilidad de otros productos sustitutos (Ps) y complementarios (Pc). En el caso de los productos que se sustituyen en el consumo, el cambio en el precio del sustitut, ceteris paribus y el de la demanda del bien que se sustituye es generalmente positiva, es decir, se encuentran relacionados directamente. En este caso, si aumenta el precio del sustituto, ceteris paribus, aumenta la demanda y la catidad demandada del bien que se sustituye y viceversa (García, et al., 2003). Para los productos que se complementan en el consumo, la variación en el precio del bien complementario, ceteris paribus, y el cambio en la demanda y en la cantidad demandada del bien que se complementa están generalmente relacionados inversamente.

• Los gustos y preferencias del consumidor (G)

Los cambios en los gustos o preferencias de los consumidores, *ceteris paribus*, desplazan estructuralmente la demanda del bien en cuestión. Así, si los gustos del bien aumentan, *ceteris paribus*, enconces la demanda y la cantidad demandada aumentan y por el contrario si los gustos del bien disminuyen, también lo hará la demanda.

• Expectativas (E)

Las expectativas de precios e ingresos llevan a los consumidores a comprar mayor o menor cantidad dependiendo del precio y del ingreso que esperan pagar y recibir en eventos futuros.

• La promoción de los productos (K)

En términos económicos, el propósito básico de la promoción es cambiar la ubicación y la forma de la curva de demanda (en forma paralela o estructural)

En relación con la situación en la que no hay un límite de mezcla o mandato, la demanda de maíz conduciría a la volatilidad de precios más altos para este cereal. En relación a una situación en la que no existe una industria de etanol, la volatilidad de los precios del maíz sería determinada por la elasticidad de la demanda de maíz en usos tradicionales (McPhail y Babcock, 2011).

4.3.1 Demanda de etanol.

McPhail y Babcock (2011) modelan la demanda de etanol en función del precio de etanol, precio de la gasolina y políticas gubernamentales, incluyendo las tasas de crédito, RFS y el Limite de mezcla. Las tasas de crédito para los mezcladores aumentan su disposición para pagar por etanol. La RFS incrementa la demanda de etanol, mientras que el límite de mezcla pone un tope a la demanda de etanol.

La demanda de etanol por los mezcladores depende de los factores de mercado y de las políticas gubernamentales. El factor de mercado más importante es el precio relativo de etanol a la gasolina.

Existen tres principales políticas gubernamentales que afectan la demanda de etanol. La primera, es la tasa de créditos a la mezcla, contenida en la Ley de Alimentos, Conservación y Energía de 2008, un subsidio directo dado a los mezcladores de etanol, el cual aumenta la disposición de los mezcladores para comprar etanol, y por tanto desplaza la demanda derivada de maíz en etanol. La segunda, es la contenida en EISA RFS 2007 que garantiza que el consumo de etanol es por lo menos igual al nivel exigido. La tercera es el límite de mezcla que pone un tope a la cantidad de etanol utilizado.

En el análisis que hacen McPhail y Babcock (2011) se muestra que el RFS de etanol y el límite de mezcla conducen a una demanda más inelástica para maíz y gasolina, que conducen a ambos mercados a ser más susceptibles a cambios en la oferta, y llevan a una mayor volatilidad de los precios del maíz y la gasolina.

La demanda de maíz para etanol, impulsado por las fuerzas del mercado es más elástico que la demanda de maíz para usos tradicionales, incluyendo comida y alimento para ganado (ver Figura 24).

Precio de maíz

Om Curva de oferta de maíz

P*

Dm*

Dm Curva de demanda de maíz

Cantidad de maíz

para etanol

Figura 24. Demanda de etanol y precio de maíz

Fuente: Auld, 2012.

En la figura 24, que muestra la demanda de etanol y el precio del maíz, el punto A indica el equilibrio inicial. Cuando se establecen políticas gubernamentales que requieren más etanol para combustible la curva de demanda pasa a ser Dm* lo que conduce a un nuevo punto de equilibrio en el punto B con un precio de maíz más alto. El incremento en el precio de maíz puede deberse a otros factores ajenos a la producción de etanol, como una cosecha muy escasa en países potencialmente productores como Estados Unidos, China o Australia.

En ausencia de cualquier demanda de maíz de la industria del etanol, el precio de maíz será determinado por las fuerzas del mercado de oferta y demanda. Si una segunda fuente de demanda es adicionada (la demanda de los productores de etanol de maíz) ahora hay una demanda combinada de maíz para el sector agroalimentario y el sector de la producción de etanol. En el corto plazo esto conduce a incrementar el precio del maíz y la posibilidad de una menor cantidad de maíz disponible para la producción de alimentos. Lo anterior se puede ver gráficamente en la Figura 25.

Precio de alimento

P*

Oa Curva de oferta de alimento

Da Curva de demanda de alimento

Q* Q Cantidad de alimento

Figura 25. Relación entre maíz para etanol y oferta de alimento

Fuente: Auld, Douglas (2012)

La Figura 25, que muestra la relación entre maíz para etanol y oferta de comida el punto A, indica el equilibrio inicial. El incremento en la demanda de maíz como materia prima para la producción de etanol reduce la cantidad de maíz disponible para alimento, por lo que la curva de oferta de alimento se ve desplazada hacia la izquierda. Dado que la demanda de alimento es usualmente inelástica, el precio de maíz se ve incrementado considerablemente.

El mayor costo de maíz para todos los compradores se desplaza a los consumidores, en parte esta función de la elasticidad de la demanda y otros factores. Durante un período de tiempo, la oferta total de maíz se puede aumentar debido a un aumento en el rendimiento de maíz por hectárea (quizás mediante la mejora de las aplicaciones de fertilizantes o la apertura de nueva tierra la producción de maíz). El resultado será liberar la presión sobre los precios del maíz, tanto para la industria del etanol y el sector de la agricultura, pero con el fin de estabilizar el precio del maíz, la expansión en la oferta deberá mantenerse a la par con el aumento combinado de la demanda de maíz como insumo alimenticio y producción de etanol (Figura 26).

Precio ab Demanda de maíz para alimento S Curva de oferta de maíz corto plazo S' Curva de oferta de maíz fargo plazo fe demanda agregada рÒ cd demanda de maíz para etanol Cantidad De maíz b d Q* Q

Figura 26. Demanda de etanol para maíz y comida y precio d la comida

Fuente: Auld, Douglas (2012)

En la Figura 26 la demanda de maíz usada para la producción de alimento es mostrada con la línea **ab**. La oferta de maíz en el corto plazo es mostrada con **S**. El resultado es un precio de mercado en **p0** y una cantidad de maíz en **b**. la demanda de maíz para biocombustibles es introducida y representada con la línea **cd** y juntas, la demanda agregada es representada por ef. Este incremento en la demanda conducida por la demanda de los productores de etanol de maíz resulta en el corto plazo incrementando el precio a **p1** donde **S** intercepta a **ef**. En la actualidad hay dos fuentes de demanda que compiten por el maíz y como resultado, aumenta el precio del maíz y la cantidad de maíz utilizada para la alimentación se reduce ligeramente. Si hay más tierra se destina a la producción de maíz o los rendimientos de maíz aumentan, la oferta de maíz aumentaría a **S'** y el precio caería de nuevo a **p0** donde la demanda de maíz para la comida podría ser satisfecha.

4.4 Precio

Un mercado competitivo está en equilibrio cuando los precios alcanzan un nivel para el cual la cantidad demandada de un bien iguala a la cantidad ofertada de ese bien. El precio al cual esto ocurre es el precio de equilibrio, también conocido como el "precio de vaciado de mercado". La cantidad vendida y comprada a ese precio es la cantidad de equilibrio (Krugman et al., 2006).

4.4.1 Formación del precio

En el muy corto plazo, la función de la oferta es por definición perfectamente inelástica. Esto implica que la producción no se puede almacenar y que no pueden importarse cantidades adicionales en este periodo en respuesta a un cambio en el precio (García et al., 2003).

En el corto plazo, algunos insumos de la producción son variables, por ello, ante una variación del precio, se puede ofrecer más o menos, siempre que sea técnicamente posibles ampliar o reducir la producción dentro de las capacidades de producción existentes sin fuertes variaciones de los costos medios (García et al., 2003).

En el largo plazo son posibles variaciones mayores de la oferta porque todos los insumos son variables, las instalaciones productivas pueden ser ampliadas, reducidas, o incluso pueden llegar a cerrarse (García et al., 2003).

4.4.2 Incremento en el precio de maíz

De 2006 a 2011, Wise (2012) encontró que la expansión de la producción de etanol, costo a México aproximadamente \$1.5 millones en precios más altos de maíz.

Utilizando como referencia el precio de maíz en 2004 de 2.06 dólares por bushel, los resultados de Babcock *et al.* (2011), muestran que los precios actuales de maíz se incrementaron en promedio 1.65 dólares por bushel de 2006 a 2009. Solo un 14% de este incremento fue debido a los subsidios a etanol. Otro incremento de 45 centavos fue debido al mercado basado en la expansión de la industria de maíz de etanol. Juntos, la expansión de etanol por subsidios y las fuerzas del mercado representaron cerca del 36% del incremento promedio que se ha visto en los precios del maíz del 2006 al 2009. Otros factores del mercado representaron un 64% del incremento en precios de maíz.

Si no hubiera existido mandato o créditos de 2005 al 2009, los márgenes de procesamiento de etanol habrían sido más bajos debido a que ambos instrumentos políticos trabajan para incrementar el precio de etanol que las fabricas reciben (Babcock *et al*, 2011).

En el estudio realizado por McPhail y Babcock (2011), cuando RFS es eliminado, la variabilidad en el precio para maíz y gasolina caen. El impacto de esta eliminación en el coeficiente de variación de la gasolina es relativamente bajo comparado con el impacto en el coeficiente de variación en el precio de maíz. Esto es debido a que la demanda de maíz para etanol representa más del 30% del consumo total de maíz, mientras que el etanol representa menos del 10% del consumo en gasolina.

Cuando el límite de mezcla es eliminado, la variabilidad en el precio disminuye en maíz y gasolina. La magnitud de la disminución en el Coeficiente de variación depende de los precios del petróleo (McPhail y Babcock, 2011).

Las presentes políticas de etanol disminuyen la elasticidad precio de la demanda para maíz y gasolina e incrementan la variabilidad en el precio. Una implicación importante tiene que ver con las acciones políticas respecto a biocombustibles y en partículas a la producción de etanol a partir de maíz (McPhail y Babcock, 2011).

Carter et al. (2012) estimaron que los precios de maíz fueron cerca de 30% más altos en promedio, entre 2006 y 2010, de lo que habrían sido si la producción de etanol se hubiera mantenido en los niveles de producción del 2005.

4.5 Elasticidad

García et al. (2003) define elasticidad como la medida del cambio porcentual en una variable dependiente en correspondencia con un cambio porcentual en alguna variable independiente, permaneciendo las demás constantes.

4.5.1 Elasticidades de la demanda

a) Elasticidad precio propia de la demanda

La elasticidad precio de la demanda compara el cambio porcentual en la cantidad demandada con el cambio porcentual en el precio en tanto nos movemos a lo largo de la curva de demanda (Krugman et al., 2006).

$$elasticidad\ precio\ de\ la\ demanda = \frac{\text{cambio porcentual en la cantidad demandada}}{cambio\ porcentual\ en\ el\ precio}$$

La demanda es perfectamente inelástica cuando la cantidad demandada no responde a cambios en el precio, es decir, la curva de la demanda es vertical.

La demanda es perfectamente elástica cuando cualquier incremento en el precio hace que la cantidad demandada caiga a cero, es decir, la curva de la demanda es horizontal.

La demanda es elástica si la elasticidad precio de la demanda es mayor a 1, inelástica si la elasticidad precio de la demanda es menor que 1, y de elasticidad unitaria si es igual a 1.

La definición matemática para la elasticidad precio en un punto se expresa con las siguientes formulas:

$$\mathrm{Eii} = \frac{\frac{\Delta Q_t}{Qt}}{\frac{\Delta P_t}{Pt}} + \left[\frac{\Delta Q_t}{\Delta P_t}\right] \left[\frac{P_t}{Q_t}\right] = \frac{\Delta \% Q_t}{\Delta \% P_t}$$

o si se conoce la función:

$$E_{ii} = \frac{dQ_t}{dPt} * \frac{P_t}{Q_t}$$

donde, Q y P indican la cantidad y el precio del producto, Λ un cambio muy pequeño y (d) un cambio infinitesimal (García, et al., 2003)

La E_{ii} tiene signo negativo y teóricamente su rango en valor absoluto va desde cero hasta menos infinito $(0, -\infty)$. Este rango está dividido tradicionalmente en tres partes:

$$E_{ii} > |-1|, \ E_{ii} = |1|, \ E_{ii} < |-1|$$

- Si el valor absoluto del coeficiente de elasticidad $E_{ii} > |-1|$, esto implica que el cambio porcentual en la cantidad demandada es mayor que la correspondiente variación porcentual en el precio $\Lambda\%\mathrm{Qi} > \Lambda\%\mathrm{Pi}$, es decir, es elástica. En el caso extremo es una curva de demanda horizontal perfectamente elástica (Eii = $|-\infty|$), en la que para un mismo precio se demanda cualquier cantidad.
- Si el valor absoluto del coeficiente de elasticidad Eii< |-1|, la demanda es inelástica. El cambio porcentual en la cantidad demandada es menor que la variación porcentual en el precio Λ %Qi < Λ %Pi. El caso extremo es una elasticidad igual a cero (E_p = 0); la curva de demanda es una línea vertical, perfectamente inelástica. Para cualquier precio se demanda la misma cantidad.
- Si el valor absoluto del coeficiente elasticidad $E_{ii} = |-1|$, $\Lambda\%Qi = \Lambda\%Pi$, la demanda es unitaria. El cambio porcentual en la cantidad demandada es igual que el cambio porcentual del precio.

b) Elasticidad-ingreso de la de la demanda (E_{it)}

Mide el cambio porcentual en la cantidad demandada de un bien por unidad de tiempo, como resultado de una variación porcentual en el ingreso del consumidor, *ceteris paribus*. Se interpreta como el cambio porcentual en la cantidad del bien i en respecto a un cambio i 1% en el ingreso del consumidor, *ceteris paribus*. Es decir:

$E_{iI} = \frac{cambio\ porcentual\ en\ la\ cantidad\ demandada\ por\ unidad\ de\ tiempo}{cambio\ porcentual\ en\ el\ ingreso}$

A la relación de la cantidad demandada en función del ingreso, se le llama función consumo o curva de Engel. La E_{iI} está definida para un punto de la función y típicamente varía a lo largo del rango de la curva (Tomek y Robinson, 1991)

La definición matemáticamente de la elasticidad-ingreso es un punto es la siguiente:

$$\operatorname{Eii} = \frac{\frac{\Delta Q_t}{Q}}{\frac{\Delta I_t}{I_t}} + \left[\frac{\Delta Q_t}{\Delta I_t}\right] \left[\frac{I_t}{Q_t}\right] = \frac{\Delta\%Q_t}{\Delta\%I_t}$$

o si se conoce la función

$$E_{iI} = \frac{dQ_t}{dIt} * \frac{I_t}{Q_t}$$

En la mayoría de los casos el coeficiente es positivo, es decir, el cambio porcentual de la cantidad y en el ingreso varían en el mismo sentido, es decir, cuando aumenta el ingreso de un consumidor, *ceteris paribus*, se incrementa la cantidad demandada y ocurre lo contrario cuando el ingreso disminuye. Se dan los siguientes casos:

- 1. Si $E_{iI} > 1$, implica que el $\Delta \% Q > \Delta \% I$. La demanda es elástica respecto al ingreso. Este es el caso de los bienes denominados normales o superiores o de lujo.
- 2. Si E_{iI} <1, implica que el Δ % Q < Δ %I. La demanda es inelástica respecto al ingreso. En este caso se tienen los denominados bienes normales necesarios.
- 3. Si E_{iI} =1 implica que el $\Delta\%Q$ = $\Delta\%I$. La demanda es de elasticidad-ingreso unitaria. Es el caso de un bien normal necesario.

- 4. Si E_{iI} =0, la demanda ingreso es perfectamente inelástica, para cualquier nivel de ingreso se demanda la misma cantidad. Se tiene completa saturación de las necesidades y se está en el caso de un bien normal inferior.
- 5. Si $E_{iI} < 0$, se trata de un bien inferior. Los bienes inferiores pueden presentar curvas de demanda inelástica ($E_{iI} > -1$) y elástica ($E_{iI} < -1$).

Cuando la E_{iI} >-1 la demanda ingreso es inelástica; el cambio porcentual en la cantidad demandada es menor que el cambio porcentual en el ingreso, lo cual implica que si el ingreso sube o baja 1% entonces, *ceteris paribus*, la cantidad disminuye o aumenta en menos de 1%. En cambio cuando la E_{iI} < -1 , entonces la demanda es elástica, un aumento (disminución) de 1% en el ingreso ocasionarían una disminución (aumento) en la cantidad demandada de más 1%.

c) Elasticidad cruzada (Eij)

Esta se define como el cambio porcentual de la cantidad demandada de un bien dado (i) ante una variación porcentual en el precio de un bien relacionado (j), *ceteris paribus*. Se interpreta como el cambio porcentual en la cantidad demandada del bien i en respecto a un cambio de 1% en el precio del bien j, *ceteris paribus*. (García, et al., 2003)

es decir:

$$E_{ij} = \frac{cambio\:porcentual\:en\:Qi\:por\:unidad\:de\:tiempo}{cambio\:porcentual\:en\:el\:Pj}$$

La fórmula matemática de la elasticidad-precio cruzada para un punto de la curva de demanda se expresa como sigue:

$$Eij = \frac{\frac{\Delta Q_i}{Q_i}}{\frac{\Delta P_j}{P_j}} + \left[\frac{\Delta Q_i}{\Delta P_j}\right] \left[\frac{P_j}{Q_i}\right] = \frac{\Delta\%Q_i}{\Delta\%P_j}$$

O si se conoce la función de demanda:

$$E_{ij} = \frac{dQ_i}{dPj} * \frac{P_j}{Q_i}$$

Cuadro 9. Elasticidades de la demanda

FÓ R M U L A			Posible		Clasificación del	
Tipo	No se conoce la función	Sí se conoce la función	resultado	Causa	producto	
E ii Elasticidad precio	$E_{ii} = \frac{\Delta Q}{\Delta P} \cdot \frac{\bar{P}}{\bar{Q}}$	$E_{ii} = \frac{dQ}{dP} \left[\frac{\overline{P}}{\overline{Q}} \right]$	$E_{ii} = \infty E_{ii} > -1 E_{ii} = -1 E_{ii} < -1 E_{ii} = 0$	$\%Q > \Delta\%P$ $\Delta\%Q = \Delta\%P$ $\Delta\%Q < \Delta\%P$	Perfectamente elástica Elástico Unitario Inelástico Perfectamente Inelástico	
E il Elasticidad Ingreso	$E_{ii} = \frac{\Delta Q}{\Delta I} \cdot \frac{\bar{I}}{\bar{Q}}$	$E_{ii} = \frac{dQ}{dI} \left[\frac{\overline{I}}{\overline{Q}} \right]$	E > 1 0 < E < 1 E < 0 if	$\Delta\%Q > \Delta\%I$ $\Delta\%Q < \Delta\%I$ $\uparrow I \Rightarrow \downarrow Q$ $\downarrow I \Rightarrow \uparrow Q$	Normal de lujo Normal necesario Normal inferior	
E ij Elasticidad Cruzada	$E_{ij} = \frac{\Delta Q_i}{\Delta P_j} \cdot \frac{\bar{P}_j}{\bar{Q}_i}$	$E_{ij} = \frac{dQ_i}{dP_j} \left[\frac{\overline{P_j}}{\overline{Q_i}} \right]$	$E_{ij} > 0$ $E_{ij} = 0$ $E_{ij} < 0$	$\uparrow Pj \Rightarrow \uparrow Qi$ $\downarrow Pj \Rightarrow \downarrow Qi$ No existe relación $\uparrow Pj \Rightarrow \downarrow Qi$ $\downarrow Pj \Rightarrow \uparrow Qi$	Sustituto Independiente Complementario	

Fuente: García, el al. (2003)

4.5.2 Elasticidades de la oferta

a) Elasticidad precio de la oferta

Es una medida de la sensibilidad de la cantidad ofertada de un bien a cambios en el precio de este bien. Es el coeficiente entre el cambio porcentual en la cantidad ofertada y el cambio porcentual en el precio cuando nos movemos a lo largo de la curva de demanda (Krugman et al., 2006).

$$elasticidad\ precio\ de\ la\ oferta = \frac{\text{cambio porcentual en la cantidad ofertada}}{\text{cambio porcentual en el precio}}$$

La oferta es perfectamente inelástica cuando la elasticidad precio de la oferta es cero, de modo que cambios en el precio de un bien no tienen efectos sobre la cantidad ofertada. Una oferta perfectamente inelástica es una línea vertical.

La oferta es perfectamente elástica cuando incluso ante una variación muy pequeña en el precio conduce a un cambio enormemente grande en la cantidad ofertada, de modo que la elasticidad precio de la oferta es infinito. Una oferta perfectamente elástica es una línea horizontal (Krugman et al., 2006).

La fórmula matemática para medir la elasticidad precio de la oferta en un punto es la siguiente:

$$e_{ii} = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} + \left[\frac{\Delta Q}{\Delta P}\right] \left[\frac{P}{Q}\right] = \frac{\Delta \% Q}{\Delta \% P}$$

o si se conoce la función:

$$e_{ii} = \frac{dQ}{dP} * \frac{P}{Q}$$

Debido a que normalmente un aumento en la cantidad ofrecida está asociado a un incremento en el precio, el signo del coeficiente es generalmente positivo. De acuerdo con estos se tienen los siguientes posibles valores de elasticidad precio (García, et al., 2003)

Si e_{ii} = 0, esto significa que la oferta es rígida, es decir que no hay respuesta de la
cantidad ofrecida a un cambio en el precio, *ceteris paribus*. En este caso se trata de
una oferta perfectamente inelástica, gráficamente se representa por una línea
vertical.

$$e_{ii} = \frac{\Delta\%Q}{\Delta\%P} = \frac{0}{\Delta\%P} = 0$$

 Si e_{ii} =∞, esto significa que hay una respuesta muy grande por parte de los productores a un precio determinado, se trata de una oferta, perfectamente elástica. Gráficamente se representa por una línea horizontal.

$$e_{ii} = \frac{\Delta\%Q}{\Delta\%P} = \frac{\Delta\%Q}{0} = indefinida$$

- Si $0 < e_{ii} < 1$, implica que el $\Delta \% Q < \Delta \% P$, la elasticidad precio de la oferta es inelástica. La curva de oferta intersecta al eje de la cantidad (intersección horizontal positiva) por lo que e_{ii} es siempre <1 y mayor que cero, pero se aproxima a 1 conforme la Q aumenta. Esto significa que la cantidad ofrecida responde menos que proporcionalmente al cambio en el precio.
- Si $e_{ii} > 1$, implica que el $\Delta\% Q > \Delta\% P$, lo cual indica que la e_{ii} es elástica. La curva de oferta intersecta al eje de las ordenadas (eje del precio), e_{ii} se acerca a 1 a medida que la cantidad aumenta.
- Si e_{ii} = 1, la elasticidad precio es unitaria, es decir que el Δ%Q = Δ%P. la curva de oferta intersecta al origen (la intersección horizontal es igual a cero) por lo que la elasticidad es una constante igual a uno (García, et el., 2003).

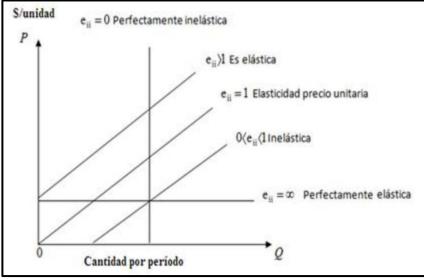


Figura 27. Curvas de oferta con distintas elasticidades

Fuente: García, et al., 2003

b) Elasticidad precio cruzada de la oferta (eab)

Mide la variación porcentual en la cantidad ofrecida de un producto **a** en respuesta a la variación porcentual en el precio de un producto relacionado **b**, *ceteris paribus*. Se interpreta como el cambio porcentual en la cantidad ofrecida del bien a en respuesta a un cambio de 1% en el precio del bien b, *ceteris paribus*. La fórmula para la elasticidad en un punto es la siguiente:

$$e_{ab} = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} + \left[\frac{\Delta Q_a}{\Delta P_b}\right] \left[\frac{P_b}{Q_a}\right] = \frac{\Delta \% Q_a}{\Delta \% P_b}$$

o cuando se conoce la función:

$$e_{ab} = \frac{dQ_a}{dPb} * \frac{P_b}{Q_a}$$

- 1. Productos competitivos por los mismos recursos. En este caso el coeficiente de la e_{ab} aparece con un signo negativo ($e_{ab} < 0$)
- Productos asociados o conjuntos; para este caso, el coeficiente de la e_{ab} aparece con signo positivo (e_{ab} > 0)

Cuadro 10. Elasticidades de la oferta

	For	rmula	Posible		Clasificación del producto
Tipo	No se conoce la función	Sí se conoce la función	resultado	Causa	
E _P Elasticidad precio	$E_P = \frac{\Delta Q}{\Delta P} * \frac{P}{Q}$	$E_p = \left[\frac{\partial Q}{\partial P}\right] \left[\frac{\overline{P}}{\overline{Q}}\right]$	$ \begin{array}{c} >1\\ =1\\ 0 \langle E_p \langle 1 \end{array} $	$\Delta Q\% \rangle \Delta P\%$ $\Delta Q\% = \Delta P\%$ $\Delta Q\% \langle \Delta P\%$	Bien Elástico Bien Unitario Bien Inelástico
E_{ab} Elasticidad Cruzada	$E_{ab} = \frac{\Delta Q_a}{\Delta P_b} * \frac{P_b}{Q_a}$	$E_p = \left[\frac{\partial Q_a}{\partial P_b}\right] \left[\frac{\overline{P_b}}{\overline{Q_a}}\right]$	$Signo(+) \rangle 0$ $Signo(-) \langle 0$	$\uparrow Pb \text{ y} \uparrow Qa$ $\uparrow Pb \text{ y} \downarrow Qa$	Bien Asociado Bien Competitivo

Fuente: García, et al., (2003)

4.6 El modelo de Regresión

El análisis de regresión trata del estudio de la dependencia de la variable, respecto a una o más variables (las variables explicativas), con el objetivo de estimar y/o predecir la media o valor promedio poblacional de la primera en términos de los valores conocidos o fijos (en muestras repetidas) de las ultimas (Gujarati, 2003).

Pruebas de hipótesis sobre coeficientes individuales de la regresión parcial

Bajo el supuesto de que $u_i \sim N \ (0, \, \delta^2)$, entonces, se puede utilizar la prueba t para demostrar una hipótesis sobre cualquier coeficiente de regresión parcial individual.

Un método alternativo, pero complementario al intervalo de confianza para probar hipótesis estadísticas es el método de la prueba de significancia desarrollado en forma independiente por R. A. Fisher y conjuntamente por Neyman y Pearson. En términos generales, una prueba de significancia es un procedimiento mediante el cual se utilizan los resultados muéstrales para verificar la verdad o falsedad de una hipótesis nula. La idea básica detrás de las pruebas de significancia es la de un estadístico de prueba (un estimador) y su distribución muestral bajo la hipótesis nula, la decisión de aceptar o rechazar Ho se lleva a cabo con base en el valor del estadístico de prueba obtenido a partir de los datos disponibles (Gujarati, 2003).

Como ilustración, recuérdese que, bajo el supuesto de normalidad, la variable

$$t = \frac{\widehat{\beta_2} - \beta_2}{ee(\widehat{\beta_2})} = \frac{(\widehat{\beta_2} - \beta_2)\sqrt{\sum xi^2}}{ee(\widehat{\beta_2})}$$

sigue la distribución t con n-2 g. de l. si el valor del verdadero β_2 es especificado bajo la hipótesis nula, el valor de t puede ser calculado fácilmente a partir de muestra disponible y, por consiguiente, puede servir como un estadístico de prueba.

Nivel exacto de significancia: valor p o "P-value"

Como recién se anotó, el talón de Aquiles del método clásico de la prueba de hipótesis es su arbitrariedad en la selección de α . Una vez que se obtenido un estadístico de prueba 8es decir, el estadístico t), se pueden consultar sencillamente la tabla estadística apropiada y encontrar la probabilidad real de obtener un valor des estadístico de prueba tan grande o mayor. Esta probabilidad se denomina valor p (es decir, el valor de probabilidad), también conocido como el nivel observado o exacto de significancia o la probabilidad exacta de cometer un error tipo I. Más técnicamente, el valor p está definido como el nivel de significancia más bajo al cual puede rechazarse una hipótesis nula (Gujarati, 2003).

Coeficiente de determinación: Una medida de bondad de ajuste

El coeficiente de regresión r^2 (caso de dos variables) o R^2 (regresión múltiple) es una medida comprendida que nos dice qué tan bien se ajusta la recta de regresión muestra a los datos.

Entre mayor sea la medida de la intersección, mayor será la variación en que Y es explicable por X. El r^2 o R^2 es simplemente una medida numérica de esta intersección

4.6.1 Autocorrelación

El término autocorrelación se puede definir como la correlación entre los miembros de series de observaciones ordenadas en el tiempo (como en datos de series de tiempo) o en el espacio (como en datos de corte transversal) (Gujarati, 2003). En el contexto de regresión, el modelo clásico de regresión lineal supone que no existe tal autocorrelación en las perturbaciones u_i . Simbólicamente se expresa de la siguiente manera:

$$E(u_i u_j) = 0 i \neq j$$

Expresado en forma sencilla, el modelo clásico supone que el término de perturbación relacionado con una observación cualquiera no está influido por el término de perturbación relacionado con cualquier otra observación (Gujarati, 2003).

Sin embargo si existe una dependencia entre las variables, se tiene autocorrelación. Simbolicamente se expresa de la siguiente manera:

$$E(ui\ uj) \neq 0\ i \neq j$$

¿Por qué ocurre la correlación serial?

• Inercia. Una característica relevante de la mayoría de las series de tiempo económicas es la inercia o lentitud. Como bien se sabe, ls series de tiempo como en PNB, los índices de precios, la producción, el empleo y el desempleo presentan ciclos (económicos). Empezando en el fondo de la recesión, cuando se inicia la recuperación económica, la mayoría de estas series empieza a moverse hacia arriba.

En este movimiento hacia arriba, el valor de una serie en un punto del tiempo es mayor que su valor anterior.

- Sesgo de especificación: caso de variables excluidas.
- Sesgo de especificación: forma funcional incorrecta.
- Fenómeno de la telaraña.
- Rezagos. Una de las variables explicativas es el valor del rezago de la variable dependiente
- Manipulación de datos.
- Transformación de datos.
- No estacionariedad.

Detección de autocorrelación

Prueba d Durbin-Watson

La prueba más conocida para detectar correlación serial es la desarrollada por los estadísticos Durbin y Watson. Es comúnmente conocida como el estadístico d Durbin-Watson, el cual se define como

$$d = \frac{\sum_{t=2}^{t=n} (\widehat{u}_i - \widehat{u}_{i-1})}{\sum_{t=1}^{t=n} \widehat{u}_i^2}$$

que es simplemente la razón de la suma de las diferencias al cuadrad de residuos sucesivos sobre SCR. Obsérvese que en el numerador del estadístico *d* el número de observaciones es n-1 porque se pierde una observación al obtener las diferencias consecutivas.

La prueba d de Durbin-Watson se ha convertido en algo tan venerable que los participantes suelen olvidar las suposiciones subyacentes en ella. En particular, las suposiciones de que 1) las variables explicativas, o regresoras, no son estocásticas; 2) el término de error sigue la distribución normal y 3) los modelos de regresión no incluyen el (los) valor (es) rezagado (s) de la regresada; todas estas suposiciones son importantes para la aplicación de la prueba d (Gujarati, 2003).

Las pruebas de Durbin-Watson no son válidas cuando la variable dependiente retrasada es usada en el modelo. En este caso, la prueba Durbin h o Durbin t puede ser usada para probar autocorrelación de primer orden.

Si un modelo de regresión contiene valores rezagados, de la regresada, en tales casos el valor d se aproxima a 2, lo cual sugeriría que no hay autocorrelación (de primer orden) en dichos modelos. Esto no quiere decir que los modelos autorregresivos estén exentos de modelos de autocorrelación. De hecho, Durbin desarrolló así la llamada prueba de h, para probar en tales modelos la correlación serial (Gujarati, 2003).

4.6.2 Modelos Econométricos Dinámicos

En el análisis de regresión que contiene información de series de tiempo, cuando el modelo de regresión incluye no solamente los valores actuales sino además los valores rezagados (pasados) de las variables explicativas (las X), se denomina modelo de rezagos distribuidos. Si el modelo incluye uno o más valores rezagados de la variable dependiente entre sus variables explicativas, se denomina modelo aotorregresivo. Así,

$$Y_1 = \alpha + \beta_0 X_1 + \beta_1 X_{t-1} + \beta_2 X_{t-2} + u$$

Representa un modelo de rezago distribuido, mientras que

$$Y_1 = \alpha + \beta X_t + Y_{t-1} + u$$

Es un ejemplo de un modelo autorregresivo. Estos últimos también se conocen como modelos dinámicos puesto que señalan la trayectoria en el tiempo de la variable dependiente en relación con su (s) valor (es) pasados.

4.6.2.1 El Papel del tiempo o del rezago, en Economía

En economía, la dependencia de una variable Y (la variable dependiente) respecto de otra u otras variables X (las variables explicativas) raramente es instantánea. Muy frecuentemente, Y responde a X en un lapso de tiempo, el cual se denomina rezago (Gujarati, 2003).

Más generalmente se puede escribir:

$$Y_1 = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + ... + \beta_k X_{t-k} + u$$

Es el modelo de rezagos distribuidos con un rezago finito de k periodos. El coeficiente β_0 se conoce como el multiplicador de corto plazo o de impacto porque da el cambio en el valor medio de Y que sigue a un cambio unitario en X en el mismo periodo. Si el cambio en X se mantiene al mismo nivel desde el principio, entonces $(\beta_0 + \beta_1)$ nos da el cambio en (el valor medio de) Y en el periodo siguiente y así sucesivamente (Gujarati, 2003).

4.6.3 Variables dicotómicas

Frecuentemente sucede que algunos de los factores que se quieren introducir en un modelo de regresión son de naturaleza cualitativa, por lo que no se pueden medir en términos numéricos. Siendo la solución ejecutar regresiones separadas para las dos categorías y ver si los coeficientes son diferentes. Como alternativa se puede ejecutar una regresión simple utilizando todas las observaciones, midiendo el efecto del factor con lo que se conoce como una variable dicotómica (Doughrty, 2001).

Las variables que valores 0 y 1 se llaman variables dicotómicas. Tales variables son, por tanto, esencialmente un recurso para clasificar datos en categorías mutuamente excluyentes, como masculino o femenino (Gujarati, 2003).

CAPITULO V

ANÁLISIS DE RESULTADOS

Este capítulo presenta un análisis del impacto que tiene el precio de maíz en Estados Unidos en el precio de maíz en México. Se analizan también los cambios que se podrían presentar en las importaciones de maíz de Estados Unidos a México ante diferentes escenarios impulsados por las políticas para la producción de etanol en el país exportador.

El punto de comparación de los cambios se realizó respecto a la proyección base 2011 estimada por el Instituto de Investigación de Políticas Agrícolas y Alimentarias (FAPRI por sus siglas en inglés).

5.1 Modelo de Regresión Estimado

La función obtenida fue la siguiente:

$$PrecioMx = 1096 + 0.319 PrecioEU + 0.6152 Lag PrecioMx - 544.22 TLCAN$$
 (1) (2.32) (4.92) (6.77) (-2.22)

$$R^2 = 0.96$$
 $F = 225.14$

Donde:

PrecioMx= Precio de maíz en México (\$/Ton)

PrecioEU= Precio de maíz en Estados Unidos (\$/Ton)

LagPrecioMx = Precio de maíz en México del año anterior (\$/Ton)

El modelo introducido en el paquete computacional SAS y la salida se puede consultar en el apartado de Anexos.

Con una F de 225.14 y una R² de 0.96 obtenidos en la regresión realizada se puede concluir que el precio de maíz en Estados Unidos afecta significativamente el precio de maíz en México. Con un nivel de significancia del 5% todos los coeficientes son estadísticamente significativos. El estadístico Durbin-h fue de -1.95 lo que nos indica que no hay presencia de autocorrelación.

Se presenta un intercepto de 1096, que nos indica el origen o constante de la regresión en ausencia de las variables exógenas; significa que para el precio de maíz en México sin la presencia de las variables explicativas que se presentan en el modelo, tendría un precio de \$1096/ton.

El coeficiente para el precio de Estados Unidos es de 0.319, lo cual indica que el precio de maíz en Estados Unidos impacta de manera directa el precio en México y por cada peso que aumenta el precio de maíz en Estados Unidos, el precio de maíz en México incrementará 32 centavos. Es importante resaltar lo anterior, debido a que México importa aproximadamente una cuarta parte del maíz consumido de Estados Unidos, y un cambio en el precio en este último impacta considerablemente el mercado en el país importador.

El coeficiente de la variable dependiente rezagada es positivo (0.6152), por lo que el precio de maíz en México está altamente influenciado por el precio del año anterior. En economía, la dependencia de una variable endógena respecto a otras variables (variables explicativas) raramente es instantánea y muy frecuente la variable dependiente responde a las variables independientes en un lapso de tiempo, el cual se denomina rezago (Gujarati, 2003)

Finalmente, el coeficiente de la variable TLCAN (variable dicotómica) es de -544.22. Esto indica que con el Tratado de Libre Comercio el precio de maíz en México disminuyó 544.22 pesos por tonelada, esto es debido a que el TLCAN que inició en enero de 1994 permitió la importación de maíz a un costo menor de lo que cuesta producirlo en México, lo que indudablemente se tradujo a un precio más bajo en el mercado mexicano y como consecuencia un incremento en la importaciones que crecieron de 7% en 1990 a 34% actualmente, como lo menciona Wise (2010).

Por lo tanto las ecuaciones estimadas para el precio de México son las siguientes:

Sin el Tratado de Libre Comercio de América del Norte:

$$PrecioMx = 1096 + 0.319 PrecioEU + 0.6152 LagPrecioMx$$
 (2)

Con el Tratado de Libre Comercio de América del Norte

$$PrecioMx = 551.77 + 0.319 PrecioEU + 0.6152 LagPrecioMx$$
 (3)

La ecuación 2 se utilizó para realizar las futuras predicciones de cambios en el mercado de maíz mexicano durante el periodo 2011-2025.

El resumen de la estimación de modelo se puede ver en el cuadro 9.

Cuadro 11. Resumen del modelo de regresión estimado

Estimación del modelo					
R^2	0.96				
F (3,25)	225.14				
Durbin h	-1.95				
	Media Preci	oMx 4292.46			
	Media Precio	oEU 2368.77			
Parámetro Intercepto	Estimación 1096.313770	<i>Error Estándar</i> 471.7538515	<i>Valor t</i> 2.32	Pr > t 0.0286	
LagPrecioMex	0.615165	0.0908186	6.77	<.0001	
PrecioEU	0.319020	0.0648158	4.92	<.0001	
TLCAN	-544.223344	245.1756655	-2.22	0.0357	

Fuente: elaboración propia con datos del Anexo A

5.2 Elasticidad de Transmisión de Precios (ETP)

La elasticidad de transmisión de precios estimada entre el precio de maíz de Estados Unidos y el precio de maíz en México fue de 0.17. Esto significa que ante un aumento del 1% en el precio de maíz en Estados Unidos el precio de maíz en México aumentará 0.17%. Es importante mencionar que esta transmisión es un cambio inmediato que se presenta entre los precios. Sin embargo, debido a que el precio de maíz en México es altamente influenciado por el precio del año anterior y este a su vez estuvo influenciado por el precio de maíz en Estados Unidos, el impacto que tiene el precio de maíz del país exportador en México es muy importante.

5.3 Cambios con la eliminación de las políticas de Estados Unidos.

La legislación y regulaciones derivadas de las políticas agrícolas de Estados Unidos son factores importantes en la producción y consumo de etanol y debido a que la principal materia prima utilizada para la producción de dicho biocombustible es el maíz, los cambios legislativos y reglamentarios para la producción de etanol provocan cambios significativos en el mercado de maíz. Según la EIA (2012), en el 2011 el 40% de la cosecha de maíz fue usada para la producción de biocombustibles.

En general, se esperaría que los precios de maíz en México vayan a la alza. Sin embargo, existen variaciones ante los mandatos de una u otra política establecidas en Estados Unidos respecto a la producción y consumo de etanol que afectan considerablemente la magnitud de esta variación.

A continuación se analizan los cambios presentados en precio, oferta, demanda e importaciones de maíz en México tomando en cuenta 6 escenarios, divididos en dos secciones de acuerdo al precio de petróleo: precio alto y precio bajo. Los cálculos realizados para la estimación se pueden consultar en el apartado de Anexos al final de la tesis.

Debido a que se encontró que el precio de maíz en Estados Unidos afecta significativamente el precio de maíz en México, una reducción en el precio de maíz en Estados Unidos en ausencia de legislaciones se transfiere en una reducción del precio de maíz mexicano que podría ser de 10% en la ausencia del límite de mezcla y un precio alto de petróleo, hasta un 16% si ambas políticas fueran eliminadas y se presentara un precio bajo de petróleo, teniendo como referencia la proyección base estimada por FAPRI. (Cuadro 4).

Cuadro 12. Coeficientes de variación promedio de precios, demanda, oferta e importaciones bajo diferentes escenarios

	Cambios en EU	Cambios en México			
Escenario	Precio	Precio	Demanda	Oferta	Importaciones
	Altos preci	io del petro	óleo (US \$100) por barril)	
Sin NCR y LM	-0.265	-0.14	+0.036	-0.058	+0.273
Sin LM	-0.20	-0.10	+0.027	-0.044	+0.207
Sin NCR	-0.24	-0.13	+0.033	-0.054	+0.25
	Bajos prec	cio del peti	róleo (US \$50	por barril)	
Sin NCR y LM	-0.30	-0.16	+0.041	-0.067	+0.314
Sin LM	-0.29	-0.156	+0.039	-0.065	+0.30
Sin NCR	-0.25	-0.13	+0.034	-0.055	+0.26
Promedio		-0.136	+0.035	-0.057	+0.267

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Fuente: elaboración propia con datos de los Anexos D y F

Los máximos y mínimos de los precios e importaciones estimados en la investigación son presentados en el Cuadro 11. La mayor reducción para precio y mayor incremento en importaciones se tendría en ausencia de ambas políticas y bajos precios de petróleo con \$2,898/ton y 11,134 ton importadas respectivamente.

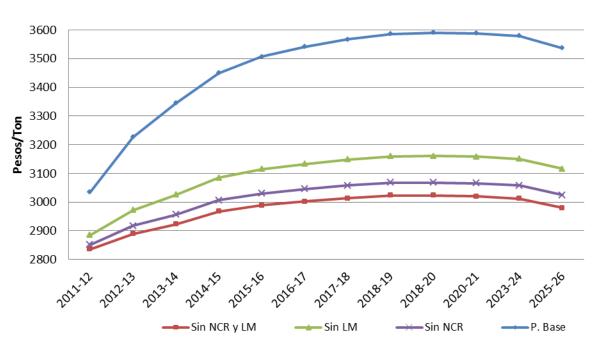
Cuadro 13. Máximos y mínimos de precios e importaciones de maíz en México ante diferentes escenarios.

Escenario		Precio		Importaciones		
	_	Coeficiente de variación	Pesos/ton	Coeficiente de variación	Millones de ton	
		Altos precio del p	petróleo (US \$100) por barril)		
Sin NCR y LM	Mínimo	-0.065	2,835	+0.22	16. 38	
	Máximo	-0.15	3,011	+0.35	10.72	
Sin LM	Mínimo	-0.05	2,884	+0.16	15.67	
	Máximo	-0.12	3,150	+0.27	10.04	
Sin NCR	Mínimo	-0.06	2,851	+0.20	16.15	
	Máximo	-0.14	3,057	+0.32	10.5	
		Bajos precio del	petróleo (US \$50	por barril)		
Sin NCR y LM	Mínimo	-0.075	2,806	+0.25	16.80	
	Máximo	-0.18	2,898	+0.4	11.13	
Sin LM	Mínimo	-0.07	2,813	+0.24	16.71	
	Máximo	-0.18	2,948	+0.39	11.04	
Sin NCR	Mínimo	-0.06	2,847	+0.20	16.21	
	Máximo	-0.15	3,045	+0.33	10.56	

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Fuente: elaboración propia con datos de los Anexos D y F

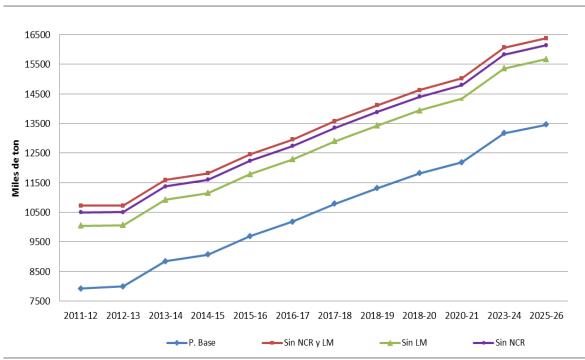

La interpretación y discusión de estos resultados se presentan en los siguientes apartados.

5.3.1 Altos precios de petróleo

El límite de mezcla permite a los mezcladores aumentar o disminuir la cantidad de etanol en la gasolina dependiendo del precio del petróleo. Cuando los precios del crudo son altos el mezclador prefiere comprar más etanol para añadir a la gasolina y reducir la compra de petróleo y viceversa. Dado que la principal materia prima para producir etanol en Estados Unidos es el maíz, los altos precios de petróleo afectan el precio del grano. La Figura 27 muestra los cambios en el precio de maíz de los distintos escenarios con un precio de petróleo alto, es evidente que la proyección base se encuentra sobre los 3 escenarios. El escenario con la ausencia de ambas políticas muestra los precios más bajos respecto a la proyección base.

Figura 28. Precios de maíz en México ante diferentes escenarios de políticas de etanol cuando el precio de petróleo es alto, 2011-2025

NCR: Norma de Combustibles Renovables


LM: Limite de mezcla

Fuente: elaboración propia con datos del Anexo D

Con una reducción en el precio de maíz México importaría mayor volumen de este grano. Es por ello que gráficamente la proyección base está por debajo de los tres escenarios (Figura 28).

Figura 29. Importaciones de maíz en México ante diferentes escenarios, cuando los precios de petróleo son altos, 2011-2025

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Fuente: elaboración propia con datos del Anexos F

5.3.1.1. Escenario 1a. Eliminación de ambas políticas (Norma de Combustibles Renovables y Límite de mezcla de etanol)

En conjunto la Norma de Combustibles Renovables y el Límite de Mezcla crearon nuevas condiciones para la demanda de etanol, las cuales afectan la demanda de gasolina y maíz.

Cambio en el precio

Los cambios en el precio para los escenarios donde el precio del petróleo es alto son presentados gráficamente en la Figura 27. Cuando ambas políticas, Norma de Combustibles Renovables y Limite de mezcla, son eliminadas, el precio de maíz en Estados Unidos disminuiría 26.5% (McPhail y Babcock, 2011). Utilizando la regresión estimada para el precio de maíz en México se esperaría una reducción promedio de 14% para los años de 2011 al 2025 respecto a la proyección base. Siendo 6.56% en el año 2011 la mínima reducción en el precio y 15.86% la máxima reducción en 2023, con \$2 835 y \$3 011 por tonelada respectivamente.

Cambio en importaciones

La Figura 28 muestra los cambios en las importaciones de maíz en México cuando los precios de petróleo son altos. Cuando ambas políticas son excluidas y el precio de maíz se reduce en 26.5%, la demanda de maíz en México aumenta en 3.6% respecto a la proyección base, mientras que la oferta se reduce en 5.8%. Estos cambios ocasionan que las importaciones de maíz en México se incrementen en promedio un 27.3% respecto a la proyección base en los años del 2011 al 2025. En el año 2011 se presentaría el mayor cambio en la cantidad de importaciones, incrementándose de 7.9 a 10.7 millones de toneladas lo que equivale a un incremento de 35%. En el 2025 este incremento seria el menor (22%) aumentando 2.9 millones toneladas respecto a la proyección base.

5.3.1.2. Escenario 1b. Eliminación del Límite de mezcla de etanol

El modo más sencillo para usar y vender etanol es mezclándolo con la gasolina. El límite de mezcla nos indica la saturación de la oferta de etanol para mezclar con gasolina en Estados Unidos. El límite de mezcla vendido actualmente en Estados Unidos es de 10% de etanol y 90% de gasolina, conocido como E10. En 2010 la EPA aprobó el uso de E15 (mezcla de 85% gasolina y 15% etanol) en vehículos modelo 2007 o más reciente.

Cambio en el precio

La reducción en el precio de maíz en Estados Unidos cuando se elimina el límite de mezcla es de 20% (McPhail y Babcock, 2011). Estimando el precio de maíz para los años 2011 a 2025 en México se obtuvo una reducción promedio de 10.6% respecto a la proyección base. El año 2023 presenta la mayor reducción del precio respecto a la proyección base con \$3 150 por tonelada (12%) mientras que el año 2011 presenta la menor reducción con un precio de \$2 884 por tonelada (5%).

Cambio en las importaciones

La reducción en el precio afecta el mercado de maíz en México y provocaría que la demanda de maíz se incrementara en un 2.7% respeto a la proyección base. Por otro lado, la oferta tendría una reducción de 4.41%.

Ante los cambios de oferta y demanda las importaciones también se ven afectadas incrementando en promedio 20.7%, presentándose el mayor incremento en el año 2011, aumentando 2.1 millones de toneladas respecto a la proyección base. En el año 2025 se tendría el menor cambio en el incremento de las importaciones, pasando de 13.5 a 15.7 millones de toneladas, es decir, un cambio porcentual de 16%.

5.3.1.3. Escenario 1c. Eliminación de la Norma de combustibles Renovables

La Norma de combustibles renovables es un mandato para la producción de biocombustibles en cantidades específicas para cada año, las cuales varían de acuerdo a la materia prima y proceso utilizados.

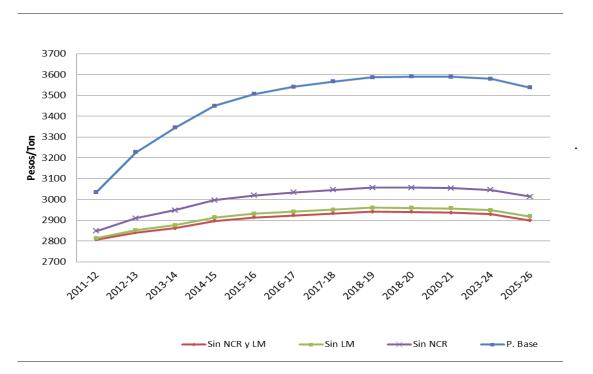
De acuerdo a la Ley de Seguridad e Independencia Energética del 2007, los volúmenes reglamentarios de combustibles renovables establecidos por la Norma de Combustibles Renovables requieren incrementar el consumo para todos los biocombustibles de 9 millones de galones en 2008 a 36 millones de galones en 2022.

Cambio en el precio

Si se eliminara la NCR, el precio de maíz bajaría un 24% en Estados Unidos (McPhail y Babcock, 2011). Esto provocaría en promedio 12.9% en la reducción del precio de maíz en México. El año 2011, con un precio de \$2 851 por tonelada, presentaría la menor reducción en el precio (6%). Por el contrario, el año 2023, con un precio de \$3 057, presentaría el mayor porcentaje de reducción (14.5%).

Cambio en las importaciones

Ante la exclusión de la NCR en Estados Unidos, la demanda de maíz en México se incrementaría debido a la reducción del precio en el país exportador, este incremento sería en promedio 3.3% respecto a la proyección base. Mientras que la oferta de maíz en México se reduciría en 5.4%. Las nuevas importaciones en México se incrementarían en promedio un 25%.


El año 2011 con 10.5 millones de toneladas importadas tendría el porcentaje más alto (32%) en el incremento de importaciones. Por otro lado, en el año 2025 se presenta el menor cambio en importaciones pasando de 13.46 a 16.15 millones de toneladas, equivalente a un cambio de 20% respecto a la proyección base.

5.3.2. Bajos precios de petróleo

La disminución en los precios de petróleo reduce el consumo de maíz para la producción de etanol, esto hace que la demanda de maíz sea menor y se tenga un precio más bajo comparado con la proyección base, como se muestra en la Figura 29. México, al tener un precio de maíz menor en el mercado, aumenta su demanda y se reduciría la oferta de los productores mexicanos. Esto provoca un mayor incremento en las importaciones comparado con los escenarios donde el precio del crudo es alto (Figura 30).

Figura 30. Precios de maíz en México ante diferentes escenarios de políticas de etanol cuando el precio de petróleo es bajo 2011-2025

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Fuente: elaboración propia con datos de los Anexos D

17500 16500 15500 14500 12500 10500 9500

2014-15 2015-16 2016-17 2017-18 2018-19 2018-20 2020-21 2023-24 2025-26

Figura 31. Importaciones de maíz en México ante diferentes escenarios, cuando los precios de petróleo son bajos 2011-2025

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

8500 7500

Fuente: elaboración propia con datos de los Anexos F

2011-12 2012-13 2013-14

5.3.2.1. Escenario 2a. Eliminación de ambas políticas (Norma de Combustibles Renovables y Límite de mezcla de etanol)

Cambio en el precio

La Figura 29 muestra los cambios de los precios de maíz en México cuando el precio del petróleo es bajo. En este escenario el precio de maíz en Estados Unidos se reduciría en 30% (McPhail y Babcock, 2011). Este gran cambio en el precio del país exportador provocaría que el precio en México se redujera en 16% respecto a la proyección base. La mayor reducción del precio (18%) sería en el año 2023 con un precio de \$2 898 por tonelada y la menor reducción (7%) con un precio de \$2 806 seria en el año 2011.

Cambio en las importaciones

En la Figura 30 se pueden observar los cambios los cambios en las importaciones de maíz en México cuando los precios de petróleo son bajos. Los resultados muestran que la demanda de maíz en México se incrementaría 4% si ambas políticas fueran eliminadas, mientras que la oferta se reduciría en 6.7% respecto a la proyección base. Las importaciones serían 31.4% más altas en respuesta al cambio en el mercado interno de México y reducción de precio del maíz importado. Así, el porcentaje de importaciones más bajo (25%) se presentaría en el año 2025 con 16. 8 millones de toneladas. En el año 2011 se presenta el mayor incremento en importaciones (40%) con una diferencia de 3.2 millones de toneladas respecto a la proyección base.

5.3.2.2. Escenario 2b. Eliminación del Límite de mezcla de etanol

De acuerdo con la Administración de Información de energía (EIA, 2012) la concentración promedio de etanol en la gasolina para el año 2011 fue de 9.6%. En el 2012, el contenido de etanol en la gasolina aumento ligeramente, con un promedio estimado de 9.7% en los primeros 8 meses del año.

Cambio en el precio

Este escenario en Estados Unidos se presentara una reducción de 29% (McPhail y Babcock, 2011). Esta reducción impactaría el precio en México con una disminución promedio de 15.6% respecto a la proyección base estimada por FAPRI. El porcentaje menor de reducción en el precio (7%) se presentaría en el año 2011 con un precio de \$2 813, mientras que la mayor reducción con un porcentaje de 18% sería en el año 2023 con un precio por tonelada de \$2 948.

Cambio en las importaciones

En respuesta a la eliminación del límite de mezcla y la reducción de precio en el maíz de Estados Unidos, la demanda de maíz en México se incrementaría 3.9%, mientras que la oferta se reduciría en 6.5% respecto a la proyección base. En respuesta a estos cambios, las importaciones se incrementarían en 30%.

El año 2025 con un porcentaje de reducción de 24% es el año con el menor cambio en el incremento de importaciones, aumentando de 13.5 a 16.7 millones de toneladas teniendo a la proyección base como referencia. Por otro lado el año 2011 es el que presentaría el mayor incremento en importaciones (39%) incrementando en 3.1 millones de toneladas respecto a la proyección base.

5.3.2.3. Escenario 2c. Eliminación de la Norma de Combustibles Renovables

El consumo de etanol en el 2011 llego a 12.9 millones de galones en Estados Unidos, lo que supero la porción convencional de biocombustibles de la NCR (EIA, 2012).

Cambio en el precio

En Estados Unidos se presentaría una reducción del 25% en el precio de maíz si se eliminará la NCR. En México este cambio provocaría una reducción del 13% en el precio de maíz mexicano respecto a la proyección base. El porcentaje mínimo de reducción (6%) con un precio de \$2 847 se presentaría en el 2011 mientras que el porcentaje mayor de reducción (15%) con precio de \$3 045 por tonelada seria en el 2023.

Cambio en las importaciones

En México la demanda de maíz se incrementaría en un 3.4% y la oferta de reduciría en un 5.5% si en Estados Unidos se eliminara la NCR y los precios de petróleo fueran bajos. Esto indudablemente afectaría las importaciones de maíz en México, las cuales se verían incrementadas en un 25.7% respecto a la proyección base.

Con un incremento de 2.6 millones de toneladas respecto a la proyección base (33%), el año 2011 es el año en el que se presenta el mayor crecimiento en las importaciones. Mientras que en el año 2025 se presenta el menor aumento en importaciones pasando de 13.5 a 16.2 millones de toneladas tomando como referencia la proyección base.

Lo resultados anteriores muestran que si las políticas de producción de etanol continúan ejerciéndose en Estados Unidos, el precio de maíz en México continuará siendo aproximadamente 13.6% más alto comparado con el que sería sin la existencia de políticas que fomenten la producción de este biocombustible.

Ante el incremento que provoca la producción de etanol en el precio de maíz, la oferta seguiría incrementada en un 5.7%. Es por ello que como lo menciona Wise (2010), incluso con la reducción de soporte gubernamental a través de sus programas de apoyo hacia pequeños y medianos productores, estos han incrementado su producción como respuesta al incentivo de un mejor pago.

El cambio en los precios de maíz también afectan la demanda de este cereal en México y de acuerdo con la teoría de la demanda, la cual señala que la cantidad demandada de un producto varia inversamente a su precio, la demanda de maíz en México es reducida en promedio 3.5% cuando el precio de maíz se ve incrementado debido a las políticas de producción de biocombustibles establecidas en Estados Unidos.

Finalmente las importaciones de maíz en México, si continúan las actuales políticas de producción de etanol en Estados Unidos, serán en promedio 26.7% menores a lo que podrían ser sin la existencia de dichas políticas.

Es importante mencionar que el aumento en el precio de maíz debido a las políticas de producción de etanol en Estados Unidos se ha reflejado en un incremento en el precio de la tortilla, que según Wise (2012) ha sido del 14%, lo que afecta a toda la población mexica que basa su alimentación en la tortilla y obtiene de ella energía y nutrimientos necesarios en el organismo.

En resumen, las actuales políticas establecidas en Estados Unidos para la producción de biocombustibles han tenido importantes consecuencias en el mercado nacional de maíz. Es importante considerar que la entrada de una nueva demanda (para etanol) en el mercado de maíz impacta el precio de este y produce cambios en México, que pueden ser aprovechados para impulsar la productividad de sus productores y no poner en riesgo la seguridad alimentaria del país.

CAPITULO VI

CONCLUSIONES

En esta investigación se analizó el efecto que se presentaría en las importaciones y precio de maíz en México ante la eliminación de las políticas para la producción de biocombustibles en Estados Unidos: Norma de combustibles Renovables y Limite de mezcla de etanol.

Las políticas establecidas en Estados Unidos sobre la producción de biocombustibles afectan considerablemente el mercado de maíz en México. Debido a esto es importante discutir cómo estas pueden afectar los aspectos de la seguridad alimentaria y nutrición de la población, por ser este el cultivo de mayor importancia y el principal cereal en el que se basa la dieta mexicana y también la economía de millones de productores que lo cultivan.

Como resultado del análisis de los resultados de esta investigación, con la eliminación de las políticas para biocombustibles el precio de maíz en Estados Unidos se reduciría 20% como mínimo y 30% como máximo (McPhail y Babcock, 2011). Debido a que se encontró que el precio de maíz en Estados Unidos afecta significativamente el precio de maíz en México, esta reducción en el precio de maíz en ausencia de legislaciones se transfiere en una disminución del precio del maíz mexicano. Esta reducción podría ser de 10% en la ausencia del límite de mezcla y un precio alto de petróleo, hasta un 16% si ambas políticas fueran eliminadas y se presentara un precio bajo de petróleo, teniendo como referencia la proyección base estimada por FAPRI, 2011.

Debido a que el precio de maíz se reduce sin la presencia de las políticas, se produce un cambio en la oferta y demanda de este grano en México. La demanda de maíz en México cuando el petróleo es barato se incrementaría en 4% con ambas políticas eliminadas y 3.6% cuando el precio de petróleo es caro. La oferta de maíz en México sin ambas políticas respondería a la disminución del precio reduciéndose en un 6.7% y 5.8% con precio bajo y alto de petróleo respectivamente.

Se encontró que la eliminación de políticas para la producción de biocombustibles en Estados Unidos afectarían considerablemente las importaciones de maíz en México, incrementándolas hasta 31% respecto a la proyección base estimada por FAPRI, en un escenario donde el precio de petróleo es bajo y se eliminan ambas políticas.

Ya que la política del límite mezcla se ve altamente influenciada por el precio del petróleo (se demanda más o menos etanol para combinar con la gasolina dependiendo del precio del crudo), la eliminación de ésta política afectaría con más intensidad cuando los precio del petróleo son bajos. La variación de los escenarios cuando de elimina la Norma de Combustibles Renovables es casi nula en respuesta al precio del petróleo, debido a que la norma es un mandato obligado que debe cumplirse sin importar el precio del crudo.

La información disponible muestra que existe un continuo crecimiento de producción de bioetanol a partir de maíz, lo que disminuye la oferta de este grano, elevando su precio y al mismo tiempo, el de los alimentos en general. Por lo que es importante tener en cuenta el análisis e implementación de políticas que busquen a la autosuficiencia de este cereal en México, que impulsen el desarrollo de nuevos métodos que permitan incrementar la producción y productividad de maíz en el campo mexicano. De lo contrario, se prevé que en pocos años el maíz alcanzará precios muy altos que repercuten en el principal alimento de la población mexicana "la tortilla" elevando el costo de ésta y afectando la nutrición mexicana, debido a que de la tortilla se obtienen los mayores nutrimentos.

El modelo de libre comercio derivado de la teoría de la ventaja comparativa que sugiere que México en un mercado global, debería producir aquello en lo que es más eficiente e importar el resto, pudo haber dado buenos resultados en un inicio, pero los actuales incrementos en las importaciones de maíz, debido a la creciente producción de etanol a partir de este grano, han puesto en cuestionamiento el funcionamiento del TLCAN.

Aunque la producción de etanol en Estados Unidos se realiza a partir de maíz amarillo, el precio de maíz blanco es altamente afectado, ya que los precios de los dos están correlacionados con el precio internacional transmitido a los mercados locales y regionales, afectando de esta manera a los productores mexicanos. Los mercados se relacionan estrechamente porque el maíz amarillo se sustituye con el blanco en las mezclas forrajeras, sin embargo el maíz blanco es poco sustituido en la elaboración de tortillas.

Para alcanzar los objetivos de seguridad alimentaria y menor dependencia de Estados Unidos en el abasto del maíz, se pueden crear nuevas políticas o rediseñar y mejorar las existentes en México enfocadas en aumentar la producción de maíz, ya que Turrent, et al. (2012) argumenta que se puede recuperar la autosuficiencia en maíz y reducir la dependencia en las importaciones y el pago de altos costos.

Es importante y necesario voltear hacia los pequeños y medianos productores que son los que aportan el mayor porcentaje de la producción nacional y quienes presentan déficits de rendimientos, con una productividad global estimada en 57%. Sin embargo, las políticas que se dirijan a ellos deben ser estudiadas detenidamente, ya que los pequeños y medianos productores son agricultores tradicionales y de subsistencia que no adoptan fácilmente nuevos paquetes tecnológicos (principalmente la semilla) o cambian su manera de producción; sin embargo son quienes necesitan más un impulso para poder incrementar su productividad y quienes a pesar de no ser los principales beneficiarios de la política agrícola nacional continúan produciendo. Además, la semilla criolla que muchos de estos productores utilizan esta adaptada a la zona, lo que permite la adaptación de la biodiversidad nativa al cambio climático; es por ello la importancia de mejorar las razas nativas de México, que incluso presentan mayor aceptación que la semilla mejorada por los pequeños y medianos productores.

La producción doméstica de maíz constituye un problema de seguridad nacional por lo que es importante movilizar recursos humanos, financieros, técnicos, científicos y de infraestructura, que genere un entorno propicio para el desarrollo de este cereal. Se necesita de inversión y ambición política que junto con la iniciativa que tiene el productor de continuar produciendo generen una mayor productividad de maíz en México.

BIBLIOGRAFÍA

LIBROS Y REVISTAS

- ASERCA, 2012. Síntesis Informativa nacional sobre los principales cultivo.
 Dirección de Estudios y Análisis de Mercados, Dirección General de Operaciones
 Financieras. México
- Álvarez C.M. 2009. Biocombustibles: Desarrollo histórico-tecnológico, mercados actuales y comercio internacional. Revista Economía Informa Núm.359, julioagosto 2009, pp. 63-89. México.
- Auld D. 2012. The Economics of Ethanol, Agriculture and Food. Journal of sustainable Development. Vol.5, No. 8. Estados Unidos. Documento disponible en:
 http://www.ccsenet.org/journal/index.php/jsd/article/view/19375/12853
 (05/09/2013)
- Babcock B. A and Fabiosa J. F. 2011 The impact of ethanol and ethanol subsidies on corn prices revisiting history. CARD Policy Brief. Volume 11. Estados Unidos. Documento disponible en: http://www.progressive15.org/documents/ImpactofEthanolandEthanolSubsidies.pdf (20/09/2013)
- Becerra Pérez L.A. 2009. La Industria del etanol en México. ECONOMIA UNAM.
 Vol. 6 núm. 16. México D.F.
 Documento disponible en:

 $\frac{http://www.economia.unam.mx/publicaciones/econunam/pdfs/16/06luisarmando.pd}{\underline{f}\left(5/10/2013\right)}$

Carter C., Rausser G., Smith A. 2012 The effect of the U.S. Ethanol Mandate on corn Prices. Department of Agricultural and Resource Economics, UC Davis. Estados Unidos.

Documento disponible en:

http://www.ccsenet.org/journal/index.php/jsd/article/view/19375/12853

- Dougherty C. 2001. Introduction to econometrics. Third edition. Oxford editorial.
- Energy Independence and Security Act of 2007 (EISA). 2007. One Hundred Tenth Congress of the United States of America Estados Unidos.
- Documento electrónico disponible en: http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf
- Energy Information Administration (EIA). 2012 Biofuels Issues and Trends.
 October 2012. Department of energy. Estados Unidos.

Documento disponible en:

http://www.eia.gov/biofuels/issuestrends/pdf/bit.pdf (15/09/2013)

 One Hundred Tenth Congress of the United States of America. 2005. Energy Policy Act of 2005 (EPA)

Documento electrónico disponible en: http://www.gpo.gov/fdsys/pkg/PLAW-109publ58.pdf (20/09/2013)

- García M.R., J. A. García S., R.C. García S., 2003. Teoría del mercado de productos agrícolas. ISEI, Economía, Colegio de Postgraduados. 1ª Edición. 378 p. México.
- Gonzáles A. M. E. 2009. Producción de bioenergía en el Norte de México. Tan lejos y tan cerca. Frontera Norte. Vol. 21. Núm. 41. México.

- Gonzáles, R.K. 2010. Vulnerabilidad del Mercado nacional de maíz (Zea mays L.) ante cambios exógenos internacionales. Tesis de maestría. ISEI. Colegio de Postgraduados. Montecillo Texcoco, Estado de México.
- Gujarati D.N. 2004. *Econometría*. Cuarta edición. Editorial Mac Graw Hill.
- Hazell, P., Pachauri R. K. 2006. Bioenergy and agriculture: promises and challenges. IFPRI Washington, DC. Vol. 2020.

Documento disponible en:

http://www.ifpri.org/sites/default/files/pubs/2020/focus/focus14/focus14.pdf (5/06/2013)

- Krugman P. y Wells Robin. 2006. Introducción a la Economía, Microeconomía. Editorial REVERTÉ.
- McPhail L. L. and Babcock B. A. 2011. Impact of US biofuel policy on US corn and gasoline price variability. ELSEVIER. Volume 37. Issue 1. Pages 505-513. Estados Unidos.
- Schotter A. R. 1996. Microeconomía, un enfoque moderno. Primera Edición.
 Editorial CECSA.
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (Sagarpa) 2007. Acciones para la competitividad en maíz, frijol, caña de azúcar y leche. Tarjeta informativa para prensa, Aguascalientes, Ags.- 23 de febrero de 2007. (En línea).

Disponible en:

http://www.sagarpa.gob.mx/cgcs/discursos/2007/febrero/t230207.htm

	Procampo: Para vivir mejor. Descripción (en línea)
	Disponible en:
	http://www.sagarpa.gob.mx/ProgramasSAGARPA/2012/procampo/ganadero/Pagin
	as/Descripci%C3%B3n.aspx (07/12/2013)
•	Secretaría de Energía (SENER). Producción de etanol Anhidro. 2011. México
	Documento disponible en:
	http://www.sener.gob.mx/res/169/etanol_anhidro.pdf (09/06/2013)
•	Sistema de Información Agroalimentaria y Pesquera (SIAP). 2007. Situación actual
	y perspectivas del maíz en México 1996-2012. México
	Documento disponible en:
	http://www.campomexicano.gob.mx/portal_siap/Integracion/EstadisticaDerivada/C
	omercioExterior/Estudios/Perspectivas/maiz96-12.pdf (12/01/2013)
-	Tomek W., G. and K. L. Robinson. 1991. Agricultural product prices. Cornell
	University Press. Ithaca and London. 360 p.
•	Turrent F. A., Wise T. A., Garvey E. 2012. Factibilidad de alcanzar el potencial
	productivo de maíz en México. Mexican Rural Development Research Reports.
	Documento disponible en:
	http://ase.tufts.edu/gdae/Pubs/wp/12-03TurrentMexMaizeSpan.pdf (15/08/2013)
	United States Department of Agriculture (USDA). Economic Research Service.
	2012. Topics. <i>Corn</i> . Estados Unidos.
	Foreign Agricultural Service 2012. Uncertainty on the Future of Mexican

http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual Me

Biofuels. Gain Report. Mexico. Biofuels Annual.

xico%20City Mexico 7-11-2012.pdf (20/11/2012)

Documento disponible en:

- Wise, Timothy A. (2010). Agricultural Dumping Under NAFTA: Estimating the Costs of US Agricultural Policies to Mexican Producers. Washington, Woodrow Wilson International Center for Scholars.
- Wise, Timothy A. 2012. The cost to Mexico of US Corn Ethanol Expansion.
 GDAE. Working Paper No. 12-01. Estados Unidos.
- Zepeda, Eduardo, Timothy A. Wise, et al. (2009). Rethinking Trade Policy for Development: Lessons from Mexico Under NAFTA. Policy Outlook. Washington, Carnegie Endowment for International Peace: 23.

PAGINAS ELECTRONICAS

 Banco de México. Varios años. Índices de precios al Productor. México Página electrónica:

http://www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction.do?accion=consultarCuadroAnalitico&idCuadro=CA77§or=20&locale=es

Consulta electrónica realizada: 03/abril/2012

Consulta realizada: 09/10/2012.

• Earth Policy Institute. Data Center. 2012. *Climate, energy and transportation*. Washington, DC. Estados Unidos.

Página electrónica: http://www.earth-policy.org/data_center/C23

Consulta electrónica realizada: 09/Marzo/2012

• European Renewable Ethanol Industry (ePURE). *Statistics Fuel ethanol*. Production data. Enero 2013.

Página electrónica: http://www.epure.org/statistics/info/Productiondata1

Consulta realizada: 15/Diciembre/2012

 Food Agriculture Organization of the United Nations (FAO). 2012. Statistical database.

Página electrónica: http://faostat.fao.org/site/406/default.aspx

Consulta realizada: 15/Agosto/2012

 Food and Agricultural Policy Research Institute. (FAPRI) 2012. Elasticity Database.

Página electrónica: http://www.fapri.iastate.edu/tools/elasticity.aspx

Consulta realizada: 30/Agosto/2012

IndexMundi. Energy production, consumption, exports and imports. 2013
 Página electrónica: http://www.indexmundi.com/

Consulta realizada: 4/Enero/2013

 Instituto Nacional de Estadística y Geografía (INEGI). Banco de Información Económica. Varios años. Indicadores Económicos.

Página electrónica: http://www.inegi.org.mx/sistemas/bie/

Consulta realizada: 02/Abril/2012

• RFA (Renewable Fuels Association). 2012. Statistics. World Fuel Ethanol Production

Página electrónica: http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production

Consulta realizada: 12/Enero/2013

Sistema de Información Agroalimentaria de Consulta (SIACON) 2012. Información
 Agrícola de los años 1980 a 2007. Centro de estadísticas agropecuarias (C.E.A)

 Sistema de Información Agroalimentaria y Pesquera (SIAP). 2012. Balanzas Disponibilidad-Consumo de Productos Agrícolas. Maíz amarillo y maíz blanco. Páginas electrónicas:

http://www.siap.gob.mx/index.php?option=com_content&view=article&id=58&Ite mid=379

http://www.campomexicano.gob.mx/portal_siap/Integracion/EstadisticaDerivada/ComercioExterior/Estudios/Perspectivas/maiz96-12.pdf

Consulta realizada: 6/Enero/2013

 United States Department of Agriculture (USDA). 2012. Feed grains: Yearkbook tables.

Página electrónica: http://www.ers.usda.gov/data-products/feed-grains-

database/feed-grains-yearbook-tables.aspx

Consulta realizada: 06/Marzo/2012

Foreign Agricultural Service 2012. Grain: World Markets and Trade. World
 Corn Trade/ World Corn Production, Consumption, and Stocks.

Página electronica:

 $\frac{http://www.fas.usda.gov/psdonline/psdgetreport.aspx?hidReportRetrievalName=BV}{S\&hidReportRetrievalID=455\&hidReportRetrievalTemplateID=7}$

Consulta realizada: 03/Enero/2013

 World Agricultural Supply and Demand Estimates (WASDE-511). October 11, 2012. USDA.

Documento disponible en:

http://usda01.library.cornell.edu/usda/waob/wasde//2010s/2012/wasde-10-11-2012.pdf

ANEXOS

Anexo A. Estimación del modelo

Las variables se denotan de la siguiente manera: Año: Año, PrecioMex: Precio de maíz al productor en México, PrecioEU: Precio de maíz al productor en Estados Unidos, TLCAN: Variable dicotómica del Tratado de Libre Comercio. PrecioMexRez: Variable rezagada una año del precio de maíz al productor en México.

```
DATA PRECIO;
INPUT ANIO PRECIOMEX PRECIOUS TLCAN;
PRECIOMEXRETRASADO=LAG(PRECIOMEX);
1981
       6844.62 2404.87 0
1982
       6601.02 3983.78 0
1983
       7082.79 7147.94 0
1984
       7288.64 4135.38 0
1985
       6500.6 3367.27 0
1986
       5691.45 2288.77 0
1987
       6109.7 2633.78 0
1988
       5550.63 3402.57 0
1989
       5584.62 2750.81 0
1990
       4933.02 2062.27 0
1991
       4862.47 1934.44 0
1992
       4370.71 1448.38 0
1993
       4275.33 1707.44 0
1994
       3583.24 1646.53 1
1995
       4257.12 3197.22 1
1996
       4314.9 2438.6 1
1997
       3660.21 2047.78 1
1998
       2932.39 1417.63 1
1999
       3192.08 1502.28 1
2000
       3054.05 1395.15 1
2001
       2778.48 1386.48 1
2002
       2602.6 1532.14 1
2003
       2758.01 1752.55 1
2004
       2647.46 1438.22 1
2005
       2297.44 1248.42 1
2006
       2699.9 1752.4 1
2007
       3139.45 2322.97 1
2008
       3172.5 2006.02 1
2009
       3171.8 2135.52 1
2010
       2816.48 2575.45 1
PROC PRINT; PROC MEANS;
PROC AUTOREG:
MODEL
              PRECIOMEX=PRECIOUS
                                             TLCAN
                                                           PRECIOMEXRETRASADO
LAGDEP=PRECIOMEXRETRASADO;
RUN;
```


The SAS System

Obs	ANO	PRECIOMEX	PRECIOUS	TLCAN	PRECIOMEXRETRASADO
1	1981	6844.62	2404.87	0	
2	1982	6601.02	3983.78	0	6844.62
3	1983	7082.79	7147.94	0	6601.02
4	1984	7288.64	4135.38	0	7082.79
5	1985	6500.60	3367.27	0	7288.64
6	1986	5691.45	2288.77	0	6500.60
7	1987	6109.70	2633.78	0	5691.45
8	1988	5550.63	3402.57	0	6109.70
9	1989	5584.62	2750.81	0	5550.63
10	1990	4933.02	2062.27	0	5584.62
11	1991	4862.47	1934.44	0	4933.02
12	1992	4370.71	1448.38	0	4862.47
13	1993	4275.33	1707.44	0	4370.71
14	1994	3583.24	1646.53	1	4275.33
15	1995	4257.12	3197.22	1	3583.24
16	1996	4314.90	2438.60	1	4257.12
17	1997	3660.21	2047.78	1	4314.90
18	1998	2932.39	1417.63	1	3660.21
19	1999	3192.08	1502.28	1	2932.39
20	2000	3054.05	1395.15	1	3192.08
21	2001	2778.48	1386.48	1	3054.05
22	2002	2602.60	1532.14	1	2778.48
23	2003	2758.01	1752.55	1	2602.60
24	2004	2647.46	1438.22	1	2758.01
25	2005	2297.44	1248.42	1	2647.46
26	2006	2699.90	1752.40	1	2297.44
27	2007	3139.45	2322.97	1	2699.90
28	2008	3172.50	2006.02	1	3139.45
29	2009	3171.80	2135.52	1	3172.50
30	2010	2816.48	2575.45	1	3171.80

The SAS System

The MEANS Procedure

Variable •	N	Mean	Std Dev	Minimum	Maximum
ANIO	30	1995.50	8.8034084	1981.00	2010.00
PRECIOMEX	30	4292.46	1564.45	2297.44	7288.64
PRECIOUS	30	2368.77	1190.80	1248.42	7147.94
TLCAN	30	0.5666667	0.5040069	0	1.0000000
PRECIOMEXRETRASADO	29	4343.35	1566.66	2297.44	7288.64

The SAS System

The AUTOREG Procedure

	Ordinary L	Ordinary Least Squares Estimates					
SSE	2292827.54	DFE	25				
MSE	91713	Root MSE	302.84171				
SBC	422.829633	AIC	417.36045				
MAE	225.823739	AICC	419.027117				
MAPE	5.62914554	HQC	419.07333				
		Regress R-Square	0.9643				
		Total R-Square	0.9643				

Miscellaneous Statistics

Statistic Value Prob Label

Durbin h -1.9534 0.0254 Pr > h

+ Parameter Estimates Variable DF Estimate Standard Error t Value Approx $\mathbf{Pr} \ge |\mathbf{t}|$ Intercept 1 1096 471.7533 2.32 0.0286 **PRECIOUS** 1 0.3190 0.0648 4.92 <.0001 -2.22 TLCAN 1 -544.2242 245.1757 0.0357 PRECIOMEXRETRASADO 1 0.6152 0.0908 6.77 <.0001

ANEXO B. Estimación precios reales del maíz (base 2010)

				Precios	Precios Reales			
	Precio maíz Mex	Precio ma	íz US	Tipo de cambio	Precio maíz US		Precio maíz Mex	Precio maíz EU
Año	pesos per ton	(dólares por bushel)	(dólares per ton)	pesos por dólar	pesos por ton	IPP* Mex 2010	pesos por ton	Pesos por ton
1980	5.02	3.11	122.4409449	0.02292908	2.80745822			
1981	6.86	2.5	98.42519685	0.024488434	2.410278911	0.10022469	6844.620815	2404.875394
1982	9.65	2.55	100.3937008	0.058010273	5.823866034	0.146189362	6601.027529	3983.782385
1983	18.69	3.21	126.3779528	0.14925	18.86190945	0.263878867	7082.795309	7147.942416
1984	33.75	2.63	103.5433071	0.184936056	19.14889081	0.463049332	7288.640251	4135.388929
1985	52.59	2.23	87.79527559	0.31028245	27.24133319	0.809001684	6500.604518	3367.277688
1986	93.3	1.5	59.05511811	0.63533629	37.51985966	1.639299061	5691.45693	2288.774548
1987	247.69	1.94	76.37795276	1.397977823	106.7746841	4.054042955	6109.703393	2633.782751
1988	373.09	2.54	100	2.287070565	228.7070565	6.721577876	5550.631219	3402.57988
1989	468.11	2.36	92.91338583	2.481627016	230.5763684	8.382113964	5584.629391	2750.814048
1990	609.47	2.28	89.76377953	2.838470161	254.7918098	12.35490476	4933.020627	2062.272553
1991	707.31	2.37	93.30708661	3.015737751	281.3897035	14.54630787	4862.470989	1934.440726
1992	761.23	2.07	81.49606299	3.0953604	252.2596861	17.41659187	4370.717335	1448.387193
1993	767.73	2.5	98.42519685	3.115153785	306.6096245	17.95719742	4275.333072	1707.446977
1994	656.22	2.26	88.97637795	3.3889908	301.5401263	18.31359228	3583.240196	1646.537291
1995	1091.57	3.24	127.5590551	6.426842	819.8018929	25.6410121	4257.125248	3197.22907
1996	1434.61	2.71	106.6929134	7.599205159	810.7813378	33.24779857	4314.902225	2438.60157
1997	1353.75	2.43	95.66929134	7.916704016	757.385463	36.98551541	3660.216669	2047.789397
1998	1446.18	1.94	76.37795276	9.1537116	699.1417521	49.31730583	2932.398629	1417.639793
1999	1454.48	1.82	71.65354331	9.553207143	684.5211417	45.56521586	3192.084077	1502.288816
2000	1507.78	1.85	72.83464567	9.456824	688.7844252	49.36975308	3054.05619	1395.154689
2001	1451.07	1.97	77.55905512	9.335997222	724.0911231	52.22513596	2778.489655	1386.480111
2002	1500.56	2.32	91.33858268	9.671403187	883.3722596	57.65600709	2602.608255	1532.142624
2003	1618.01	2.42	95.27559055	10.79134542	1028.151808	58.66582188	2758.011306	1752.556727

2004	1678.59	2.06	81.1023622	11.24367743	911.8887996	63.40367365	2647.464892	1438.227073
2005	1577.93	2	78.74015748	10.88950275	857.441161	68.68183765	2297.44872	1248.424897
2006	2010.55	3.04	119.6850394	10.903372	1304.970507	74.467461	2699.904056	1752.403653
2007	2441.99	4.2	165.3543307	10.92744104	1806.899699	77.78383991	3139.456734	2322.975699
2008	2817.04	4.06	159.8425197	11.14380992	1781.254657	88.79541468	3172.506159	2006.02099
2009	2802.05	3.55	139.7637795	13.49830518	1886.574149	88.34251453	3171.802404	2135.522358
2010	2816.48	5.18	203.9370079	12.62869405	2575.458077	100	2816.48	2575.458077

^{*}IPP: Índice de Precios al Productor

Anexo C. Reducción del precio de maíz en Estados Unidos (pesos reales mexicanos, base 2010) en los diferentes escenarios.

		PRECIO MAÍZ	(proyección base)	1	2	3	4	5	6
	Miles de toneladas	dólares por tonelada	Pesos mexicanos por tonelada	A	Altos precios de petróleo		Ba	jos precios de petr	óleo
Año	Importaciones Mex	Prec	io maíz	NCR y LM	Eliminación LM	Elim NCR	NCR, LM	Elim LM	Elim NCR
2010-11	8750	206	2647.5326	1944.877448	2115.908054	2001.26989	1841.88843	1865.98098	1986.44371
2011-12	7921	183	2351.9343	1727.730937	1879.665893	1777.82714	1636.24069	1657.64329	1764.65631
2012-13	7993	197	2531.8637	1859.907074	2023.465469	1913.83577	1761.41758	1784.45754	1899.65733
2013-14	8844	197	2531.8637	1859.907074	2023.465469	1913.83577	1761.41758	1784.45754	1899.65733
2014-15	9068	205	2634.6805	1935.436295	2105.636656	1991.55499	1832.94722	1856.92282	1976.80078
2015-16	9694	203	2608.9763	1916.55399	2085.093859	1972.12519	1815.06481	1838.8065	1957.51492
2016-17	10182	203	2608.9763	1916.55399	2085.093859	1972.12519	1815.06481	1838.8065	1957.51492
2017-18	10785	204	2621.8284	1925.995143	2095.365257	1981.84009	1824.00602	1847.86466	1967.15785
2018-19	11306	205	2634.6805	1935.436295	2105.636656	1991.55499	1832.94722	1856.92282	1976.80078
2018-20	11815	203	2608.9763	1916.55399	2085.093859	1972.12519	1815.06481	1838.8065	1957.51492
2020-21	12189	202	2596.1242	1907.112837	2074.822461	1962.41028	1806.12361	1829.74834	1947.87199
2023-24	13175	200	2570.42	1888.230532	2054.279664	1942.98048	1788.24119	1811.63202	1928.58613
2025-26	13465	191	2454.7511	1803.260158	1961.837079	1855.54636	1707.77034	1730.10858	1841.79975

NCR: Norma de Combustibles Renovables LM: Limite de mezcla

Tipo de cambio =12.8521 Banco de México 27/09/2012

Anexo D. Proyecciones del precio de maíz en México en diferentes escenarios

Con precios altos de petróleo

	1 2 3		Altos precios de petróleo					
		Proyeccio	ones Precio maíz México (\$/Ton)					
	Sin NCR y LM	LM	NCR					
Año	Sin NCR y LM	Sin LM	Sin NCR	P. Base	Sin NCR y LM	Sin LM	Sin NCR	
					Cambios re	specto Proyec	cción base	
2011-12	2835.614665	2884.082	2851.595	3034.736	-6.56139	-4.96431	-6.0348	
2012-13	2889.550498	2971.543	2916.585	3226.404	-10.4405	-7.89923	-9.6026	
2013-14	2922.731823	3025.349	2956.567	3344.318	-12.606	-9.53766	-11.5943	
2014-15	2967.238796	3084.663	3005.956	3449.658	-13.9845	-10.5806	-12.8622	
2015-16	2988.59603	3114.599	3030.142	3506.263	-14.7641	-11.1704	-13.5792	
2016-17	3001.735	3133.016	3045.021	3541.086	-15.2312	-11.5239	-14.0088	
2017-18	3012.829823	3147.623	3057.274	3566.61	-15.5268	-11.7475	-14.2807	
2018-19	3022.667085	3159.886	3067.911	3586.411	-15.7189	-11.8928	-14.4574	
2018-20	3022.695514	3160.877	3068.257	3590.394	-15.8116	-11.9629	-14.5426	
2020-21	3019.701275	3158.21	3065.37	3588.744	-15.8563	-11.9968	-14.5837	
2023-24	3011.835764	3150.016	3057.397	3579.529	-15.8594	-11.9992	-14.5866	
2025-26	2979.891353	3115.486	3024.6	3536.962	-15.75	-11.9163	-14.4859	
		_		Promedio	-14.0092	-10.5993	-12.8849	
				MIN	-15.8594	-11.9992	-14.5866	
				MAX	-6.56139	-4.96431	-6.0348	

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Con precios bajos de petróleo

	4 5 6			recios de óleo			
		Proyeccio	ones Precio m	aíz México (\$	/Ton)		
	Sin NCR y LM	LM	NCR				
Año	Sin NCR y LM	Sin LM	Sin NCR	P. Base	Sin NCR y LM	Sin LM	Sin NCR
					Cambios re	specto Proyec	ción base
2011-12	2806.429277	2813.257	2847.394	3034.736	-7.5231	-7.29813	-6.17325
2012-13	2840.177498	2851.727	2909.477	3226.404	-11.9708	-11.6128	-9.8229
2013-14	2860.939403	2875.395	2947.671	3344.318	-14.4537	-14.0215	-11.8603
2014-15	2896.530085	2913.071	2995.777	3449.658	-16.0343	-15.5548	-13.1573
2015-16	2912.720984	2930.471	3019.219	3506.263	-16.928	-16.4218	-13.8907
2016-17	2922.681624	2941.175	3033.641	3541.086	-17.4637	-16.9415	-14.3302
2017-18	2931.661655	2950.65	3045.589	3566.61	-17.8026	-17.2702	-14.6083
2018-19	2940.038414	2959.368	3056.016	3586.411	-18.0228	-17.4839	-14.789
2018-20	2939.487308	2958.952	3056.278	3590.394	-18.1291	-17.587	-14.8762
2020-21	2936.296022	2955.807	3053.364	3588.744	-18.1804	-17.6367	-14.9183
2023-24	2928.628254	2948.093	3045.418	3579.529	-18.184	-17.6402	-14.9213
2025-26	2898.24084	2917.342	3012.845	3536.962	-18.0585	-17.5184	-14.8183
				Promedio	-16.0626	-15.5822	-13.1805
				MIN	-18.184	-17.6402	-14.9213
				MAX	-7.5231	-7.29813	-6.17325

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Anexo E. Calculo de oferta, demanda e importaciones para cada escenario (miles de toneladas)

Escenario 1a. Precios altos de petróleo. Eliminación de ambas políticas

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1561.00318	25173.99682	1241.689824	35897.68982	10723.693
2012-13	-1514.40956	24422.59044	1215.642141	35144.64214	10722.0517
2013-14	-1506.64395	24297.35605	1241.403192	35889.40319	11592.04714
2014-15	-1504.13327	24256.86673	1247.888241	36076.88824	11820.02151
2015-16	-1499.579	24183.421	1267.522533	36644.52253	12461.10154
2016-17	-1495.60862	24119.39138	1282.534884	37078.53488	12959.1435
2017-18	-1490.12015	24030.87985	1300.807674	37606.80767	13575.92782
2018-19	-1485.21556	23951.78444	1316.500776	38060.50078	14108.71633
2018-20	-1480.1358	23869.8642	1331.548956	38495.54896	14625.68476
2020-21	-1486.14976	23966.85024	1348.675218	38990.67522	15023.82498
2023-24	-1498.46963	24165.53037	1391.562531	40230.56253	16065.03216
2025-26	-1510.55595	24360.44405	1409.333715	40744.33372	16383.88966

	Miles de	toneladas		
	Proyeco	ción base		
Año	Oferta Maíz Mex	Demanda maíz Mex	Nueva oferta	Nueva Demanda
2010-11	26309	35059	24772.87011	36315.1289
2011-12	26735	34656	25173.99682	35897.6898
2012-13	25937	33929	24422.59044	35144.6421
2013-14	25804	34648	24297.35605	35889.4032
2014-15	25761	34829	24256.86673	36076.8882
2015-16	25683	35377	24183.421	36644.5225
2016-17	25615	35796	24119.39138	37078.5349
2017-18	25521	36306	24030.87985	37606.8077
2018-19	25437	36744	23951.78444	38060.5008
2018-20	25350	37164	23869.8642	38495.549
2020-21	25453	37642	23966.85024	38990.6752
2023-24	25664	38839	24165.53037	40230.5625
2025-26	25871	39335	24360.44405	40744.3337

Escenario 1b. Precios bajos de petróleo. Eliminación del Límite de mezcla (LM)

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1181.04536	25553.95464	939.454848	35595.45485	10041.50021
2012-13	-1145.79291	24791.20709	919.747332	34848.74733	10057.54024
2013-14	-1139.9175	24664.0825	939.237984	35587.23798	10923.15549
2014-15	-1138.01794	24622.98206	944.144532	35773.14453	11150.16247
2015-16	-1134.57221	24548.42779	958.999716	36335.99972	11787.57192
2016-17	-1131.56824	24483.43176	970.357968	36766.35797	12282.92621
2017-18	-1127.4157	24393.5843	984.183048	37290.18305	12896.59874
2018-19	-1123.70491	24313.29509	996.056352	37740.05635	13426.76126
2018-20	-1119.8616	24230.1384	1007.441712	38171.44171	13941.30331
2020-21	-1124.41173	24328.58827	1020.399336	38662.39934	14333.81106
2023-24	-1133.73286	24530.26714	1052.847612	39891.84761	15361.58048
2025-26	-1142.8773	24728.1227	1066.29318	40401.29318	15673.17048

	Miles de	toneladas		
	Proyeco	ción base		
Año	Oferta maíz Mex	Demanda maíz Mex	Nueva oferta	Nueva Demanda
2010-11	26309	35059	25146.77362	36009.37937
2011-12	26735	34656	25553.95464	35595.45485
2012-13	25937	33929	24791.20709	34848.74733
2013-14	25804	34648	24664.0825	35587.23798
2014-15	25761	34829	24622.98206	35773.14453
2015-16	25683	35377	24548.42779	36335.99972
2016-17	25615	35796	24483.43176	36766.35797
2017-18	25521	36306	24393.5843	37290.18305
2018-19	25437	36744	24313.29509	37740.05635
2018-20	25350	37164	24230.1384	38171.44171
2020-21	25453	37642	24328.58827	38662.39934
2023-24	25664	38839	24530.26714	39891.84761
2025-26	25871	39335	24728.1227	40401.29318

Escenario 1c. Precios bajos de petróleo. Eliminación Norma de Combustibles Renovables (NCR)

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1435.72297	25299.27703	1142.036496	35798.0365	10498.75947
2012-13	-1392.86877	24544.13123	1118.079302	35047.0793	10502.94808
2013-14	-1385.72641	24418.27359	1141.772868	35789.77287	11371.49928
2014-15	-1383.41722	24377.58278	1147.737452	35976.73745	11599.15467
2015-16	-1379.22847	24303.77153	1165.79597	36542.79597	12239.02444
2016-17	-1375.57673	24239.42327	1179.603486	36975.60349	12736.18022
2017-18	-1370.52874	24150.47126	1196.409771	37502.40977	13351.93851
2018-19	-1366.01777	24070.98223	1210.843404	37954.8434	13883.86118
2018-20	-1361.3457	23988.6543	1224.683874	38388.68387	14400.02957
2020-21	-1366.87701	24086.12299	1240.435647	38882.43565	14796.31265
2023-24	-1378.20813	24285.79187	1279.880987	40118.88099	15833.08911
2025-26	-1389.32444	24481.67556	1296.225923	40631.22592	16149.55036

	Miles de	toneladas		
	Proyeco	ción base		
Año	Oferta maíz	Demanda maíz	Nueva oferta	Nueva
71110	Mex	Mex	Trucva oferta	Demanda
2010-11	26309	35059	24896.15408	36214.31676
2011-12	26735	34656	25299.27703	35798.0365
2012-13	25937	33929	24544.13123	35047.0793
2013-14	25804	34648	24418.27359	35789.77287
2014-15	25761	34829	24377.58278	35976.73745
2015-16	25683	35377	24303.77153	36542.79597
2016-17	25615	35796	24239.42327	36975.60349
2017-18	25521	36306	24150.47126	37502.40977
2018-19	25437	36744	24070.98223	37954.8434
2018-20	25350	37164	23988.6543	38388.68387
2020-21	25453	37642	24086.12299	38882.43565
2023-24	25664	38839	24285.79187	40118.88099
2025-26	25871	39335	24481.67556	40631.22592

Escenario 2a. Precios bajos de petróleo. Eliminación de ambas políticas

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1789.80131	24945.19869	1423.685808	36079.68581	11134.48712
2012-13	-1736.3784	24200.6216	1393.820285	35322.82028	11122.19869
2013-14	-1727.47458	24076.52542	1423.357164	36071.35716	11994.83175
2014-15	-1724.59591	24036.40409	1430.792735	36259.79273	12223.38864
2015-16	-1719.37412	23963.62588	1453.304849	36830.30485	12866.67897
2016-17	-1714.82179	23900.17821	1470.517578	37266.51758	13366.33937
2017-18	-1708.52887	23812.47113	1491.468633	37797.46863	13984.9975
2018-19	-1702.9054	23734.0946	1509.461892	38253.46189	14519.36729
2018-20	-1697.0811	23652.9189	1526.715702	38690.7157	15037.7968
2020-21	-1703.97654	23749.02346	1546.352181	39188.35218	15439.32872
2023-24	-1718.10214	23945.89786	1595.52554	40434.52554	16488.62768
2025-26	-1731.95997	24139.04003	1615.901468	40950.90147	16811.86143

	Miles de	toneladas		
	Proyeco	ción base		
Año	Oferta maíz Mex	Demanda maíz Mex	Nueva oferta	Nueva Demanda
2010-11	26309	35059	24547.71769	36499.2412
2011-12	26735	34656	24945.19869	36079.6858
2012-13	25937	33929	24200.6216	35322.8203
2013-14	25804	34648	24076.52542	36071.3572
2014-15	25761	34829	24036.40409	36259.7927
2015-16	25683	35377	23963.62588	36830.3048
2016-17	25615	35796	23900.17821	37266.5176
2017-18	25521	36306	23812.47113	37797.4686
2018-19	25437	36744	23734.0946	38253.4619
2018-20	25350	37164	23652.9189	38690.7157
2020-21	25453	37642	23749.02346	39188.3522
2023-24	25664	38839	23945.89786	40434.5255
2025-26	25871	39335	24139.04003	40950.9015

Escenario 2b. Precios bajos de petróleo. Eliminación del Límite de mezcla (LM)

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1736.2778	24998.72216	1381.110912	36037.11091	11038.38875
2012-13	-1684.4525	24252.54747	1352.138508	35281.13851	11028.59104
2013-14	-1675.815	24128.18502	1380.792096	36028.7921	11900.60707
2014-15	-1673.0224	24087.97762	1388.005308	36217.00531	12129.02769
2015-16	-1667.9568	24015.04325	1409.844204	36786.8442	12771.80096
2016-17	-1663.5406	23951.45944	1426.542192	37222.54219	13271.08275
2017-18	-1657.4358	23863.56418	1446.866712	37752.86671	13889.30254
2018-19	-1651.9805	23785.01947	1464.321888	38208.32189	14423.30242
2018-20	-1646.3304	23703.6696	1481.059728	38645.05973	14941.39013
2020-21	-1653.0196	23799.98037	1500.108984	39142.10898	15342.12862
2023-24	-1666.7228	23997.27718	1547.811828	40386.81183	16389.53464
2025-26	-1680.1662	24190.83378	1567.57842	40902.57842	16711.74464

	Miles de	toneladas		
	Proyec	ción base		
Año	Oferta maíz Mex	Demanda maíz Mex	Nueva oferta	Nueva Demanda
2010-11	26309	35059	24600.3883	36456.1713
2011-12	26735	34656	24998.72216	36037.1109
2012-13	25937	33929	24252.54747	35281.1385
2013-14	25804	34648	24128.18502	36028.7921
2014-15	25761	34829	24087.97762	36217.0053
2015-16	25683	35377	24015.04325	36786.8442
2016-17	25615	35796	23951.45944	37222.5422
2017-18	25521	36306	23863.56418	37752.8667
2018-19	25437	36744	23785.01947	38208.3219
2018-20	25350	37164	23703.6696	38645.0597
2020-21	25453	37642	23799.98037	39142.109
2023-24	25664	38839	23997.27718	40386.8118
2025-26	25871	39335	24190.83378	40902.5784

Escenario 2c. Precios bajos de petróleo. Eliminación Norma de Combustibles Renovables (NCR)

Año	ΔQ Oferta	Nueva oferta	ΔQ Demanda	Nueva Demanda	Importaciones
2011-12	-1468.66049	25266.33951	1168.236432	35824.23643	10557.89692
2012-13	-1424.82316	24512.17684	1143.729626	35072.72963	10560.55278
2013-14	-1417.51694	24386.48306	1167.966756	35815.96676	11429.48369
2014-15	-1415.15477	24345.84523	1174.068176	36003.06818	11657.22295
2015-16	-1410.86992	24272.13008	1192.540982	36569.54098	12297.4109
2016-17	-1407.13441	24207.86559	1206.665262	37002.66526	12794.79967
2017-18	-1401.97061	24119.02939	1223.857107	37529.85711	13410.82772
2018-19	-1397.35616	24039.64384	1238.621868	37982.62187	13942.97803
2018-20	-1392.5769	23957.4231	1252.779858	38416.77986	14459.35676
2020-21	-1398.2351	24054.7649	1268.892999	38910.893	14856.1281
2023-24	-1409.82618	24254.17382	1309.243271	40148.24327	15894.06945
2025-26	-1421.19751	24449.80249	1325.963183	40660.96318	16211.1607

	Miles de	toneladas		
	Proyeco	ción base		
Año	Oferta maíz Mex	Demanda maíz Mex	Nueva oferta	Nueva Demanda
2010-11	26309	35059	24863.74139	36240.8214
2011-12	26735	34656	25266.33951	35824.2364
2012-13	25937	33929	24512.17684	35072.7296
2013-14	25804	34648	24386.48306	35815.9668
2014-15	25761	34829	24345.84523	36003.0682
2015-16	25683	35377	24272.13008	36569.541
2016-17	25615	35796	24207.86559	37002.6653
2017-18	25521	36306	24119.02939	37529.8571
2018-19	25437	36744	24039.64384	37982.6219
2018-20	25350	37164	23957.4231	38416.7799
2020-21	25453	37642	24054.7649	38910.893
2023-24	25664	38839	24254.17382	40148.2433
2025-26	25871	39335	24449.80249	40660.9632

Anexo F. Calculo de cambio de importaciones (miles de toneladas) en diferentes escenarios

Con altos precios de petróleo.

		Impo	rtaciones		Cambios	respecto Proyeco	ción base
Año	P. Base	Sin NCR y LM 1a	Sin LM 1b	Sin NCR 1c	Sin NCR y LM 1a	Sin LM 1b	Sin NCR 1c
2011-12	7921	10723.693	10041.5002	10498.7595	35.3830703	26.7706124	32.543359
2012-13	7993	10722.0517	10057.5402	10502.9481	34.1430214	25.8293537	31.4018276
2013-14	8844	11592.04714	10923.1555	11371.4993	31.0724462	23.5092208	28.5786893
2014-15	9068	11820.02151	11150.1625	11599.1547	30.3487154	22.9616505	27.9130422
2015-16	9694	12461.10154	11787.5719	12239.0244	28.5444764	21.5965744	26.2536047
2016-17	10182	12959.1435	12282.9262	12736.1802	27.2750295	20.6337282	25.0852506
2017-18	10785	13575.92782	12896.5987	13351.9385	25.8778657	19.5790333	23.8010061
2018-19	11306	14108.71633	13426.7613	13883.8612	24.7896367	18.7578388	22.8008242
2018-20	11815	14625.68476	13941.3033	14400.0296	23.789122	17.9966425	21.8792177
2020-21	12189	15023.82498	14333.8111	14796.3127	23.25724	17.596284	21.3907019
2023-24	13175	16065.03216	15361.5805	15833.0891	21.935728	16.5964363	20.1752494
2025-26	13465	16383.88966	15673.1705	16149.5504	21.6776061	16.3993352	19.9372474
				PROMEDIO	27.3411631	20.6855592	25.1466683

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

Con bajos precios de petróleo.

		Iı	mportaciones		Cambios respecto Proyección base			
Año	P. Base	Sin NCR y LM 2a	Sin LM 2b	Sin NCR 2c	Sin NCR y LM 2a	Sin LM 2b	Sin NCR 2c	
2011-12	7921	11134.49	11038.39	10557.9	40.56920992	39.3559999	33.28995	
2012-13	7993	11122.2	11028.59	10560.55	39.14923917	37.9781188	32.12252	
2013-14	8844	11994.83	11900.61	11429.48	35.62677237	34.56136445	29.23432	
2014-15	9068	12223.39	12129.03	11657.22	34.79696339	33.75637067	28.55341	
2015-16	9694	12866.68	12771.8	12297.41	32.72827488	31.74954566	26.8559	
2016-17	10182	13366.34	13271.08	12794.8	31.27420318	30.33866384	25.66097	
2017-18	10785	13985	13889.3	13410.83	29.67081594	28.78351911	24.34703	
2018-19	11306	14519.37	14423.3	13942.98	28.42178749	27.57210699	23.3237	
2018-20	11815	15037.8	14941.39	14459.36	27.27716295	26.46119448	22.38135	
2020-21	12189	15439.33	15342.13	14856.13	26.66608187	25.86864071	21.88143	
2023-24	13175	16488.63	16389.53	15894.07	25.15087426	24.39874493	20.6381	
2025-26	13465	16811.86	16711.74	16211.16	24.85600768	24.11247415	20.39481	
				PROMEDIO	31.34894942	30.41139531	25.72362	

NCR: Norma de Combustibles Renovables

LM: Limite de mezcla

PROYECCIONES FAPRI

Sobre las proyecciones base de FAPRI

Establecido en 1984 por una beca del Congreso de Estados Unidos, el Instituto de Investigación de Política Alimentaria y Agrícola (FAPRI por sus siglas en inglés) es el único programa de investigación de universidad dual. Con centros de investigación en el Centro para el Desarrollo Agropecuario y Rural (CARD en inglés) en la Universidad del Estado de Iowa y el Centro para la Política Nacional de Alimentación y Agricultura (CNFAP en inglés) de la Universidad de Missouri-Columbia, FAPRI utiliza datos y sistemas integrales de modelación computacional para analizar las complejas interrelaciones económicas de la industria de la alimentación y la agricultura.

FAPRI prepara proyecciones de referencia cada año para el sector agrícola de los Estados Unidos y los mercados internacionales de productos básicos. Las proyecciones plurianuales se publican como Perspectivas del FAPRI, que proporcionan un punto de partida para la evaluación y comparación de escenarios que implican la política macroeconómica, el clima y las variables tecnológicas. Estas proyecciones están destinadas para su uso por las agencias gubernamentales, agricultores y funcionarios, empresas agrícolas, y otros que hacen la planificación a mediano plazo y largo plazo.

Las proyecciones de referencia de FAPRI se basan en una serie de supuestos sobre la economía en general, las políticas agrícolas, el clima y el cambio tecnológico. Las proyecciones generalmente asumen que las actuales políticas agrícolas se mantendrán en vigor en los Estados Unidos y otras naciones de negociación durante el período de proyección. Las proyecciones se basan también en condiciones climáticas promedio y las tasas históricas de cambio tecnológico.

La estimación de las proyecciones FAPRI comienza con una referencia preliminar que se presentó por primera vez a un proceso de revisión ante un panel de expertos, incluidos los empleados de varias agencias del Departamento de Agricultura de Estados Unidos, expertos de las organizaciones internacionales, así como de especialistas de extensión generales y expertos del sector. Sus comentarios y sugerencias son tomados en consideración en la línea de base final, que se utiliza para el análisis de políticas en todo el resto del año.

PROYECCIONES DE FAPRI

World Coarse Grains: FAPRI-ISU 2011 Agricultural Outlook / 12

Corn Trade

	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	20/21	23/24	25/26
Net Exporters					(Thousa	and Metric T	ons)						
Argentina	17,475	17,190	15,126	15,779	15,370	15,597	15,394	15,138	14,736	14,434	13,956	12,732	11,965
Australia	10	-11	-10	-14	-20	-23	-28	-32	-39	-43	-48	-69	-75
Brazil	7,600	7,961	7,697	7,930	8,157	8,174	7,635	7,173	6,844	6,855	7,076	7,969	8,097
China	-800	1,797	1,920	1,471	687	391	-290	-1,171	-1,989	-2,415	-2,628	-5,424	-6,410
South Africa	2,475	1,958	1,201	1,758	1,716	1,903	1,861	1,913	1,754	1,715	1,623	1,204	955
Thailand	0	317	21	109	63	39	-4	-20	-70	-126	-175	-393	-420
Ukraine	5,490	7,590	7,439	7,708	7,824	8,027	8,133	8,208	8,164	8,185	8,189	8,078	8,031
United States	49,024	47,186	53,682	56,090	59,072	61,825	66,520	71,542	76,780	80,314	83,493	96,236	102,678
Residual	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018	-3,018
Total Net Exports *	83,916	84,066	86,011	88,990	90,994	93,854	97,324	101,599	105,825	109,032	111,859	123,544	129,047
Net Importers													
Algeria	2,300	2,316	2,243	2,284	2,269	2,288	2,289	2,296	2,297	2.304	2,310	2,321	2,335
Canada	1,500	875	1,171	996	982	848	852	947	1.091	1,189	1,317	1,746	1,978
Egypt	5,400	5,331	5,484	5,615	5.801	6.016	6,266	6,547	6.877	7.196	7,521	8,629	9,243
EU	3,500	2,279	2,225	2,225	2,141	2.096	2.085	2,060	2,026	2.005	1,996	1,926	1,887
India	-2.000	-1.859	-486	-45	728	1,291	1,869	2,206	2,498	2,766	3,074	4,001	4,441
Indonesia	750	1,294	1,256	1.037	977	869	875	940	1,090	1,170	1,206	1,510	1,555
Israel	1,340	1,210	1,161	1,183	1,170	1,183	1,187	1,194	1,197	1,205	1,214	1,230	1,250
Japan	16,100	16.073	15,454	15,609	15,518	15,674	15,915	16,013	15,960	15,990	16,047	16,108	16,231
Malaysia	2,790	2,943	2,860	2.894	2.887	2,918	2,938	2,958	2,971	2,991	3.012	3,057	3.098
	2,790	-286	2,000	2,094	128	143	2,936	327	448	443	450	629	853
Nigeria Mexico	8,750	7.921	7,993	8.844	9.068	9,694	10.182	10,785	11,306	11.815	12,189	13,175	13,465
Pakistan	6,750	10	10	10	9,066	9,094	10,182	10,785	11,306	11,615	12,169	13,175	13,465
	300	565	727	743	760	751	762	816	998	1.070	1.092	1,307	1,453
Philippines Russia	975	1,247	1,245	1,128	1.088	1.056	1.048	1.090	1.165	1,070	1,092	1,307	1,453
									.,				
South Korea	9,000	9,109	9,209	9,450	9,670	9,883	9,997	10,092	10,156	10,248	10,099	10,058	9,957
Taiwan	4,700	5,863	6,398	6,664	6,614	6,671	6,661	6,642	6,614	6,631	6,634	6,654	6,737
Vietnam	1,300	1,030	1,134	1,089	1,127	1,171	1,267	1,363	1,466	1,528	1,597	1,971	2,163
Other Africa Other Americas	3,835	4,516 11,626	4,479	5,578	5,234	5,454	5,582	5,951	6,168	6,238	6,515	7,163	7,675 18,413
Other Asia	11,559 9.005	9.847	12,191	12,380	12,898	13,326	13,850	14,299	14,869	15,364 15,071	15,838	17,469	18,140
		-933	10,758	11,161	11,904 -1,123	12,488 -917	13,145 -800	13,833 -643	14,510 -566	-547	15,652 -540	17,437 -344	-339
Other Europe Other Oceania	-2,860 2	-933 -7	-1,451 -6	-1,116 -2	-1,123	-917	-600	-643 8	10	-547	-540 14	-344	-339
Total Net Imports	83,916	84,066	86,011	88,990	90,994	93,854	97,324	101,599	105,825	109,031	111,859	123,544	129,047
Coarse Grain Prices					(U.S. Dolla	ars per Metr	ic Ton)						
Corn (FOB Gulf)	206	183	197	197	205	203	203	204	205	203	202	200	191
Sorghum (FOB Gulf)	216	192	219	212	229	225	232	234	239	239	243	252	249
Barley (Canada Feed	166	205	169	193	186	193	190	196	197	196	200	203	198

^{*} Total net exports are the sum of all positive net exports and negative net imports.

29 / World Coarse Grains: FAPRI-ISU 2011 Agricultural Outlook

Mexican Coarse Grain Supply and Utilization

	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	20/21	23/24	25/26
Corn					(Thous	and Hectar	res)						
Area Harvested	7,200	7,041	6,874	6,855	6,821	6,759	6,725	6,666	6,630	6,590	6,548	6,444	6,387
					(Metric T	ons per He	ctare)						
Yield	3.40	3.38	3.36	3.36	3.36	3.39	3.39	3.40	3.41	3.41	3.44	3.52	3.57
					(Thousa	nd Metric T	ons)						
Production	24,500	23,776	23,075	23,009	22,951	22,900	22,804	22,688	22,582	22,479	22,549	22,682	22,831
Beginning Stocks	1,809	2,959	2,861	2,796	2,811	2,783	2,811	2,833	2,855	2,871	2,904	2,982	3,040
Domestic Supply	26,309	26,735	25,937	25,804	25,761	25,683	25,615	25,521	25,437	25,350	25,453	25,664	25,871
Feed Use	15,900	14,654	14,824	14,900	15,175	15,398	15,708	15,992	16,280	16,535	16,811	17,538	17,764
Food and Other	16,200	17,141	16,310	16,937	16,871	17,168	17,256	17,459	17,592	17,725	17,897	18,291	18,477
Ending Stocks	2,959	2,861	2,796	2,811	2,783	2,811	2,833	2,855	2,871	2,904	2,935	3,010	3,095
Domestic Use	35,059	34,656	33,929	34,648	34,829	35,377	35,796	36,306	36,744	37,164	37,642	38,839	39,335
Net Trade	-8,750	-7,921	-7,993	-8,844	-9,068	-9,694	-10,182	-10,785	-11,306	-11,815	-12,189	-13,175	-13,465
Sorghum					(Thous	and Hectar	res)						
Area Harvested	1,850	1,863	1,738	1,818	1,789	1,831	1,815	1,831	1,831	1,835	1,829	1,828	1,816
					(Metric T	ons per He	ctare)						
Yield	3.84	3.77	3.80	3.84	3.86	3.90	3.94	3.98	4.00	4.05	4.08	4.18	4.25
					(Thousa	nd Metric T	ons)						
Production	7,100	7,017	6,604	6,975	6,907	7,147	7,157	7,282	7,328	7,423	7,471	7,647	7,720
Beginning Stocks	286	486	408	336	360	321	340	334	341	341	354	368	383
Domestic Supply	7,386	7,503	7,012	7,310	7,266	7,468	7,497	7,616	7,669	7,764	7,825	8,015	8,103
Feed Use	9,500	9,477	8,988	9,342	9,178	9,457	9,510	9,707	9,831	10,012	10,128	10,524	10,726
Food and Other	100	105	104	106	106	108	108	110	111	113	114	118	121
Ending Stocks	486	408	336	360	321	340	334	341	341	354	357	375	407
Domestic Use	10,086	9,990	9,428	9,808	9,604	9,905	9,953	10,158	10,283	10,479	10,598	11,016	11,254
Net Trade	-2,700	-2,487	-2,416	-2,497	-2,338	-2,437	-2,456	-2,542	-2,614	-2,715	-2,773	-3,002	-3,151
Barley					(Thous	and Hectar	res)						
Area Harvested	310	289	304	284	293	288	289	286	287	285	283	281	276
					(Metric T	ons per He	ctare)						
Yield	2.52	2.47	2.51	2.52	2.55	2.57	2.60	2.62	2.64	2.66	2.69	2.76	2.81
					(Thousa	nd Metric T	ons)						
Production	781	716	764	717	747	739	751	749	756	760	762	777	777
Beginning Stocks	137	218	217	234	231	234	234	236	236	237	239	242	245
Domestic Supply	918	934	982	950	977	973	985	985	992	997	1,001	1,019	1,022
Feed Use	150	149	168	164	171	172	177	179	183	187	190	200	206
Food and Other	600	571	642	625	647	651	667	674	686	701	711	748	780
Ending Stocks	218	217	234	231	234	234	236	236	237	239	240	244	249
Domestic Use	968	938	1,043	1,020	1,052	1,056	1,080	1,090	1,107	1,128	1,141	1,192	1,236
Net Trade	-50	-4	-62	-69	-74	-83	-95	-104	-114	-131	-140	-174	-213

U.S. Biofuels Production and Consumption

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2023	2025
Ethanol					(Mi	llion Gallon	s)						
Production	13,084	12,368	12,387	13,387	14,241	15,031	15,307	15,332	15,367	15,406	15,454	15,577	15,637
Consumption	12,803	12,517	13,120	14,107	15,038	15,972	16,634	17,168	17,701	18,129	18,287	18,911	18,973
Ending Stock	754	754	749	797	839	880	901	908	915	920	925	938	946
Net Trade	224	-149	-728	-768	-839	-981	-1,348	-1,844	-2,341	-2,728	-2,839	-3,338	-3,340
Feedstock in Ethanol Production					(Thous	and Metric	Tons)						
Corn	118,844	119,424	112,454	120,786	127,645	133,816	135,306	134,553	133,882	133,200	132,509	130,371	128,922
Corn Stover	16	114	408	713	959	1,208	1,454	1,723	2,003	2,317	2,691	3,536	3,858
Switchgrass	0	0	0	0	0	0	0	0	0	0	0	0	0
Biodiesel					(Mil	lion Gallon	s)						
Production	553	899	968	892	900	912	924	939	951	961	970	996	1,010
Consumption	469	960	1,068	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Net Trade	85	-62	-100	-108	-100	-88	-76	-61	-49	-39	-30	-4	10
Feedstock in Biodiesel Production	n				(Thous	and Metric	Tons)						
Soybean Oil	941	1,491	1,413	1,033	1,006	1,019	1,041	1,079	1,108	1,129	1,151	1,177	1,131
Other fats and oils	992	1,649	1,971	2,085	2,138	2,169	2,189	2,203	2,216	2,228	2,238	2,301	2,398

October 2012

WASDE - 511 - 12

U.S. Feed Grain and Corn Supply and Use 1/

CORN

		Milli	on Acres	
Area Planted	88.2	91.9	96.4	96.9
Area Harvested	81.4	84.0	87.4	87.7
		Bush	els	
Yield per Harvested Acre	152.8	147.2	122.8	122.0
		Milli	on Bushels	
Beginning Stocks	1,708	1,128	1,181	988
Production	12,447	12,358	10,727	10,706
Imports	28	28	75	75
Supply, Total	14,182	13,514	11,983	11,769
Feed and Residual	4,793	4,562	4,150	4,150
Food, Seed & Industrial 2/	6,428	6,421	5,850	5,850
Ethanol & by-products 3/	5,021	5,000	4,500	4,500
Domestic, Total	11,221	10,983	10,000	10,000
Exports	1,834	1,543	1,250	1,150
Use, Total	13,055	12,526	11,250	11,150
Ending Stocks	1,128	988	733	619
CCC Inventory	0	0		0
Free Stocks	1,128	988		619
Outstanding Loans	48	41		50
Avg. Farm Price (\$/bu) 4/	5.18	6.22	7.20 - 8.60	7.10 - 8.50

Note: Totals may not add due to rounding. 1/ Marketing year beginning September 1 for corn and sorghum; June 1 for barley and oats. 2/ For a breakout of FSI corn uses, see Feed Outlook table 5 or access the data on the Web through the Feed Grains Database at www.ers.usda.gov/data/feedgrains. 3/ Corn processed in ethanol plants to produce ethanol and by-products including distillers' grains, corn gluten feed, corn gluten meal, and corn oil. 4/ Marketing-year weighted average price received by farmers.

ESTIMACIÓN DEL MODELO ANEXANDO LA VARIABLE EXPLICATICA DEMANDA

DATA PRECIO; INPUT ANO PRECIOMEX PRECIOUS TLCAN DEMAN; PRECIOMEXRETRASADO=LAG(PRECIOMEX); DATALINES; 1981 6844.62 2404.87 0 17053459 1982 6601.02 3983.78 0 10490241 1983 7082.79 7147.94 0 17878865 1984 7288.64 4135.38 0 15286615 1985 6500.6 3367.27 0 15829237 1986 5691.45 2288.77 0 13613282 1987 6109.7 2633.78 0 15209797 1988 5550.63 3402.57 0 13894129 1989 5584.62 2750.81 0 14602019 1990 4933.02 2062.27 0 18739818 1991 4862.47 1934.44 0 15673205 1992 4370.71 1448.38 0 18234970 1993 4275.33 1707.44 0 18335944 1994 3583.24 1646.53 1 20982439 1995 4257.12 3197.22 1 21039821 1996 4314.9 2438.6 1 23866350 1997 3660.21 2047.78 1 20175162 1998 2932.39 1417.63 1 23666563 1999 3192.08 1502.28 1 23252211 2000 22904519 3054.05 1395.15 1 2001 2778.48 1386.48 1 26308328 2002 2602.6 1532.14 1 24810711 2003 2758.01 1752.55 1 26465549 27188890 2004 2647.46 1438.22 1 2005 2297.44 1248.42 1 25082378 2699.9 1752.4 1 2006 29503140 2007 3139.45 2322.97 1 31467529 3172.5 2008 2006.02 1 33466087 2009 3171.8 2135.52 1 27403419 2010 2816.48 2575.45 1 31150898 PROC PRINT; PROC MEANS; PROC AUTOREG; MODEL PRECIOMEX=PRECIOUS TLCAN PRECIOMEXRETRASADO DEMAN /

LAGDEP=PRECIOMEXRETRASADO;

RUN;

0bs	ANO	PRECIOMEX	PREC TOUS	TLCAN	DEMAN	PREC IOMEXRETRASADO
1	1981	6844.62	2404.87	0	17053459	
ż	1982	6601.02	3983.78	ò	10490241	6844.62
2 3	1983	7082.79	7147.94	Ó	17878865	6601.02
4	1984	7288.64	4135.38	Ö	15286615	7082.79
5	1985	6500.60	3367.27	0	15829237	7288.64
6	1986	5691.45	2288.77	0	13613282	6500.60
7	1987	6109.70	2633.78	0	15209797	5691.45
8	1988	5550.63	3402.57	0	13894129	6109.70
9	1989	5584.62	2750.81	0	14602019	5550.63
10	1990	4933.02	2062.27	0	18739818	5584.62
11	1991	4862.47	1934.44	0	15673205	4933.02
12	1992	4370.71	1448.38	0	18234970	4862.47
13	1993	4275.33	1707.44	0	18335944	4370.71
14	1994	3583.24	1646.53	1	20982439	4275.33
15	1995	4257.12	3197.22	1	21039821	3583.24
16	1996	4314.90	2438.60	1	23866350	4257.12
17	1997	3660.21	2047.78	1	20175162	4314.90
18	1998	2932.39	1417.63	1	23666563	3660.21
19	1999	3192.08	1502.28	1	23252211	2932.39
20	2000	3054.05	1395.15	1	22904519	3192.08
21	2001	2778.48	1386.48	1	26308328	3054.05
22	2002	2602.60	1532.14	1	24810711	2778.48
23	2003	2758.01	1752.55	1	26465549	2602.60
24	2004	2647.46	1438.22	1	27188890	2758.01
25	2005	2297.44	1248.42	1	25082378	2647.46
26	2006	2699.90	1752.40	1	29503140	2297.44
27	2007	3139.45	2322.97	1	31467529	2699.90
28	2008	3172.50	2006.02	1	33466087	3139.45
29	2009	3171.80	2135.52	1	27403419	3172.50
30	2010	2816.48	2575.45	1	31150898	3171.80

Procedimiento MEANS

Variable	Número de observaciones	Media	Desviación estándar	Mínimo	Máximo
ANO PRES LOMEY	30	1995.50	8.8034084	1981.00	2010.00
PRECIONEX PRECIOUS	30 30	4292.46 2368.77	1564.45 1190.80	2297.44 1248.42	7288.64 7147.94
TLCAN Deman	30 30	0.5666667 21452519.17	0.5040069 6018134.91	0 10490241.00	1.0000000 33466087.00
PREC LOMEXRE TRASADO	29	4343.35	1566.66	2297.44	7288.64

The AUTOREG Procedure

Dependent Variable PRECIOMEX

Ordinary Least Squares Estimates

SSE	2201907.36	DFE	24
MSE	91746	Root MSE	302.89625
SBC	425.023536	AIC	418.187057
Regress R-Square	0.9657	Total R-Square	0.9657
Durbin h	-1.9118	Pr 〈 h	0.0279

Variable	DF	Estimación	Error estándar	Valor t	Aprox Pr > t
Intercept PRECIOUS TLCAN PRECIOMEXRETRASADO DEMAN	1 1 1 1	1750 0.3430 -478.8500 0.5493 -0.000021	808.1924 0.0692 253.8609 0.1124 0.0000215	2.16 4.96 -1.89 4.89 -1.00	0.0406 <.0001 0.0714 <.0001 0.3294